
Learn to Program
In

GSoft BASIC

By Mike Westerfield

Copyright 1999

Byte Works®, Inc.
8000 Wagon Mound Dr. NW

Albuquerque, NM 87120-2845

Voice (505) 898-8183
FAX (505) 898-4092

E-Mail MikeW50@AOL.COM
Web http://www.hypermall.com/byteworks

Table of Contents
Lesson One — Getting Started ...7

Before We Get Started... ..7
How to Learn to Program ..9
What You Need...9

What You Should Already Know...10
GSoft BASIC, The FREE Version!..11
Getting Everything Ready..11

The Three Faces of GSoft BASIC..11
Your First Flight... er, Program..12

Dealing with Errors ...15
A Close Look at Hello World ..16

More About Reserved Words...16
Case Sensitivity ...17
Where Are The Line Numbers? ...18

How Programs Execute ...19
Graphics Programs ..20

Lesson Two — Variables and Loops ..25
Integer Variables ...25

More About Variable Names ...27
Using DIM To Declare a Variable Type ..29
The FOR Loop ..30
Some Thoughts on Comments ...31
Operator Precedence..32
The Maximum Integer ...34
Real Numbers..35

PRINT USING for Dollar Amounts...38
Exponents..40
Why So Many Kinds of Numbers? ..41

Lesson Three – Input, Loops and Conditions ..43
Input..43
Our First Game... er, Computer Aided Simulation ...45
The DO-LOOP ..46

The Flexible DO-LOOP Statement ..49
Random Numbers..50

Why Random Numbers Are Important...52
The IF Statement ...54

The ELSE Clause ..56

The World’s Shortest Animation Course..57
Nesting If Statements...60
A Bit of Iffy History ..62

Boolean Logic ...63

Lesson Four – Subroutines..67
Subroutines Avoid Repetition..67
The Structure of a Subroutine ..70

Where to Put Subroutines ..72
The END Statement...72

Commenting Subroutines ..72
Procedure Description..73
Parameters ...73
Shared Variables..74
Return Values..74
Notes ...74

Subroutines Let You Create New Commands ..74
Functions are Subroutines that Return a Value...77
Value and Variable Parameters ..80
Shared Variables ...85

Lesson Five –Strings..89
What Are Strings? ...89
The Two Ways To Read a String ...89
Manipulating Strings ...91
Characters ...96

The ASCII Character Set ...97
The Extended Character Set...98
P-Strings, C-Strings, and Other Confusions ...100

Comparing Strings...101
Numbers and Strings ...102
Garbage Collection..102

Lesson Six –Arrays..105
Groups of Numbers as Arrays..105
The Shell Sort..109
Multidimensional Arrays ...115
Passing Arrays to a Subroutine ..123

Lesson Seven – Types and Constants..129
Simple Types and Named Types..129

The Six Built-in Types...129

Learn to Program in GSoft BASIC

The TYPE Statement ...131
CONST ...131
Records Store More than One Type ...132

Lesson Eight – Files ...135
An Overview of the Process ..135
Opening a File for Output ..136
Writing to a File ..137
Closing a File ..137
Writing Our First File ..138
Reading from a File ...138
File Names, Directories, Path Names and Folders..140

File Names, GS/OS and ProDOS ...140
Path Names..141
Partial Path Names and the Default Prefix ...142
Names in Programs..142
Colons and Slashes ..143

Finding the End of a File ...143
Printing with Files ...146
Binary Files ...147

Opening and Closing Binary Files ...147
Writing Binary Files ..148
Reading Binary Files ...149
Reading and Writing Practically Any File..150
More About File Types and File Formats...150

Random Access ...151

Lesson Nine – Pointers and Lists ..157
What is a Pointer?..157
Pointers are Variables, Too! ..158
Allocating and Deallocating Memory ..160

How New and Dispose Work...161
Linked Lists...163

Stacks ..164
Queues ..169

Running Out Of Memory...171

Lesson Ten – Miscellaneous Useful Stuff..173
The SELECT CASE Statement..173
Revisiting the FOR Loop...178
The GOTO Statement..182

The ONERR GOTO Statement..183
Variant Records...185
A Quick Tour of Some Advanced GSoft BASIC Features196

Changing the Size of Memory ...197
Libraries ..197
The MakeRuntime Utility ..198

Lesson Eleven – Scanning Text...199
The Course of the Course ..199
Manipulating Text ...200
Building a Simple Scanner...201
Symbol Tables...205
Parsing ..207

Lesson Twelve – Recursion ...213
A Quick Look at Recursion ...213
How Procedures Call Themselves..213
Recursion is a Way of Thinking...215
A Practical Application of Recursion...218

Lesson Thirteen – Sorts...225
Sorting...225
The Shell Sort..225
Quick Sort ...228
How Fast Are They?..234
Quick Sort Can Fail!..235
Sorting Summary...236

Lesson Fourteen – Searches and Trees...237
Storing and Accessing Information..237
Sequential Searches ...237
The Binary Search ...238
A Cross Reference Program for BASIC...239
The Binary Tree ..248
Ruffles and Flourishes ...256

Index ..259

Lesson One — Getting Started

Before We Get Started...
When I went to grade school, my teachers tried to beat some basic skills into my thick

head. Back then, the basic skills included reading, writing, and arithmetic. When it came
to spelling, my mind was already warped, because my teachers had also explained that
these were the three R’s.

Lately, in our rapidly changing world, we have added a new basic skill. It just isn’t
good enough to be able to read and write, plus do some math. In 1965, it wasn’t easy to
get from New York to Chicago without reading signs, writing instructions, counting some
change and reading a clock. Today, you will use a computer to make the same trip. The
travel agent will log your reservations in a computer. You may get spending money from
a computer-based automatic teller. A digital watch counts bits to tell you what time it is.
Computers control the flow of trains and the displays used by air traffic controllers. Your
check book may even have a calculator. It’s become a computerized world, and people
who can’t or won’t deal with computers are rapidly being left as far behind as an illiterate
person in the sixties.

Of course, you know all of that. That’s why you have decided to learn to program. By
the end of the course, you will know one of today’s most popular and widely available
programming languages, BASIC. You will know it well enough to write programs of
your own. Whether you want to plot an engineering equation, create a custom cooking
program to adjust ingredients for any number of people, or write a computer game, this
course will get you ready.

If you have been around computers for a long time, you may know that there are
many languages you can use to write programs for your computer. It’s fair to ask why
you should learn BASIC.

One of the things you must look for in a computer language is that it must be fairly
common. If a language is common, that tells you two important things: A lot of people
think the language is a good one, and no matter what computer you decide to write a
program for, you are likely to find the language you know. Today, there are five
languages that fulfill this first requirement. They are C, Pascal, assembly language and
BASIC.

If you decide to make your living programming a computer, you will eventually learn
most of these languages, and probably a few more. If you are learning to program,
though, you have to pick just one of them to learn first. We can immediately rule out

assembly language. In assembly language, you have to deal with the machine’s internal
structure. It takes many individual instructions to do the simplest thing. You will spend
more time dealing with bits and bytes than learning how to write a well-organized
program

C and Pascal are both good choices. Compared to BASIC, most people find C rather
obtuse. The reason has to do with the type of programming each language was created
for. One of the design goals of the BASIC language was to create a simple language for
scientists and engineers. BASIC has grown beyond this initial audience, but it is still one
of the simplest of the popular computer languages to learn and read. It has all of the
facilities needed to implement modern programs. C was designed for professional
programmers who implement programs that might need to do some very tricky things.
Because of its built-in safety checks, the BASIC language often hinders their efforts. C,
on the other hand, does not have these checks. That’s good for the careful professional
programmer, but bad for a beginner, who really needs those checks

Pascal is a great first language, just like BASIC. Pascal tends to be more verbose, but
that’s not necessarily a bad thing, because Pascal programs tend to be laid out better as a
result. We’ll learn some techniques for laying out BASIC programs to get around this
minor disadvantage.

BASIC has an advantage over both C and Pascal, though. There are two common
ways to create computer languages. One method is called compiling, and the other is
called interpreting. At this point, it’s not important to understand the technical difference
between the two, just to realize there are two methods, each with its own advantages and
disadvantages.

Most implementations of BASIC, including GSoft BASIC, are interpreters. That’s
good and bad. Interpreted programs run slower than compiled programs, although that’s
not an important consideration for any of the programs in this course, or for many other
programs. But interpreted programming languages are easier to use. Your program
doesn’t have to be compiled, so it is ready to run right away. There are also fewer steps in
creating a program, which makes your job of learning to use the language a lot easier.

I’d like to make one point clear, though. BASIC is not inherently slower than Pascal
or C. A BASIC compiler will create programs that run at about the same speed as
compiled Pascal or C programs. For that matter, you could create an interpreter for Pascal
or C, and in fact, that has been done. Any language can be implemented either way, but
BASIC is generally implemented as an interpreter, and Pascal and C are generally
implemented as compilers.

Before getting too much further, I also want to point out what this course is not. This
is not a course about writing Apple IIGS desktop programs. I don’t want to discourage
you from writing desktop programs; quite the contrary. On the other hand, as you will
find out, there is a lot to learn about programming before you are really ready to tackle

Learn to Program in GSoft BASIC

something like a desktop program. By the time you finish this course, you will be ready
to start to learn about desktop programming. If you tried to learn desktop programming
right away, though, you would probably fail. There’s just too much to learn to try and do
it all at once.

How to Learn to Program
Learning to program has a lot in common with learning to fly an airplane. When you

learn to fly, most people start with an introductory flight with an instructor. Those that
don’t often make a bad first landing, and never get a second chance. (An old adage
around flight schools is that any landing you walk away from was a good landing.)
Before, during and after the flight, the instructor will tell you about some of the basics of
flight: How the control surfaces work, what the controls do, and so forth. There will be a
lot you don’t know, and a lot of things you are told may not make sense right away. As
you progress, you will spend time reading books and sitting in lectures, but you will also
spend a lot of time actually flying the airplane. You wouldn’t expect to spend all of your
time reading books and sitting in lectures, then walk out to the plane and go off for a
cross-country flight with no instructor; you gradually work up to that point. Eventually,
though, you solo. You start to fly long distances, first with an instructor and then alone.
Finally the day comes when you get your license.

It’s the same way with programming. In a moment, we’ll get started. We’ll start off
with a few simple programs. It is absolutely essential that you type them in and run them.
There will be many problems that you can work on your own. The more problems you
work, the better programmer you will become. Sure, we will spend some time talking
about the ideas behind programming, and there will be some problems that you need to
work through with a pencil and paper. For the most part, though, you will be
programming; either typing in and analyzing programs with the help of this material, or
writing and running your own programs. Gradually, the programs will get longer, and
before long you will be able to write your own programs.

Just in case you missed the point, let me spell it out in very simple terms. If you read
this material, but don’t type in the sample programs or work the problems, you will know
as much about programming as you would know about flying from reading a book. In
short, very little. Programming is a skill. If you don’t practice the skill, you will never
learn it.

What You Need
Now is the time to sit down in front of your computer. Before starting, let’s make sure

you have everything you will need. First, you need an Apple IIGS computer. (An emulator
is fine, as long as it emulates and Apple IIGS.) It must have a monitor. It’s nice if the

monitor is color, and you’ll use color in some graphics programs, but you can make do
with a black and white monitor. The computer must have at least 1.125M of memory. For
the older Apple IIGS that came with 256K on the mother board, this means that the
memory card in the special memory slot must be populated with 1M of memory. In the
most common case of an Apple memory card, this means that there should be a memory
chip in each socket on the card. You can check this by taking the top off of your
computer and looking. With the newer Apple IIGS, which comes with 1.125M of memory
on the mother board, you don’t need a memory card at all.

You must have at least one 3.5” disk drive, plus another 3.5” disk drive or a hard
drive. It is possible to use GSoft BASIC with a single 3.5” disk drive, but it’s tough. We
won’t go over the details of using a single drive here. If you don’t have a second drive,
contact Byte Works technical support and discuss your options.

You will need a copy of GSoft BASIC. If you decide to use a different BASIC, there
will be some things in this book that will not work. You would have to figure out why
and make appropriate adjustments. By the time you finish this course, you will know
enough to do that. At first, though, you may not. For that reason, I would suggest that you
stick with GSoft BASIC.

There are some other things that would be nice, but not essential. Most people like to
print their programs and look at the paper copy. I highly recommend a printer if you
intend to try this. A hard disk is also very nice. Hard disks can hold much more than a
floppy disk, so you will not have to switch disks as often. Hard disks are also faster than
floppy disks, which again speeds up the programming process. Finally, an accelerator
card will roughly double the speed of your computer. As I said, all of these are nice. If
you end up spending a lot of time programming, I would encourage developing a close
relationship with St. Nicholas in an attempt to collect these items. You can, however, do
everything in this course without them.

What You Should Already Know
Any book about computers has to make some assumptions about what you already

know. Let’s briefly discuss the assumptions I’m making so you’re not surprised about
things I leave out.

I assume you’re a reasonably intelligent person who is already familiar with using
computers. I won’t be telling you how to insert floppy disks, how to use an editor to type
programs, or how to copy files. For the most part, you should already know how to do
those things. Using the text editor is the one area where you may need a little more help
than usual, simply because the editor we’ll use to write programs is a little different than
editors used to write books and letters. The similarities are more frequent than the
differences, though, and a little time with the GSoft BASIC reference manual should be
enough for anyone who already knows how to use a word processor.

Learn to Program in GSoft BASIC

GSoft BASIC, The FREE Version!
There are two versions of GSoft BASIC. This book assumes you are using the

commercial version, but almost everything in this book will actually work on the smaller,
free version. You can download a copy of the free version from
http://www.hypermall.com/byteworks. You can also get a copy on a floppy disk from the
publisher of this book for a small fee.

If you’re not sure which version is for you, start with the free one. When you get to
the point I this course where it deals with libraries and creating programs that run from
the Finder, which are the two things the commercial version adds that we use in this
course, you can switch to the commercial version of GSoft BASIC or just skip those
sections.

Getting Everything Ready
When I bought my first FORTRAN compiler for the Apple II, I had a frightening

experience. I wrote a program that crashed the compiler. The program actually erased
some of the information on the compiler disk, so I could not use that disk anymore. In
those days, many vendors still took the absurd position that computer languages had to be
copy protected. My local dealer either could not or would not help me restore the disk. I
had one other copy (the program came with two copies), but I was afraid to use it.

Fortunately, times have changed. Computer languages are no longer copy protected.
The very first thing you should do when you open your copy of GSoft BASIC is to make
copies of both of the floppy disks that come with the package. You can use the Finder to
do this. If you know how to use some other copy program, and you like it better, go
ahead and use it. Any copy program will work. Label each of the disks you have copied,
and put the originals in a safe place.

If you are using two 3.5” floppy disk drives, you will use a copy of the first disk in
the second floppy disk drive and your normal boot disk in the first drive. You might want
to make an extra copy of the first GSoft BASIC disk; you’ll use that one both to run
GSoft BASIC and to save your programs.

If you are using a hard drive, you will need to install GSoft BASIC on the hard drive.
You can find instructions in the reference manual that comes with GSoft BASIC.

The Three Faces of GSoft BASIC
It’s worth mentioning that there are three ways to create and run a GSoft BASIC

program. This course assumes you are using the simplest, the GSoft BASIC shell. (A
shell is the name for the program that looks at things you type, like CATALOG or EDIT,
and carries out your instructions.)

There is another version that runs from the ORCA shell. All of the programs you see
here will work fine from that version. If you’re already familiar with the ORCA shell,
you have the commercial version of GSoft BASIC, and you prefer the ORCA shell to the
smaller, simpler one built into GSoft BASIC, feel free to use it. If you have any trouble
getting started with the ORCA shell version, refer to the reference manual.

The last version of GSoft BASIC works in conjunction with either of the first two.
Whether you are using the GSoft BASIC shell or the ORCA shell, the programs you
create only run from that environment. Of course, you will eventually create a program
you want to give to other people, and they may not have GSoft BASIC. Even if they do,
they will want to run the program like any other program, from Apple’s Finder or some
other program launcher. The third version of GSoft BASIC is a special one that lets you
create programs that will run from the Finder. We’ll cover how to create these programs,
and discuss the advantages and disadvantages, later in this course.

Your First Flight... er, Program
It’s time to take that first test flight. Strap yourself in. After all, as you have no doubt

heard, computers can crash, so always wear your seat belt. Fortunately, though, a
computer crash caused by programs you write in this course won’t hurt anything.

As we go through this program, there will be a lot you don’t understand. Be patient;
in time, you will. The one thing you should keep in mind, though, is that you can’t write a
program that will damage the computer. Even if you do something wrong, the absolute
worst thing that will happen is you will erase a disk—and even that is so unlikely that it
isn’t worth worrying about very much. It is, however, worth worrying about enough to
make a copy of the GSoft BASIC disks, which is why you should never run from the
original disks. You should also keep backups of your hard drives. Frankly, it’s more
likely that you will loose information on your hard drive from the hard drive wearing out
than from the programs in this course, but it’s always best to keep good backups, just in
case.

From Apple’s Finder, locate
the file GSoft.Sys16, either on
your hard disk or on the second
3.5” floppy disk. Double-click on
GSoft.Sys16 to start the program.
You’ll see a banner across the top
of the screen with the program’s
version number, a blank line, and
a } character followed by a cursor.
From here, you can type any of
the commands you find in

Learn to Program in GSoft BASIC

Chapter 5 of the GSoft BASIC reference manual. We won’t use many of the commands
in this course, but we will cover each of them we use in detail. Some of the commands
we don’t cover may come in handy, though, so plan to flip through Chapter 5 of the
GSoft BASIC reference manual at some point, just to see what’s there.

When you write a program, you type the program pretty much the same way you
would type a letter in a word processor. Our first step, then, is to enter the editor so we
can type a program. From the GSoft BASIC shell, type the line

EDIT

and press the return key. It doesn’t really matter whether you use uppercase or lowercase
letters.

The edit command shifts you from the shell to the full screen editor. The editor that
comes with GSoft BASIC is optimized for writing programs, so it’s a little different from
editors like AppleWorks that are intended for writing letters, but there are also many
similarities. We’ll assume that you have used enough editors that you can type the
program and use cursor keys and the return key to move around the screen. If you need
help, try Command-?, which
brings up the editor’s help
screen, or refer to Chapter 6
of the GSoft BASIC
reference manual.

Type in the following
program. The format isn’t
terribly critical, but since
you don’t know what is and
what is not important yet, it
is best to type it exactly as
shown. This program writes
the characters "Hello,
world." to the screen. It’s a
simple program, but we
must start somewhere.

PRINT "Hello, world."

The next step is to exit the editor. To be honest, this is a little peculiar. We’ll discuss
the reasons in a minute. To exit the editor, type Command-Q. The editor will ask you if

you want to save the program. Select yes, and you’re dropped back into the GSoft BASIC
shell.

At this point, you have created a BASIC program that is stored in the memory of your
computer. GSoft BASIC calls this the program buffer, or sometimes the workspace. If
you type

LIST

You’ll see the program itself. You can also look at or change the program using the
editor, typing

EDIT

again. In fact, technically there is a program in the program buffer as soon as you start
GSoft BASIC—it just doesn’t have any lines. It’s legal to run a completely empty
program, it just doesn’t do anything.

It’s a good idea to get in the habit of saving your program to disk occasionally. Right
now, if you leave GSoft BASIC, you’re program vanishes. That may not be a big deal for
a one-line program, but you’ll want to save your longer ones.

To save the program to disk, type SAVE followed by the name you want to use for
the program. Save this program as Hello, like this:

SAVE Hello

This command saves your program to the same folder where GSoft.Sys16 is located.
There is nothing to stop you from putting the programs somewhere else, but your life will
be a little easier if you just leave the programs in the same folder as GSoft.Sys16.
Occasionally, you will want to copy the programs to a separate archive disk and delete
them from your working folder, especially if you are using floppy disks. You can actually
do this from GSoft BASIC’s shell, but this is one area where the Finder’s desktop
interface works better. Personally, I use GSoft BASIC’s file manipulation commands if I
need to copy or move one or two files, but for large numbers of files, I leave
GSoft BASIC and use the Finder.

With the program safely saved to disk, just in case a catastrophe happens, it’s time to
spin the prop and see if it flies. Type

RUN

Learn to Program in GSoft BASIC

This command executes the program in the program buffer. It’s the GSoft BASIC
equivalent of double-clicking on a program from the Finder. This program consists of a
simple PRINT statement that writes the text between the quote marks to the screen, so
you’ll see

Hello, world.

on your display. Congratulations, you’ve just written and executed a computer program!
I mentioned earlier that the way the editor worked was a little peculiar. After all, the

editor saved the program as you left the editor to go back to the GSoft BASIC shell,
right? Well, sort of. Without getting too deep into technical explanations, the editor ended
up saving the program in the workspace, not on the disk. Maybe you heard the disk being
accessed. The editor and GSoft BASIC are actually separate programs. They use the disk
to pass the program back and forth, but the temporary file they use for communication is
erased automatically.

Dealing with Errors
If you’re program didn’t quite work, check each step to see what you did wrong. One

of the most common programmer mistakes is to assume that any mistake is the
computer’s fault. Sorry, it just ain’t so. If things didn’t work it’s because, in order of
likelihood:

1. You didn’t do exactly what you were told.
2. You don’t have the correct hardware.
3. You have a bad disk.
4. You have bad hardware.

Just for the record, you should know that absolutely every program we will show you
in this course has been mechanically moved from the word processor to GSoft BASIC (or
vice versa) and executed. They have also been typed in and executed by one or more
guinea pigs we call beta testers, who we use to find errors before the errors can confuse
you. In other words, every single program has been tested at least twice. If you encounter
a problem, the chances are very, very small that the problem is in the program in the
course material or in GSoft BASIC.

Now, that’s not to say GSoft BASIC is perfect. You may encounter a bug someday.
Still, the overwhelming number of programmers, especially beginning programmers, who
blame a problem on the machine or the programming language have made two mistakes:
One in the program itself, and the other in assigning the blame to the wrong source! The

fact is, programming can be very humbling, because the mistakes are almost always your
own.

To correct a problem, go back over each step in the text. If there is an error message,
examine it closely to see what it tells you. The GSoft BASIC reference manual has an
appendix that lists all of the errors and some common causes. Check your typing in the
area very carefully; a typing error is the most common cause of errors at this stage.

A Close Look at Hello World
Now that you have actually run a program, let’s stop and spend some time talking

about what happened. We’ll start by examining the program in detail. The first step is to
take a look at the words that make up the program

Like sentences in a book, programs are made up of a series of words and punctuation
marks. Some of the words have special meaning, while some are words we pick to name
parts of the program.

We’ll dissect our first program to look at some of these rules. This program consists
of a single line. All BASIC programs are organized as zero or more lines. Most of the
time, each line contains a separate, distinct command for the computer to carry out. The
entire collection of lines is called the program.

PRINT "Hello, world."

The word PRINT is called a reserved word. This just means that you can only use the
word PRINT in special ways in a BASIC program. It is also a statement in BASIC; it’s
one of the commands the language understands. The characters that we want the program
to write are placed after the word PRINT. BASIC uses the quote character to mark the
start and end of a string constant. This lets you write things like parenthesis, reserved
words, and so forth, without confusing BASIC. As long as you keep the string on one
line, you can put absolutely any characters you want in the string, except for the quote
mark itself. You can still write a quote mark, but it takes a little more work. We’ll look at
how it’s done in Lesson 5.

More About Reserved Words
In the last section I pointed out that our first program had something called a reserved

word, and that reserved words can only be used in special ways. PRINT is one of the
reserved words in GSoft BASIC. Here’s a complete list of the reserved words:

Learn to Program in GSoft BASIC

ABS ALLOCATE ALLOCATEPROC AND APPEND
AS ASC AT ATN BINARY
BREAK BYTE CALL CASE CDBL
CHDIR CHR$ CINT CLEAR CLNG
CLOSE CONST CONT COS CSRLIN
CSNG CURDIR$ DATA DEF DIM
DIR$ DISPOSE DISPOSEPROC DO DOUBLE
ELSE END EOF ERL ERR
ERROR EXP FN FOR FRE
FUNCTION GET GOSUB GOTO GSOS
HCOLOR= HEX$ HGR HOME HPLOT
HTAB IF INPUT INT INTEGER
INVERSE KILL LEFT$ LEN LET
LIBRARY LINE LOADLIBRARY LOC LOF
LOG LONG LOOP MID$ MKDIR
MOUSETEXT NAME NEXT NIL NORMAL
NOT ON ONERR OPEN OR
OUTPUT PEEK POINTER POKE POP
POS PRAGMA PRINT PUT RANDOM
READ REM RESTORE RESUME RETURN
RIGHT$ RMDIR RND SEEK SELECT
SETMEM SGN SHARED SIN SINGLE
SIZEOF SPC SPEED= SQR STEP
STOP STR$ STRING SUB TAB
TAN TCP TEXT THEN TO
TOOL TOOLERROR TYPE UNLOADLIBRARY UNTIL
USING VAL VERSION VTAB WAIT
WEND WHILE

Don’t worry; you don’t need to memorize the list. The important thing to remember is
that there are some words you can only use in specific ways. If you get strange errors
from GSoft BASIC, you can refer back to this table to see if the reason is misusing a
reserved word.

Case Sensitivity
BASIC is case insensitive. That means that you can type the reserved words using

lowercase characters, uppercase letters, or any mix of case you prefer. For added speed,
though, GSoft BASIC always converts everything to uppercase letters. The program is
actually converted from the text you type to a shorter internal format called tokens. When
you list or edit a program, GSoft BASIC converts these tokens back to text. In the
process, it prints everything using uppercase letters and indents to program automatically
to indicate the program’s structure. Spaces that are not part of a string, like the space in

“Hello, world.”, are removed. As the program is converted from tokens to text, new
spaces are inserted between most program symbols.

Where Are The Line Numbers?
In many versions of BASIC, each line must start with a number. Obviously that’s not

true in GSoft BASIC, since we didn’t use one, but why the difference?
To understand where the line numbers went you have to understand why they were

ever used in the first place. In very old implementations of BASIC there are actually two
reasons for using line numbers.

The first use of line numbers has more to do with typing the program than running it.
Early versions of BASIC were written for computers that didn’t have much memory. To
save space—and programming time!—these implementations of BASIC used simple
editors that entered or changed one line at a time, rather than editors like the one in
GSoft BASIC that work more or less like a text editor. The old kind of editor is called a
line editor. In a line editor you need some way to tell the editor which line you are going
to change. Older implementations of BASIC use a number at the start of each line to
identify the line. The lines are sorted in numerical order.

The second use of line numbers is to label the line for a statement that jumps to that
line, often a GOTO statement. You won’t see statements like GOTO much in this course,
so we don’t generally need line numbers for this purpose, either.

Like most modern implementations of BASIC, GSoft BASIC just doesn’t need line
numbers on each line, and rarely needs them at all. Since they aren’t needed, you aren’t
required to type them. You can still use line numbers, and in fact GSoft BASIC actually
has a built-in line editor that works a lot like the old Applesoft BASIC line editor. In this
course, though, we’ll assume you’re using the modern full screen editor. We won’t use
line numbers unless the program itself needs them.

Problem 1.1. Rewrite the hello world program so it says hello to you. For example, my
name is Mike, so I rewrote the program to say "Hello, Mike." Save this program as
NAME.

◆ Note The disk that comes with this course has all of the programs
you see in the text and solutions to all of the problems.
Programming is a skill, so you should type the sample
programs yourself and try to solve the problems yourself, but if
you get stuck, check the solutions disk.

Learn to Program in GSoft BASIC

How Programs Execute
With what we know now, we can start to write larger programs. Our first step will be

to modify the hello world program to write five lines instead of one. We’ll create a
program that writes a limerick to the screen.

PRINT "There was a young man from Lenore"
PRINT "Whose mouth was as wide as a door."
PRINT " While trying to grin,"
PRINT " He slipped and fell in,"
PRINT "And laid inside out on the floor."

Type in the program and save it on your program disk as Limerick. Use the RUN
command to run the program.

Did the program do what you expected? It does bring up an obvious point. Like
sentences in a book, BASIC reads and processes your program in the order it is written.
The first line is executed first, the second is executed second, and so on.

Later you’ll learn several statements that modify the way a program executes,
executing one line or a group of lines several times, for example, but the essential point
of this exercise is still critical. Whatever a program is running, statements are executed in
a specific, logical order that can be predicted ahead of time.

Problem 1.2. Write a program that prints your name and address. Print the address on
separate lines, just as you would on an envelope.

Problem 1.3. With a little work, you can create a readable letter by coloring in squares on
a sheet of graph paper. The smallest number of squares that works well for uppercase
only letters is seven high by five wide. This is the idea used to form characters on the
computer screen from the small dots called pixels.

Write a program to write your first name to the screen in this form. Use the *
character to fill in the squares. For example, I would ask the computer to write this to the
screen:

* * *** * * *****
** ** * * * *
* * * * * * *
* * * ** ***
* * * * * *
* * * * * *
* * *** * * *****

Graphics Programs
There’s a lot you can do with text, but the Apple IIGS has some stunning graphics,

too. It’s time to start using some of that power. One word of caution, though: The
graphics that are built right into the BASIC language itself are rather limited. While some
implementations of BASIC have extensive graphics commands, there is no widely
accepted standard set of graphics commands. For the most part, our examples will use the
powerful graphics commands of QuickDraw II, the graphics package built into the
Apple IIGS itself. As a result, the information in this section that deals with graphics is
particular to the Apple IIGS. Other computers may do things a bit differently.

The Apple IIGS has a large number of built-in subroutines to do complicated tasks for
you. These subroutines are called tools. They are grouped by function into groups called
tool sets. The entire collection is what people refer to as the toolbox. The toolbox is a
large and wonderful collection which we won’t have time to explore fully, but we will
use some of the tools to do some work for us from time to time. Graphics is one of those
times. QuickDraw II is one of the tools in the Apple IIGS toolbox.

The following program is our first venture into graphics.

HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)

MOVETO (10, 10)
LINETO (45, 10)
LINETO (45, 40)
LINETO (10, 40)
LINETO (10, 10)

INPUT "";A$

Type in this program and save it as Square, then run the program. You will see a
square, about one inch high and once inch wide, on your screen. (Depending on the
monitor you are using and how it is adjusted, the size of the square may vary a bit.)

One of the things you’ll notice right away is that the text you normally see on your
screen has vanished. While there are some ways to display both text and graphics at the
same time, for the most part you get one or the other. The first line of the program, HGR,
switches from the text display to a graphics display which can show 320 colored dots

Learn to Program in GSoft BASIC

called pixels on each row. There are 200 rows of pixels on the entire screen. Each of the
pixels can be one of 16 distinct colors.

As soon as the program finishes the display switches back to the text screen. The
reason you’re still looking at the graphics screen is that the program is still running! The
last line of the program waits for you to type a string and press return. As soon as you
press the return key, the program will finish and the display will switch back to the text
display. We’ll look at the INPUT statement in more detail later in the course; for now,
just use this command whenever you want the program to pause.

All of the remaining lines in the program are actually calls to QuickDraw II, not
commands that are a part of BASIC. In each case, the line is the name of one of the
commands built into QuickDraw II. This is followed by one or two numbers enclosed in
parenthesis. If there are two numbers, these numbers are separated by a comma. This
basic format is something you’ll see over and over as we explore the Apple IIGS toolbox,
GSoft BASIC, and later, program pieces called subroutines that you will write yourself.

The first two drawing commands tell QuickDraw II how you want to draw lines.
SETPENMODE (0) tells QuickDraw II to replace any existing dots with new dots. That
makes sense, so you might wonder why you need to bother. QuickDraw II can do other
things when it draws, so we need to start by telling it to do the simplest of the
alternatives. SETSOLIDPENPAT (15) tells QuickDraw II to draw white lines.

The next five lines draw a square in the graphics window. To understand how they
work, we need to start by examining the coordinate system used by QuickDraw II. To
QuickDraw, the top left dot on the screen is at 0, 0. As you move to the right, the first
number increases. In other words, 90, 0 is 90 dots to the right of 0, 0, but on the same
line. As you move down, the second number increases. The point 0, 40 is 40 dots below
0, 0. You can use numbers so large they go off of the screen to the bottom or right, or
even negative numbers that would theoretically show up above or to the left of the screen.
In that case, you can’t see the lines, but QuickDraw II will still draw all of the line that is
in the window.

The first command to draw the square is MOVETO. It doesn’t actually draw anything
at all. MOVETO positions the graphics pen over a particular pixel on the screen. The
next line, LINETO, draws a line by coloring all of the pixels from 10, 10 to 45, 10. The
remaining LINETO commands draw the remaining three sides of the square, coming
back around to the original point of 10, 10.

Throughout this section, I’ve talked about drawing a square, but this program is
drawing a shape that is 35 pixels wide and 30 pixels high. Obviously, something strange
is happening. The reason for the discrepancy is that pixels on the Apple IIGS graphics
screen are slightly taller than they are wide. The exact amount varies a bit, but on my
screen, these coordinates produce a square.

There’s one other new feature in this program. The program itself carries out three
distinct steps: First, it gets ready to draw. Next it draws a square. Finally, it waits for you
to press the return key before stopping. It’s easy to see these three steps in the program
because of the strategic placement of two blank lines to divide the commands into three
groups. The blank lines actually take up a small amount of space in the finished program,
but the space used it pretty negligible. The extra clarity is well worth the cost of a few
bytes of memory.

Learn to Program in GSoft BASIC

Problem 1.4. There are a total of sixteen
colors that you can use. The
SETSOLIDPENPAT call is used to choose
from these colors. In our example, we used
color 15 to draw the square in white. You can
use any number from 0 to 15. In fact, you can
actually use larger numbers, but that doesn’t
give you more colors—the same 16 colors are
repeated over and over.

Try some of the other colors. Be sure and
try color 0. What happens?

Problem 1.5. An equilateral triangle is a
triangle where each of the three sides are the
same length. Write a new program to draw an
equilateral triangle with 1 inch sides. Make
the bottom flat, with one point on the top.

Problem 1.6. Modify the program in problem
1.5 to draw a six sided star by drawing two
equilateral triangles, one pointed up and one pointed down, and overlapping the triangles.
Make the star green.

Problem 1.7. Write your name in the graphics window by drawing lines. If your name has
letters with curves, use a few short lines to approximate the shape of the letter.

Apple IIGS Default Graphics Colors

Color Number Color
0 black
1 dark gray
2 brown
3 purple
4 blue
5 dark green
6 orange
7 red
8 beige
9 yellow
10 green
11 light blue
12 lilac
13 periwinkle blue
14 light gray
15 white

Lesson Two — Variables and Loops

Integer Variables
You have probably heard that computers are very good at dealing with numbers. This

is quite true. In this lesson, we will start to use numbers and variables in our programs. If
you aren’t a math whiz, though, don’t panic. We won’t be dealing with anything more
complicated than simple arithmetic in this chapter.

Let’s start by typing in this program.

REM This program prints a table of numbers and squares of the
numbers

I% = 1
S% = I% * I%
PRINT I%, S%
I% = I% + 1
S% = I% * I%
PRINT I%, S%
I% = I% + 1
S% = I% * I%
PRINT I%, S%
I% = I% + 1
S% = I% * I%
PRINT I%, S%
I% = I% + 1
S% = I% * I%
PRINT I%, S%

◆ Note Sometimes a line in a BASIC program is too long to fit on one
line in this book. When that happens, the second and
subsequent lines are further to the left than the rest of the
program. When you type the program, put everything on one
line in the editor. In this sample, the line “numbers” is actually
a continuation of the first line; “numbers” should appear at the
end of that line.

One of the first things you will see in our program is a comment. Comments are a
special kind of command that doesn’t do anything. The comment starts with the

command name, REM. Everything after this command name, all the way to the end of the
line, is ignored. You can always leave a comment out entirely, and the program will do
exactly the same thing as it did when the comment was there. Why, then, do we bother?

If your memory was as good as the computer’s, and if no one else ever read your
programs, you wouldn’t need comments. Comments are for your benefit, as well as the
benefit of all those poor lost souls who will have to figure out what you did later. One
good place to put a comment is at the beginning of the program, identifying quickly what
the program is for. It’s not a bad idea to put your name and the date the program was
written there, too. As you get used to seeing comments in the examples, you’ll find that
comments also help at the start of each logical section of the program—each section of
lines that do one conceptual thing.

There are actually two comment commands in GSoft BASIC. The REM command
you saw in the example program is pretty much universal in BASIC, but it takes three
characters, and some people think it looks a bit ugly. GSoft BASIC lets you use an
exclamation point instead of the characters REM. While using an exclamation point to
start a comment is hardly universal in BASIC, it’s not uncommon in other
implementations, either.

Using an exclamation point, the comment looks like this:

! This program prints a table of numbers and squares of the numbers.

It works exactly the same way as the first example.
Computers can work with a vast array of number formats, each of which has a special

purpose. The two most common number formats are integers and reals. Integers are
whole numbers, like 4, -100, or 1998. Real numbers include the numbers between the
whole numbers, like 1.25 or 3.14159.

The memory of a computer is made up of a vast series of numbers, but in a language
like BASIC, we don’t have to deal with them the same primitive way the computer does.
Instead, we can define variables. A variable is just a place where you can put a value. We
use two variables in our program; they are called I% and S%. Within certain limits we
can put any number we like in these variables. It’s exactly like putting two names for
numbers on a sheet of paper and continuously erasing the number to replace it with a new
one.

The first thing we need to do is learn to put a number in a variable. We do this with
something called an assignment statement, which is sometimes called a let statement. The
line

I% = 1

Learn to Program in GSoft BASIC

tells the computer to place the number 1 in the variable I%. The = character is called the
assignment operator. The very next line puts this value to use.

S% = I% * I%

Here, we multiply I% by itself and put the result in the second variable, S%. The *
character is used in computer languages for multiplication because a computer would
confuse x in "I% x I%" with a variable named X. The result is saved in the location
named S%. Finally, we write the values.

PRINT I%, S%

The PRINT statement deserves a little more attention, since there are several new
concepts here. We have already used the PRINT statement to write characters to the
screen. In this case, though, we are writing two numbers. Any time we use the PRINT
statement to write two things, the two things are separated by a comma or a semicolon. If
you separate the values with comma characters, BASIC separates the values into neat,
tabbed columns. Semicolons are used when you don’t want extra spaces or columns, as in

PRINT "That will cost $"; MONEY

As you can see, we can also mix strings and numbers in the same PRINT statement.
The rest of the program should make sense at this point. BASIC reads the program

one line at a time, in the same order you do, and does what the line tells it to do right after
the line is read. It does this until it reaches the end of the program, then stops.

More About Variable Names
If you recall, I said BASIC could use several kinds of numbers, like integers and real

numbers. So which are these? Both I% and S% are integers, so they are limited to whole
numbers. There are two ways to tell BASIC what kind of number to use. The first is to
follow the name of the variable with a special character. For integer values, that character
is %, so I% is an integer variable. For real variables, you can use a ! character, but
BASIC also creates a real variable if you don’t use any character at all at the end of the
variable name.

Interestingly enough, that last character counts. It’s perfectly legal to have variables
named I%, I and I! In the same program, and each of these holds a distinct value. The

first variable is an integer, while the last two are real numbers. On the other hand, not
everything that is possible is a good idea. In most cases it’s best to use distinct names. It
makes the program easier to understand, and as your programs get longer, that will
become very important.

As for the names of the variables themselves, they pretty much follow the same rules
you would use for writing words, so long as you don’t pick one of the reserved words
listed in Lesson 1. Each variable name start with an alphabetic character or the
underscore character, _. The rest of the name can be any number of alphabetic characters,
underscore characters and digits, while the last character can also be one of the type
characters, like % for integers. The case of the characters does not matter—you can use
the name S in one place, and s in another, for example. BASIC treats the names as the
same variable, and in fact, it will change all of the lowercase letters to uppercase before
printing them.

What all of those technical rules really amount to is that you can use anything that
looks like a word as the name of a variable. You can also use numbers as long as a digit
isn’t the first character, perhaps naming a series of related variables COST1, COST2, and
so forth. The underscore character is usually used when you want to stuff two English
words together to form a variable name. You can’t use a space character, so you use the
underscore instead, as in CURRENT_INTEREST_RATE.

Problem 2.1: The Fibonacci series is a sequence of numbers obtained by adding the two
previous numbers in the series. The series starts with 0 and 1. Write a program with three
variables named LAST%, CURRENT%, and FIB%. Set LAST% to 0 and CURRENT%
to 1.

Now do the following steps five times:

1. Compute FIB% by adding CURRENT% to LAST% and saving the result in FIB%.
2. Print FIB%.
3. Assign CURRENT% to LAST%.
4. Assign FIB% to CURRENT%.

The result should be the numbers 1, 2, 3, 5 and 8, all on a different line.
Fibonacci numbers seem to occur frequently in nature; no one is quite sure why. The

number of petals in a flower and the number or leaflets on a compound leaf are often
Fibonacci numbers.

Learn to Program in GSoft BASIC

Using DIM To Declare a Variable Type
If you remember, I said there were two ways to tell BASIC what type of number you

want to store in a variable. The first is to follow the variable name with a special
character, like % for integer values. The second way is to use a DIM statement. The DIM
statement is generally used to create arrays in BASIC, and we’ll use it for that later in the
course. For now, though, we’ll put it to the more mundane use of making a variable hold
the kind of number we want without the need for special characters.

Here’s how we can create a variable named I, but make it an integer variable instead
of a single-precision floating-point variable, like it would be if we did not use the DIM
statement.

DIM I AS INTEGER

You can also use SINGLE instead of INTEGER to declare a single-precision real
variable, or STRING for a variable that holds a string of characters. Later on we’ll start
using other kinds of numbers. All have a named type that you can use in the DIM
statement to create variables.

There are two schools of thought on whether to use the special characters or DIM
statements to declare variables. The special characters make it pretty obvious what kind
of value goes in the variable, and it also lets you start using variables without the hassle
of creating a DIM statement to declare the variable first. That’s one of the many things
that makes it easier to write a short program in BASIC than in, say, C or Pascal. On the
other hand, declaring all of the variables at the top of the program is a nice way to start a
large program or subroutine. It gives you a chance to document what the variable is for
with a comment, like this one:

DIM S AS INTEGER :! Square of the number

So which is better? Well, it depends. Personally, I use type characters for short
programs and for programs that I write once to do a specialized task, then throw away. I
use DIM statements and careful comments on longer programs. I’d suggest trying both
methods to see which you like. You’ll see both in this course.

If you look closely, I slipped in one other new idea in this example. The : character is
used to put two statements on the same line. We need it here because the DIM statement
and the comment statement can’t fit on the same line without it. You can actually use the
: character to separate almost any two BASIC statements, but in most cases that makes
the program harder to read. This is about the only situation where you’ll see the :
statement separator used in this course.

The FOR Loop
So far all of our programs have executed one statement at a time, starting with the

first and proceeding to the last. In our last sample and problem this started to get a little
tedious, as we repeated the same thing over and over, incrementing a number by one each
time. Computers are real good at doing tedious things, but most people are not. The FOR
loop is the first in a series of statements we will look at that help remove some of the
tediousness of writing a program.

Type in the sample program below and run it. Take a crack at figuring out what it is
doing on your own before you read further.

REM Draw a fan shape in the graphics window

DIM I AS INTEGER :! loop/index variable

! Set up the graphics screen
HGR
SETPENMODE (0)
SETSOLIDPENPAT (2)

! Draw the fan
FOR I = 1 TO 25
 MOVETO (160, 70)
 LINETO (I * 12 - 10, 10)
NEXT

! Wait for a return
INPUT "";A$

Most of the things in this program should be familiar by now, although some of them
are being used in new ways. The only thing that is really new is the FOR statement itself.
In BASIC, we use a FOR loop whenever we need to do something a specific number of
times. This could be calculating ten values, or drawing twenty-five vanes of a fan, as our
program does.

The FOR loop starts with the reserved word FOR, followed by an assignment. In our
case, we are starting our FOR loop with I set to 1. The two statements right after the FOR
loop get executed once with I set to 1. What happens is exactly the same as if we
substitute 1 for I in the statements, like this:

 MOVETO (160, 70)
 LINETO (1 * 12 - 10, 10)

Learn to Program in GSoft BASIC

It doesn’t stop there, though. When NEXT is executed, the loop starts over with the
next value. I is set to two, and the statements are executed again. This continues until I is
twenty-five. After executing the statements one last time with I set to twenty-five, the
program moves on to the line after the FOR loop.

Problem 2.2: Our first sample in this chapter created a table of numbers and squares. It
did this in a fairly clumsy way, by using separate statements to step from 1 to 5. Rewrite
this sample using a FOR loop.

Problem 2.3: In the last chapter, we drew a square by drawing its sides with constant
integers. We could also draw a rectangle using variables, like this:

TOP = 10
BOTTOM = 70
LEFT = 10
RIGHT = 100
MOVETO (LEFT, TOP)
LINETO (RIGHT, TOP)
LINETO (RIGHT, BOTTOM)
LINETO (LEFT, BOTTOM)
LINETO (LEFT, TOP)

Use a FOR loop to draw five rectangles, one inside the other. Set TOP, BOTTOM,
LEFT and RIGHT before the FOR loop starts. Inside the FOR loop, draw the rectangle,
then add six to top and left, and subtract six from bottom and right.

Use DIM statements with appropriate comments to declare TOP, BOTTOM, LEFT
and RIGHT as integers.

Some Thoughts on Comments
You may notice more and more comments slipping into our programs. As the

programs get longer and more complicated, you will see the trend continue.
The primary use of comments is to describe in plain English what the program is

doing. Looking back at the Fan program, the FOR loop is labeled with a comment that
says the loop draws the fan. These are a great help. You can read the statements by now,
and you know what each one does. No one has to tell you what MOVETO(50, 70) does,
for example. On the other hand, it is certainly not obvious to me that these lines of code
draw a fan shape. The comment tells me that, and suddenly the purpose behind the

statements is clear. You’ve also started to see comments used to describe how a variable
is used in a program.

The way you comment differs from one language to the next. In assembly language
and some high-level languages I like to put comments like these at the right side of the
page, lined up in a column. This lets me read the comments quickly, without reading the
program. This doesn’t generally work well in BASIC because the language reformats
your programs for you, taking out extra spaces you insert and putting in spaces where it
wants them. This messes up comments that are formatted in columns to the right of the
code. In BASIC and some other high-level languages, I prefer putting comments on a
separate line just above the code the comment describes. The extra blank line adds a little
emphasis, breaking the program up into logical chunks, more or less like paragraphs are
used to break sentences into logical chunks in prose.

There is one tremendous pitfall in commenting, though, and that’s when the
comments don’t match the program. Let’s assume that the comments in a program
describe something that should work, but the program itself doesn’t do exactly what the
program describes—perhaps the comment says the code draws a fan, when in reality it
draws an array of parallel lines. When you go to debug the program, the natural tendency
is to read the comments, not the code. This tendency is so strong that it generally takes
less time to debug a program with no comments at all than it does to debug a program
with incorrect comments! This is a surprising result, but it’s backed up by research.

There are two points to keep in mind as you think about this paradox of commenting.
The first is that the comments are a memory jog, and not always an accurate portrayal of
what the program does. As Ronald Reagan might have put it if he had been a programmer
instead of an actor, “Trust, but verify.”

The second important point is that when you change the code, you need to change the
comments, too. That seems so painfully obvious that you probably don’t think it’s a real
problem. Trust me, it is, especially when you are rapidly changing a program to fix bugs
or make adjustments to improve speed, or to change the way the program looks on the
computer screen. Don’t get lazy and put off changing the comments until you finish
debugging the code—always change the comments as an integral part of changing the
program itself.

Operator Precedence
By now you are getting used to the idea that computers step through a program in a

fairly orderly way. Statements are executed top to bottom, left to right, the same way you
read. Try the following program, but see if you can figure out what will be printed before
you run the program.

Learn to Program in GSoft BASIC

REM A look at operator precedence

PRINT 1 + 2 * 3

There are two perfectly reasonable ways to compute a value from the expression

1 + 2 * 3

The first is to work left-to-right:

1 + 2 * 3
3 * 3
9

The second is to follow the rules you may remember from algebra class, and do the
multiply first.

1 + 2 * 3
1 + 6
7

As you can see from running the program, BASIC uses the same rules as algebra
teachers. BASIC was, after all, originally designed by and for physicists, who tend to take
a lot of math courses. Not all languages follow these rules; APL, for example, does work
left to right. The way a language determines what order to do operations in is called
operator precedence. We might as well call it the operator pecking order; it means the
same thing. Computer types like to sound official, though, so we better stick to
precedence.

The table below shows all of the operators in BASIC. All of the operators on the
same line have the same precedence. The ones at the top are done first. If two operators
with the same precedence appear together, they are evaluated left-to-right.

You will learn to use most of these operators as the course continues. For now, the
important thing is to remember that this table exists. You will need to refer back to it
many times.

Operator Precedence in BASIC

@

+ - NOT

^

* /

+ -

= < > <= >=
<>

AND

OR

If you look closely at the table, you’ll see one peculiarity. The + and - operators
appear twice. That’s because there are technically two different operations they can be
used for. The - operator in a statement like

X = -X

is called a unary operator because it operates on one thing. This is the top - operation.
There is also a unary + operation, although it doesn’t really do anything. The second form
of + and - is the kind you normally think of for addition and subtraction. It’s the
operation you are using in statements like

X = X + 1

This version of the operation is called a binary operator.
In our original expression, if you really wanted to compute the value 9, you could

have used parentheses. BASIC does all operations inside of parentheses as a group, and
uses the result in the rest of the expression.

(1 + 2) * 3
3 * 3
9

The Maximum Integer
Growing up with a last name like Westerfield, I quickly learned that computers have

limits. It seemed like all of the people who programmed had names like Wirth, or Ritchie,
or Steele. All of those silly forms that asked me to put each letter into a separate block

Learn to Program in GSoft BASIC

had ten blocks. It upset me: my name isn’t Westerfiel, it was Westerfield. The protests of
a seven year old are seldom heeded, though.

Computers have become a lot more friendly since then, perhaps in part due to the
fellow protests of people like Joe Jabinoslowski. But they still have fixed limits on just
about everything. The limit may be very large, but it is there. Integers are no exception.
Every implementation of BASIC imposes some upper limit on integers—some largest
number that can be stored in an integer variable. On most microcomputer implementation
of BASIC, this value is 32767. As with the upper limit, there is a lower limit, too. The
lower limit is usually -32768.

These two numbers probably seem like rather odd choices for the upper and lower
limit for integer values, but there is a good reason for why these are the limits. It has to
do with the way numbers are stored in a computer. We really don’t need to delve into that
at the moment, though. The important thing is that you know that there is a maximum and
minimum.

If you try to stuff a number bigger than 32767 or smaller than -32768 into an integer,
different implementations of BASIC handle the problem in different ways. Most, like
GSoft BASIC, stop the program with some sort of error message.

While integers that range from -32768 to 32767 are big enough for most uses, there
are cases when you need a larger value. Many implementations of BASIC have a special
kind of integer that can hold large and smaller numbers. These longer integers are called
long integers. You can create a long integer by appending & to the name of the variable,
or by declaring the variable as a LONG in a DIM statement.

REM Try out a long integer

DIM I AS LONG

I = 500
I = I * I
PRINT I

Long integers can hold numbers as small as -2147483648 and as large as
2147483647.

Real Numbers
As everyone knows, programmers drive Porches. At least, many of the folks I meet

seem to have that impression. I have never met a programmer that drove a Porche myself.
Still, you may be aspiring to high goals, so let’s see how long you will be paying off your
dream car. We will assume that you want a new car, but not necessarily a fancy one.

We’ll spend $40,000 on our car. We’ll assume that you know a banker real well, and can
get your car loan at 7% APR, which works out to a monthly interest rate of about 0.58%.
That would make the initial interest payment for the first month

40000 * 0.0058
$232.00

Let’s assume you are generous and want to pay $500 a month. The program below
finds out how many months you will be paying.

REM Why I don't own a Porche

COST = 40000.0:! initial cost of car
APR = 7.0:! annual percentage rate
PAYMENT = 500.0:! monthly payment

DIM MONTH AS INTEGER :! number of months that have gone by
DIM PRINCIPAL AS SINGLE :! amount left to pay

! no payments made, yet
MONTH = 0

! we start owing this much
PRINCIPAL = COST

! keep going until we're out of debt
WHILE PRINCIPAL > 0.0

 ! count the months as they go by
 MONTH = MONTH + 1

 ! add interest to what we owe
 PRINCIPAL = PRINCIPAL + PRINCIPAL * APR / 100.0 / 12.0

 ! make the payment
 PRINCIPAL = PRINCIPAL - PAYMENT

 ! print how we're doing
 PRINT MONTH, PRINCIPAL
WEND

Learn to Program in GSoft BASIC

The negative number after the last payment shows that you didn’t quite have to pay
$500.00 the last month to pay off the loan. The number of months this takes shows why I
own a Toyota. An old one.

This program builds on your previous knowledge, but it also introduces a wealth of
new ideas.

The first is a completely new way to loop over a group of statements. The WHILE
loop executes all of the statements between the WHILE and the WEND that ends the
loop for as long as some condition is true. In our while loop,

WHILE PRINCIPAL > 0.0

the condition is that PRINCIPAL must be greater than zero. The > character is a
comparison operator. It compares the number to the left of the operator to the number to
the right of the operator. If the left-hand number is bigger than the right-hand number, the
result is true. If the left-hand number is smaller than or equal to the right-hand number,
the result is false. The loop continues to execute the statements as long as the condition is
true. In our program, the program continues until the car is paid off, at which time the
principal is less than zero or equal to zero.

There are a total of six comparison operators. The table below lists the operators and
what they test for.

operator test for...

A < B A less than B
A > B A greater than B
A <= B A less than or equal to B
A >= B A greater than or equal to B
A = B A equal to B
A <> B A not equal to B

FOR loops and while loops have much in common. Both are used to execute a group
of statements more than one time. In the case of the FOR loop, though, we must know
how many times the loop will be executed before we start. In the case of the while loop,
we can loop until some condition is satisfied, without knowing in advance how many
times through the loop it will take to satisfy the condition.

PRINT USING for Dollar Amounts
One of the problems with real numbers is that they may be a little more exact than we

want. In the Porche example, some of the dollar amounts show fractions of cents. What
we’d really like to see in most situations is the amount rounded to the nearest cent.

BASIC uses a variation on the PRINT statement to handle situations where we want
more control over the way numbers are printed. It’s called the PRINT USING statement
because you print the amounts using a format string. The PRINT USING statement prints
the format string, but as it does, it looks for special sequences of characters called format
models. A format model tells BASIC how to print a value. A value that comes after the
format string is printed for each format model.

In our case, we might want to print something like

After 100 months, the amount owed is $3933.06.

You accomplish this with the statement

PRINT USING "After # months, the amount owed is $$###.##.";
MONTH, PRINCIPAL

There are an enormous number of ways to create format models, but all of the format
models used for numbers are based on a series of # characters. Each # character reserves
one character in the final output for the number. A decimal point appearing in the format
specifier shows how to handle fractional digits. In our example, the two # characters
appearing to the right of the decimal place tell BASIC to print exactly two digits to the
right of the decimal point. The value is rounded to two digits if there are more than two
digits available.

Integers and real numbers behave a little differently if there isn’t enough room to
print the entire value. Our program shows how integer values work quite well. We only
left one space for the number of months elapsed. When the value hits 10, and later 100,
the program prints the entire value anyway.

Real numbers are handled a bit differently. Instead of adding characters to handle a
larger number, the # characters themselves are printed. This seems mighty strange. Why
not just expand the number of characters for real numbers, too? Actually, the reason has
to do with the possible size for real numbers as compared to integer numbers. Even a
long integer is, at most, 10 characters, so printing the entire number doesn’t cause any
real problems. Real numbers can be considerably bigger, though. One kind of real
number that you’ll get acquainted with later could use over 300 characters to print a

Learn to Program in GSoft BASIC

number! Expanding a field automatically to handle 300 characters when you expected
just a few can be very annoying.

If you allow more room than is needed the extra space is still used. Blank characters
are inserted to fill in the space. You can see how this works if you change the Porche
sample to use this new PRINT USING statement. If you don’t want to type the entire
program, run Porche2 from the samples disk.

There are several special characters you can use in a format model, and our example
makes use of one of them. BASIC programs need to print dollar amounts on a regular
basis, so the $ character gets special handling. When you replace the first two #
characters with $ characters the PRINT USING statement prints the $ character
immediately to the left of the first number. Any extra spaces needed to fill out the format
model appear to the left of the $ character.

Like I said, there are an enormous number of variations on format models. We’ll
cover a few more as they come up in this course. For a complete run-down, see the
reference manual that comes with GSoft BASIC.

Problem 2.4: Modify the sample program to find out how big the payments need to be to
pay off the car in four years.

Hint: Start with a payment of $900, then increase or decrease the payment to get to a
solution. You are playing a guess-the-payment game. If you pay off the loan in less than
48 months, or if you need to pay a lot less than the payment on the 48th month, you need
to decrease the payment size. If it takes longer than 48 months, make the payment larger.
You should only go to the nearest cent. The amount will not work out exactly.

Problem 2.5: Let’s assume that you are working with the planning board of the local city
government. You live in a pleasant city, but due to the local geography, the city can’t
expand indefinitely. You don’t want the city to become too crowded, either. The current
population size is 30,000 people. Everyone seems to agree that if the city gets any bigger
than 50,000 people, it will be overcrowded.

One councilman has proposed new legislation to prevent the city from growing at
more than 10% per year. At this rate, how long will it be before the city hits the limit of
50,000 people? Use a program very much like the sample program, but with a growing
population instead of a shrinking principal to find out. Do you feel this is acceptable?

This is not an idle problem. While the numbers were different, this is exactly the
situation faced several years ago by the city of Boulder, Colorado. The answer they found
caused some changes in the thinking of the city planners, and affected the outcome of
some zoning legislation.

Problem 2.6: Inflation has been running at about 4% for the past few years. On average,
then, something that costs $1.00 at the beginning of the year will cost $1.04 by the end of
the year. Assuming a gallon of gas costs $1.00 today, what will it cost in ten years if
inflation continues at 4%?

A few years ago inflation was running at about 12%. Try this inflation figure. Is this
rate a problem?

Exponents
Integers were limited to a specific size. Real numbers have limits, too, but the limits

are of a slightly different nature. This is because real numbers use exponents to represent
very large and very small numbers.

Exponents are the computers way of dealing with something called scientific
notation. An exponent is a power of ten that follows the real number. For example,

2.5E2

means 2.5 times 10 raised to the power of 2. You can also think of the power as the
number of zeros to add to the 1. Ten to the power two is 100, for example. One-hundred
times 2.5 is 250, so 2.5E2 is 250.

Exponents can also be zero. An exponent of zero means a 1 with no zeros, or just 1.
Multiplying by one gives the original number, so 2.5E0 is just 2.5.

Finally, exponents can be negative. A negative exponent means to divide by ten to the
indicated power, so 2.5E-3 means to divide 2.5 by 1000, giving 0.0025.

A quick way to work with exponents is to move the decimal point to the right for
positive exponents, or to the left for negative exponents.

Real numbers can get quite large and quite small, but there is a limit to the size. In
GSoft BASIC real numbers can have exponents in the range 1E-38 to 1E38. There is also
a limit to the number of digits that can be handled. It’s a lot like a calculator with a ten-
digit display. If you need numbers with more than ten digits of accuracy, you have to get
a different calculator. GSoft BASIC real numbers have seven digits of accuracy.

Like many implementations of BASIC, GSoft BASIC also supports another type
called DOUBLE. Double values are handled just like real values, but they can have
bigger exponents and are more accurate. In GSoft BASIC double values can have
exponents that range from 1E-308 to 1E308, and can display seventeen digits accurately.

The following example shows how to use real numbers to represent very large
numbers.

Learn to Program in GSoft BASIC

REM There are about 6 billion people in the world. Assuming
REM a growth rate of 1.8% per year, how many people will there
REM be in 100 years?

DIM PEOPLE AS SINGLE :! number of people
DIM YEAR AS INTEGER :! current year

PEOPLE = 6E9
FOR YEAR = 1 TO 10
 PEOPLE = PEOPLE * 1.018
NEXT
PRINT "At 1.8% growth, there will be ";PEOPLE;" people in 10

years."

These numbers are about right for 1998. Pretty scary, isn’t it?

Problem 2.7: Some germs can reproduce every twenty minutes. They reproduce by
fission, where one germ splits in half to make two new germs. Assuming nothing stopped
their growth, how many germs would there be after one day, starting with a single germ?

Why So Many Kinds of Numbers?
So far you’ve seen three kinds of numbers, and double-precision floating-point

numbers have been mentioned but not used. There’s even a fifth kind, called a byte.
It’s fair to ask why there are so many kinds, and, more important, when each kind

should be used.
There are three competing issues that force us to use so many kinds of numbers. The

first is space. An integer uses two bytes of storage; a long integer and single-precision
floating-point number both use four bytes of storage, and a double-precision floating-
point number use eight bytes of storage. A byte is a unit of storage that, on most
computers, is made up of eight on or off switches whose values are represented by a 0 or
1; each of these is called a bit. The important point for us BASIC programmers, though,
is that we can store two integers in the same space it takes to store one long integer or
single-precision floating-point value, and of course a double-precision floating-point
value takes up four times the space of one integer. Size becomes important when your
programs use large databases that are made up of thousands or millions of numbers. Size
is also important when you’re waiting for a program to scan large disk files, or when
you’re trying to cram a large file onto a disk or send it over a network.

The second issue is speed. Multiplying two long integer values generally takes about
four times as long as multiplying two integer values; the same is true when you compare

double-precision values to single-precision values. And a math operation on single-
precision floating-point values takes longer than the same operation on long integers,
even though they are the same size. In many programs, speed isn’t that big of an
issue—but in some it is, and when speed is important, it’s important to use the fastest
operations available. Like size, speed concerns dictate that we use integers where
possible, selecting long integers next. From a size standpoint, long integers and single-
precision floating-point values come up as a draw, but from a speed standpoint we choose
long integers. And of course, double-precision floating-point values are the slowest and
take the most room, so we want to avoid them whenever possible.

But it isn’t always practical to use integers. After all, when you’re calculating
population growth, car payments, or the area of a circle, you need to use values that
might not be an integer. Many scientific and statistical calculations simply need more
precision—or a greater range of exponent—than single-precision floating-point values
can deliver. There are even a few odd-ball algorithms in the field of numerical analysis
that work best when you use two different sizes of floating-point numbers at various
points in the calculations.

So, in a nutshell, the reason there are so many kinds of numbers is that you, as the
programmer, are balancing contradictory goals. You need to write programs that are fast
and use as little space as possible, but you also need to use numbers that give you an
accuracy and range of values that will handle the situation.

To sum up the rules, pick numbers this way:

1. If you can, use integer variables. They are the smallest, and calculations with
integer values are always the fastest.

2. If you will be dealing with values that are too large or to small for an integer
variable, switch to long integers.

3. If you need values that are not whole numbers, or if the values are too large or to
small for a long integer, use single-precision floating-point numbers.

4. If you need more digits of precision or a larger range of exponents than single-
precision floating-point can deliver, switch to double-precision floating-point.

There are specialized tools for dealing with situations where even double-precision
floating-point numbers can’t cut it. We won’t deal with them in this course, but if you
want to branch out, look for articles dealing with so-called infinite precision math
packages.

Lesson Three – Input, Loops and
Conditions

Input
So far, all of your programs have only done one thing. No matter how many times

you ran the program, unless you changed the program itself, it always did the same thing.
The reason, of course, is that the programs could never ask you for any information. It’s
time to start controlling our programs a bit more through the use of input.

Your first program was a pretty simple one; it used the PRINT statement to write a
string to the screen. You have already learned to write integers and real numbers using
PRINT. BASIC uses the INPUT statement in much the same way to read numbers and
strings.

Actually, you’ve already used the INPUT statement in a limited way. When a
graphics program finishes, the display switches back to the text screen, which doesn’t
give you a chance to look at the completed drawing. We’ve been using the statement

INPUT ""; A$

to force the program to wait for you to press the return key, giving you a chance to
examine the graphics screen before the program finishes.

You can experiment with the INPUT statement to quickly get an idea how it works.
From the GSoft BASIC command line, type

INPUT A

and press the return key. A question mark shows up on the screen, telling you that BASIC
is waiting for some kind of input. Type a number and press return, then try the command

PRINT A

As you can see, the number you typed is entered into the program.
For a short, quick program, this is perfect. Here’s a simple command that places a

prompt on the screen so you know it’s ready for you to type, lets you enter a number, and
stores the result in a variable. It works with integers, long integers, and both single-
precision and double-precision floating-point numbers. It even works with strings,

something you probably guessed from the INPUT statement we used to pause at the end
of graphics programs.

There are a lot of situations where this simple approach is appropriate, but as your
programs get longer, this simplicity doesn’t always work. The first situation that pops up
is using something other than a question mark as a prompt. If you wrote the program, will
use it a few times, and throw it away, the question mark is fine, but if other people will
use your program or if you’ll use it later, it’s a good idea to enter something more
informative. INPUT allows you to change the prompt by following the command name
with a string and a semicolon. The string is used as the prompt. If you use an empty
string, like we did in the graphics programs, no prompt is printed at all.

Try this program to see how prompts work.

INPUT "Please type your name: "; NAME$
PRINT "Hello, "; NAME$

There is one last feature of the INPUT statement that is pretty handy for short
programs, but tends to get in the way in longer ones. You can read several values with a
single INPUT statement, and the person using the program can reply with more than one
value on the same line. In each case, the variables or values are separated by commas.

Here’s a program that reads two pairs of numbers, draws a line between the points,
and waits for a final press of the return key before quitting. It puts all of these ideas to
use.

INPUT "First coordinate (enter x, y): ";X1, Y1
INPUT "Second coordinate (enter x, y): ";X2, Y2
HGR
MOVETO (X1, Y1)
LINETO (X2, Y2)
INPUT "";A$

One of the peculiar things about the INPUT statement is that you don’t have to enter
the values exactly when the program expects them. Normally, you’d expect to see
something like this as you type your responses:

First coordinate (enter x, y): 1,1
Second coordinate (enter x, y): 100,100

That certainly works. But now try entering all of the numbers on the same line, like this:

Learn to Program in GSoft BASIC

First coordinate (enter x, y): 1,1, 100,100
Second coordinate (enter x, y):

Strangely enough, that works, too. If you add a fifth value, the last INPUT statement
picks it up, so your program doesn’t pause at all!

You can also do just the opposite. If you enter a number, then press the return key, the
program accepts the first value, then waits for another—but without showing a prompt.

Our First Game... er, Computer Aided Simulation
Well, let’s have some fun. Now that we can hold a simple conversation with the

computer we can write our first simple computer game.

REM Guess a number
REM
REM This game randomly selects a number from 1 to 100, then
REM lets a player guess the number.

DIM VALUE AS INTEGER :! The value the player will guess.
DIM I AS INTEGER :! The player's guess.

! Introduce the game
PRINT "In this game, you will try to guess a number from 1"
PRINT "to 100. I will tell you if your guess is too high"
PRINT "or too low."
PRINT

! Pick a number from 1 to 100.
VALUE = 1 + RND (1) * 100

! Guard against overflows to 101.
IF VALUE = 101 THEN
 VALUE = 100
END IF

! Let the player guess the number.
DO

 ! Get the player's guess.
 INPUT "Your guess: ";I

 ! If the number is too high, say so.

 IF I > VALUE THEN
 PRINT I;" is to high."
 END IF

 ! If the number is too low, say so.
 IF I < VALUE THEN
 PRINT I;" is to low."
 END IF
LOOP WHILE I <> VALUE

! If we get here, the number was correct.
PRINT I;" is correct!"

There are a lot of new concepts in this program, and we will spend a lot of time
examining it in detail, but first type it in and run it.

The DO-LOOP
One of the new things in our program is a pair of new statements called the DO-

LOOP statements. This is the third looping statement you have learned in BASIC. The
first two, of course, are the FOR loop and the WHILE loop. The DO-LOOP statements
are also the last looping statement in BASIC! You’re getting there...

Like the WHILE loop, the DO-LOOP statements loop until some condition is
satisfied. Unlike the WHILE loop, the condition appears at the end of the loop. (There are
some exceptions; we’ll discuss those a bit later.) This means that the statements in the
DO-LOOP statements are always executed at least one time, while the statements in the
WHILE loop can be skipped altogether. This is an important difference, and the key to
why there are two loops instead of just one. To understand this difference, let’s look at
WHILE loops and DO-LOOP statements from some of our programs and compare the
two.

In the last lesson, we wrote a program that showed how many payments were needed
to buy a car. It contains this loop:

! keep going until we're out of debt
WHILE PRINCIPAL > 0.0

 ! count the months as they go by
 MONTH = MONTH + 1

 ! add interest to what we owe
 PRINCIPAL = PRINCIPAL + PRINCIPAL * APR / 100.0 / 12.0

Learn to Program in GSoft BASIC

 ! make the payment
 PRINCIPAL = PRINCIPAL - PAYMENT

 ! print how we're doing
 PRINT MONTH, PRINCIPAL
WEND

In this case, we needed to loop until the amount we needed to pay off was zero. It
would be possible, although in this case not very likely, for the principal to be zero before
the loop was ever executed. This is the key test for a WHILE loop: you must ask yourself
if it is possible for the condition that stops the loop to be true before you start. In other
words, you want to know if it is possible that you may not want to execute the statements
in the loop at all. If that is the case, a WHILE loop should be used.

The DO-LOOP statements look very similar. The only real difference is that the
condition is evaluated at the end of the loop, not the beginning.

! Let the player guess the number.
DO

 ! Get the player's guess.
 INPUT "Your guess: ";I

 ! If the number is too high, say so.
 IF I > VALUE THEN
 PRINT I;" is to high."
 END IF

 ! If the number is too low, say so.
 IF I < VALUE THEN
 PRINT I;" is to low."
 END IF
LOOP WHILE I <> VALUE

The DO-LOOP statements are generally used in cases where the condition doesn’t
make sense until after the statements in the body of the loop have been executed at least
one time. For example, it would seem to make sense to use a WHILE loop that looks like
this to do the same job:

! Let the player guess the number.
WHILE I <> VALUE

 ! Get the player's guess.
 INPUT "Your guess: ";I

 ! If the number is too high, say so.
 IF I > VALUE THEN
 PRINT I;" is to high."
 END IF

 ! If the number is too low, say so.
 IF I < VALUE THEN
 PRINT I;" is to low."
 END IF
WEND

There is a flaw in this code, though. The value of I has not been set when the
condition is tested the first time. In this particular case, you might feel safe. After all, you
might know that the value of a BASIC variable is always initialized to zero, and zero
isn’t one of the possible values for VALUE. Depending on this sort of information is a
really bad idea, though. First, you may end up moving this program to another
implementation of BASIC someday, and that implementation may not initialize values to
zero. Most versions of BASIC follow this rule, but there is no BASIC standard that forces
everyone to initialize the value of variables. More important, you may pluck this loop out
of the original program and insert it into a new one, or add new features to the existing
program so that I does have a value other than zero when the loop starts. This sort of
change happens more often that you’d think. And when it does, you’re left scratching
your head, wondering why a part of the program that used to work suddenly starts to fail.

 There is a way to rescue the WHILE loop, though. You can start off by initializing I
to a number different from value, like this:

! Let the player guess the number.
I = VALUE - 1
WHILE I <> VALUE

 ! Get the player's guess.
 INPUT "Your guess: ";I

 ! If the number is too high, say so.
 IF I > VALUE THEN
 PRINT I;" is to high."
 END IF

 ! If the number is too low, say so.

Learn to Program in GSoft BASIC

 IF I < VALUE THEN
 PRINT I;" is to low."
 END IF
WEND

This will work; the test will always fail the first time, so the person guessing the
number always gets at least one chance to guess the number. It’s perfectly safe, too: It
won’t fail if you change the program later and set I to some value, or if you run the
program on a version of BASIC that doesn’t initialize variables to 0. On the other hand,
the DO-LOOP statements work, to, but they don’t require that you set the initial value
before you start into the loop.

The acid test for when to use the DO-LOOP statements, then, is whether or not the
test that ends the loop makes sense before the statements in the loop have been executed
one time. In our example program, the test uses the value of I, which is read in inside the
loop. The test doesn’t make sense until the number has been read at least one time, so we
use the DO-LOOP statements.

The Flexible DO-LOOP Statement
The DO-LOOP statements are actually more flexible than I’ve let on. You can

actually put the condition at the top or bottom of the loop. As an example, here’s our
WHILE loop that calculated car payments, reworked to use DO-LOOP statements.

! keep going until we're out of debt
DO WHILE PRINCIPAL > 0.0

 ! count the months as they go by
 MONTH = MONTH + 1

 ! add interest to what we owe
 PRINCIPAL = PRINCIPAL + PRINCIPAL * APR / 100.0 / 12.0

 ! make the payment
 PRINCIPAL = PRINCIPAL - PAYMENT

 ! print how we're doing
 PRINT MONTH, PRINCIPAL
LOOP

You can also put a condition at both the top and bottom of the loop, or, for that
matter, not use any condition at all. If there is no condition at all the loop continues until
something else forces the program to stop.

If the condition appears at the top of the loop the DO-LOOP statement doesn’t really
offer anything that the WHILE loop can’t handle, so we won’t use it that way. Situations
where it makes sense to use a condition at both the top and bottom of the loop, or no
condition at all, just don’t come up that often. In this course, we’ll only use the DO-
LOOP statements with a test at the end of the loop.

Of course, it’s fair to ask the opposite question. If the DO-LOOP statements can do
everything the WHILE-WEND statements can do, why use WHILE-WEND? For that
matter, why is it even in BASIC?

I’ll speculate a bit here. Neither DO-LOOP statements nor WHILE loops were in the
original version of BASIC. They weren’t common in BASIC until the structured
programming craze hit in the mid 1980’s. While I don’t know this for a fact, it appears to
me that WHILE-WEND loops were introduced by one set of people, and the DO-LOOP
statements by another. Eventually, both statements started appearing in BASIC so all of
the old programs would run.

The truth is that you don’t need WHILE-WEND loops. I think it makes the program
easier to follow if you always use WHILE loops when the condition is tested at the top,
and always use DO-LOOP statements when the condition is tested at the bottom, so that’s
what you’ll see me doing in the example programs. That doesn’t mean you have to do the
same thing. Both ways work; just pick one and stick with it.

Random Numbers
One of the new concepts used in our sample program is the random number. You

have probably heard that computers are very precise, and that is certainly true. In our
number guessing game, though, the last thing we want is for the computer to be precise.
This game just won’t be much fun if we know beforehand what number the computer
will pick. The program uses something called a random number generator to get around
this problem.

A random number generator is basically a way for the computer to generate a
number, or series of numbers, that seem to be random. Since the computer can only do
very specific things, the numbers aren’t really random, but they are very hard to predict,
and that is good enough for a lot of programs. Since the numbers really aren’t random,
they are technically called pseudo-random numbers. That’s a real mouthful, though, so
we will continue to call them random numbers.

We’ll write a simpler program to learn more about random numbers.

Learn to Program in GSoft BASIC

REM A closer look at pseudo-random numbers

FOR I = 1 TO 10
 PRINT RND (1)
NEXT

Type this program in and run it. It will print ten pseudo-random numbers. Run it several
times, and you’ll notice that the numbers are different each time.

One thing that stands out is that all of the numbers are between 0 and 1. Technically,
it’s possible for the random number generator to return 0, too, but it’s very unlikely. It’s
not possible for RND to return the value 1. That explains why our program can use the
lines

! Pick a number from 1 to 100.
VALUE = 1 + RND (1) * 100

! Guard against overflows to 101.
IF VALUE = 101 THEN
 VALUE = 100
END IF

to pick a value from 1 to 100. If RND returns zero, adding 1 gives a value of 1. If it
returns 0.9999999, multiplying by 100 and adding 1 gives 100.99999. Unfortunately, this
can cause a number overflow—the number can’t be stored exactly, so the computer
rounds up, giving a value of 101. That’s why the IF statement is used to check for the
overflow situation, pushing the value back to 100 if the overflow occurs.

Now make a slight change to the program by adding a new line just before the FOR
loop, like this:

REM A closer look at pseudo-random numbers

I = RND (- 1)
FOR I = 1 TO 10
 PRINT RND (1)
NEXT

When you run this program, you still get a sequence of ten random numbers. Now run the
program a second time and compare the numbers. As you can see, they are the same.

This gives you a solid clue about how random numbers are generated. The fact that
you get the same numbers each time you run this program shows that the numbers aren’t

really random at all. In fact, each random number is generated by starting with the last
number. A complex series of mathematical operations is performed to generate a new
number that has no readily apparent relation to the previous number.

In our modified program the first call to RND used a parameter of -1, which told
RND to start a new sequence of random numbers using -1 as the starting value. This is
called seeding the random number generator; the number is called the seed. All of the
random numbers grow from this seed. If you use -2 for this first call you still get a series
of random numbers, and they are still the same every time the program runs, but the
numbers will be different than the numbers you got using -1 as a seed. In fact, every
negative number will perform this same way, generating a consistent series of random
numbers, but each negative number generates a series that is different from every other
negative number.

We used 1 for the argument to the RND function in the main loop of the program. All
positive numbers perform in exactly the same way. They tell RND to generate a random
number. It doesn’t matter which positive number you use; the mere fact that it is greater
than zero tells RND that you want a random number.

There is one last parameter you can use for RND. In a few odd situations, you may
want to use the same random number twice. You could do this by saving the random
number in a variable and using the value from the variable, but you can accomplish the
same thing using 0 for the parameter to RND. When the parameter is 0, RND returns the
same value it returned the last time it was called.

It might seem strange to create a predictable series of numbers, but this is very handy
when you are testing a program. You can remove the line that seeds the random number
generator once the program is finished.

By now, you may realize that the random number generator needs some sort of seed
to get the random number sequence started. So how does the first program create a
unique series of numbers each time it runs? In GSoft BASIC, if you call RND with a
positive argument the first time it is called in a program, the random number generator is
automatically seeded from the computer’s clock. This frees you from the hassle of
finding that first random number to start the sequence. Keep in mind that this service isn’t
universal in BASIC. You may have to come up with a seed some other way if you use
another version of BASIC.

Why Random Numbers Are Important
We will use random numbers in many of our example programs. Random numbers

help us to write programs that don’t do exactly the same thing each time we use them;
that’s something we will need over and over again. Here are some places where random
numbers are commonly used:

Learn to Program in GSoft BASIC

1. Random numbers are used in games like Chess. Games work by scoring moves;
the move with the best score is the one the computer makes. If two moves have
the same score, random numbers can be used to choose between them so the
computer doesn’t play exactly the same way each time. In a game like chess or
checkers, there are also many good ways to make the first few moves; these are
called opening books. Random number generators are used to pick an opening
from the opening book.

2. Many dungeon and dragon style computer games work based on probabilities. For
example, a character with a particular set of characteristics might have a
probability of 0.4 of killing a giant ant with a broadsword. The ant, conversely,
might have a 0.2 chance of damaging the player. A random number generator can
be used to generate a number between 1 and 100, as our number-guessing game
did. The player kills the ant if the number is less than 40. Next, another number is
chosen, and the ant hurts the player if the number is less than 21.

3. Computers are often used to do serious simulations. Computer simulations are
used to study traffic patterns, wars, and the spread of diseases. As an example,
let’s assume that you are trying to protect Yellow Stone National Park from forest
fires. You could choose to “let it burn,” letting nature take its course. You could
choose to fight all fires aggressively, but that would lead to a gradual build-up of
weeds and wood to burn. You might choose to cut fire lanes through the forest.
All of these possibilities can be examined using computer simulations.

4. Random number generators are used in card games to shuffle cards. The random
number generator is used to pick which card will be taken from the deck next,
taking one card from the remaining cards that have not been dealt.

Problem 3.1. Write a program to throw two six-sided dice twenty times. Use the same
ideas used in the number-guessing game. Write the number of spots showing on each of
the dice to the screen. Each line should show the value for both dice, like this:

1 4
5 2
5 6

Write your program so the number of dice and the number of sides are stored in
variables, and used throughout the program. This makes the program easy to modify if,
for example, you need to roll one 20 sided die instead of two 6 sided dice.

This makes the PRINT statements a little tricky. You can use a print statement like

PRINT X, ;

to print a value, skip to the next column, and not print a carriage return at the end of the
line. This allows you to print two numbers on the same line at different places in the
program.

Problem 3.2. You can draw a dot in the graphics window by doing first a MOVETO,
then a LINETO the same spot. For example,

MOVETO (10, 10)
LINETO (10, 10)

draws a dot a 10,10.
Write a program that gradually blackens the rectangle with a left edge of 10, a top of

10, a right edge of 100, and a bottom of 70. Do this using a FOR loop that loops from 1 to
MAX, where MAX is set at the top of your program to a value of 5551.

Pick two random numbers inside the FOR loop. The first should be in the range 10 to
100; assign this value to an integer variable called x. The second should be in the range
10 to 70; assign this one to the variable y. Draw a dot at this point using a MOVETO-
LINETO sequence.

The result is a program that gradually fills the area with white snow.
There are 5551 dots in the area you are filling, but when the program finishes, not all

dots are white. Why?

Problem 3.3. Change the program from problem 3.2 to create multicolored snow by
picking the color of the dot randomly. The color should be in the range 0 to 15.

The IF Statement
Computer programs can make decisions. You have already written some programs

that use this capability in the form of loops that keep going until some condition is
satisfied. In some cases, though, we may only need to do something once, or we may not
need to do it at all. That’s where the IF statement comes in.

Learn to Program in GSoft BASIC

The IF statement evaluates the same kind of condition that you have already used in
the WHILE loop and DO-LOOP statements. The condition is followed by the reserved
word THEN; this just tells BASIC that you are finished with the condition. Absolutely
nothing, even a comment, can appear after the THEN. The IF statement starts a block of
statements, just like WHILE-WEND and DO-LOOP. In the case of the IF statement, the
block ends with END IF.

If the condition in the IF statement is true, the block of statements between the IF and
END-IF statements are executed. If not, the statements are skipped. In a way, the IF
statement is like a DO-LOOP statement that doesn’t loop.

Let’s try a simple example to see how all of this works. In this example, we will use
the IF statement to write a program that can count change.

REM Count change.

DIM CHANGE AS INTEGER :! The number of cents to count.
DIM AMOUNT AS INTEGER :! The number of a particular coin.

! Get the number of cents to count.
INPUT "How many cents in the change? ";CHANGE

! Write a header.
PRINT "Your change consists of:"

! Count out the dollars.
IF CHANGE >= 100 THEN
 AMOUNT = CHANGE / 100
 PRINT AMOUNT;" dollars"
 CHANGE = CHANGE - AMOUNT * 100
END IF

! Count out the quarters.
IF CHANGE >= 25 THEN
 AMOUNT = CHANGE / 25
 PRINT AMOUNT;" quarters"
 CHANGE = CHANGE - AMOUNT * 25
END IF

! Count out the dimes.
IF CHANGE >= 10 THEN
 AMOUNT = CHANGE / 10
 PRINT AMOUNT;" dimes"
 CHANGE = CHANGE - AMOUNT * 10
END IF

! Count out the nickels.
IF CHANGE >= 5 THEN
 AMOUNT = CHANGE / 5
 PRINT AMOUNT;" nickels"
 CHANGE = CHANGE - AMOUNT * 5
END IF

! Count out the cents.
IF CHANGE <> 0 THEN
 PRINT CHANGE;" cents"
END IF

In this program, each IF statement is used to see if the number of cents left is large
enough to give the customer at least one coin of a given size. For example, the first IF
statement checks to see how many dollars are in the change. In each block we need to do
two things, count the number of coins to give in change and adjust the amount left to
give.

The exact order of the calculations is actually quite important. The divide operation
returns a single-precision floating-point value. For example, if CHANGE is 70 when the
number of quarters is calculated, CHANGE / 25 is 2.8. When this value is stored in
AMOUNT, which is an INTEGER, the digits to the right of the decimal point are
dropped. It’s important to realize that the number is not rounded to 3, which is the integer
closest to 2.8, but truncated to 2. Storing the single-precision floating-point value in the
INTEGER variable AMOUNT has done exactly what we wanted, converting the number
to the whole number of coins.

Once we know the number of coins, we can subtract the number of cents we’ve just
counted out by multiplying this whole number of coins by the number of cents in the
coin. Following along with the same numbers, the line

CHANGE = CHANGE - AMOUNT * 25

multiplies the number of quarters, 2 in this case, by 25 to calculate the total amount we
just counted out in quarters. This amount is subtracted from CHANGE to give the
amount left to count, which is 20 cents.

The ELSE Clause
There are many times when you need to do one thing or another, depending on some

condition. In that case, you could use two different IF statements, one after the other, but
you can also use an ELSE statement. As a simple example, let’s say you are printing the

Learn to Program in GSoft BASIC

number of tries it took to guess the number in our number guessing game. It’s sort of
tacky to print out "1 tries," or worse still, "2 try." With an IF-THEN-ELSE statement,
you can print something a bit prettier:

IF TRIES = 1 THEN

 PRINT "You guessed the number in 1 try!"

ELSE

 PRINT "It took ";TRIES;" tries to guess the number."

END IF

If the condition evaluated by the IF statement is true, the lines between it and the ELSE
statement are executed and the lines between the ELSE statement and END IF statement
are skipped. If the condition is false, the lines between the IF statement and the ELSE
statement are skipped, and the lines between the ELSE statement and END IF statement
are executed. This is the model for any either-or kind of situation, where you want to do
one thing or another, but not both.

Problem 3.4. Modify the program from Lesson 2 that showed payments for
purchasing a car. Allow the user of the program to enter the cost of the car, the interest
rate and the number of payments as real numbers. Use an IF statement to see if the
payment is larger than the amount of interest that will accumulate in one month. If not,
print an appropriate error message. If the payment is large enough, execute the program
as it worked before.

The World’s Shortest Animation Course
There’s one last topic to deal with before we leave the IF statement. We’re going to

have some fun with it, though, by introducing the topic of computer animation. This
section will give you the short version of a course in computer animation. Surprisingly, it
covers all of the essential points. Everything beyond what you see in this section is art
and technology, not concepts. Admittedly, there’s a lot of art and technology out there
concerning computer animation, but in the end all of the techniques end up using the
same basic principles of moving objects on the screen.

You’re almost certainly familiar with the fact that movies, television, and computer
animation all work by drawing a series of still pictures at a rapid rate. If the rate is fast
enough, your brain interprets the series of still frames as motion. The rate that’s used in
movies is 24 frames per second; for television and most computer screens it’s 30 frames a
second.

You can create a very simple animation by simply drawing and erasing a shape in
successive positions as it moves across the screen. Here’s a sample that moves a square
across the graphics screen. It uses a new command, SETPENSIZE, to change the size of
the dot from the 1 pixel by 1 pixel size you’ve seen in all of your graphics programs so
far to a larger 4 pixel square box.

REM Draw a ball sliding across the screen from 0, 0 to 180,
180

DIM X AS INTEGER , Y AS INTEGER :! Coordinates for the ball
DIM I AS INTEGER :! loop counter

! Set up for graphics
HGR
SETPENMODE (0)
SETPENSIZE (4, 4)

! Initialize the ball position.
X = 0
Y = 0

! Animate the ball.
FOR I = 1 TO 180

 ! Erase the old ball.
 SETSOLIDPENPAT (0)
 MOVETO (X, Y)
 LINETO (X, Y)

 ! Compute the new ball position.
 X = X + 1
 Y = Y + 1

 ! Draw the ball at the new position.
 SETSOLIDPENPAT (15)
 MOVETO (X, Y)
 LINETO (X, Y)
NEXT
INPUT "";A$

When you try this program you’ll see a lot of problems. The box it erased about as
often as it’s drawn, which gives a lot of flicker. The box might even seem to vanish for a
moment if the timing is just right on your computer. That’s because you have two

Learn to Program in GSoft BASIC

conflicting actions taking place. At any given time, the video circuitry in your computer
is busy drawing some portion of the screen. At the same time your program is busy
drawing and erasing the image. If those two activities aren’t timed perfectly you can end
up erasing the image just before the video circuitry draws that part of the screen, then
redrawing it just after it finishes.

There is a simple trick that minimized this problem and, at the same time, lets you
draw complex images on a background. It uses a new drawing mode called exclusive OR.
Instead of painting a pixel of a particular color on the screen like all of our other
programs, this mode actually reverses the color of the pixel. If you are drawing a white
square on a black background the effect is identical to what you’ve already done, but the
cool part shows up when you draw the same shape in the same place. Since it’s reversing
the pixels, not painting them, reversing them a second time erases the object! That,
combined with a simple trick of drawing the shape in the new position before erasing it in
the old position, improves the image dramatically.

The SETPENMODE command with a parameter of 2 lets you draw in exclusive OR
mode; the value of 0 that we’ve used in all of our programs so far is called copy. Here’s a
variation on our animation program that puts these ideas to work.

REM Draw a ball sliding across the screen from 0, 0 to 180,
180

DIM X AS INTEGER , Y AS INTEGER :! Coordinates for the ball
DIM I AS INTEGER :! loop counters

! Set up for graphics
HGR
SETPENMODE (2)
SETPENSIZE (4, 4)
SETSOLIDPENPAT (15)

! Initialize the ball position.
X = 0
Y = 0

! Draw the ball in the starting position.
MOVETO (X, Y)
LINETO (X, Y)

! Animate the ball.
FOR I = 1 TO 180

 ! Draw the ball at the new position.
 MOVETO (X + 1, Y + 1)
 LINETO (X + 1, Y + 1)

 ! Erase the old ball.
 MOVETO (X, Y)
 LINETO (X, Y)

 ! Update the ball position.
 X = X + 1
 Y = Y + 1
NEXT
INPUT "";A$

There’s still a little flicker. Two things will reduce it further.
First, as your program gets larger and more complicated, it will spend more time

calculating various things like relative positions of objects and whether an object has hit
another. As long as you do all of this calculation while the object is visible, you increase
the chance that the object will be visible when the video hardware draws the portion of
the screen it is on.

This still leaves a little flicker, but for many applications it is good enough. The last
finesse is more complicated. The very best animation on the Apple IIGS takes the vertical
blanking signal into account. This is a notice from the computer that the screen is about
to be drawn. As the video hardware draws the screen, the animation software follows
along behind, drawing objects in an area where the video hardware isn’t busy drawing the
screen. While the idea is simple, implementing it is extremely complicated. It is almost
always done in very carefully written assembly language programs.

Nesting If Statements
There are some situations where it makes sense to check for more than just one

possibility. For example, let’s assume that you want to print out a message like “that was
your 3rd try.” You can print the number of tries, followed by “rd,” but that only works
for some numbers. You would want to print

1st
2nd
3rd
4th
5th

Learn to Program in GSoft BASIC

and so on. One way to go about it is to print “that was your,” followed by a series of IF
statements, followed by printing “try.” The IF statements can be used to decide the suffix
for the number of tries. Rather than using a series of separate IF statements, though, you
can actually attach another condition right after an ELSE and keep going, as this example
shows.

PRINT "That was your ";
IF TRY = 1 THEN
 PRINT "1st";
ELSE IF TRY = 2 THEN
 PRINT "2nd";
ELSE IF TRY = 3 THEN
 PRINT "3rd";
ELSE
 PRINT TRY;"th";
END IF
PRINT " try!"

The first part works just like all of the other IF statements you’ve seen. If TRY is 1,
the condition on the IF statement is true. In that case, the program prints “1st” and skips
all of the other possibilities. If TRY is not 1, the next condition is checked. This process
continues, checking one condition after another, until one of the ELSE IF conditions is
true. As soon as a matching condition is found, the program executes the statement right
after that ELSE IF clause and skips the remaining code. If none of the conditions are true,
the program executes the lines between the ELSE and END IF statements.

The ELSE clause is optional. If you leave it out, and none of the conditions in the IF
or any of the ELSE IF statements are true, all of the other statements are skipped. The
ELSE statement should come at the end of the sequence, though, so all of the ELSE IF
tests are evaluated.

Problem 3.5. In this problem, you will write a bouncing ball program. You will move
a small spot across the graphics screen. When the spot gets to the edge of the screen, it
will bounce off.

Start with the animation program from the last section. Before the animation starts,
ask the user for a starting x, a staring y, the number of iterations (put this in a variable
called ITER), and an x speed and y speed (put these in XSPEED and YSPEED). Check to
see if the x and y values are in the graphics window using IF statements. If not, adjust
them to be in the window. (The graphics window runs from 0 to 319 horizontally, and 0
to 199 vertically.) Loop over your code to move the ball ITER times.

On each loop, you will need to do the following:

1. Add the XSPEED to X. This moves the ball over.
2. If X is off the screen to the left (less that zero), set it to zero and set XSPEED to -

XSPEED.
3. If X is off the screen to the right (greater that 319), set it to 319 and set XSPEED to

-XSPEED.
4. Add the YSPEED to Y. This moves the ball up or down.
5. If Y is off the screen to the top (less that zero), set it to zero and set YSPEED to -

YSPEED.
6. If Y is off the screen to the bottom (greater that 199), set it to 199 and set YSPEED

to -YSPEED.

Be sure to do as much of the calculation as possible while the ball is visible, then
quickly draw the ball in the new position and erase the old one.

The practice of writing our the steps for a program in a kind of semi-English form is
very useful for designing programs. The roughed-out version of the code is called
pseudo-code. It won’t run on any computer (at least, none that are available today!), but it
helps when you are working on the logic of a program.

A Bit of Iffy History
Like the DO-LOOP statement and the WHILE loop, the sort of IF statement you’ve

learned in this lesson is new to BASIC. It’s called a block structured IF statement, and
was added to the language at about the same time as the structured loop statements.

While we won’t use it in this course, the older form of the IF statement is still a part
of BASIC and you’ll see it in a lot of books that contain BASIC programs, especially
older books. Since you’re sure to run across it, we’ll take a look at the older form in this
section.

The original IF statement was designed as a conditional jump. At that time, every line
of a BASIC program had to start with a line number. The line number had to be unique,
and the lines were arranged in order by the line numbers. The main way to jump from one
place to another was not through the use of structured statements like the loops you’ve
learned, but by using the GOTO statement. The GOTO statement is followed by a line
number; control jumps immediately to the specified line. For example, the program

10 I = 1
20 GOTO 40
30 I = I + 1
40 PRINT I

Learn to Program in GSoft BASIC

prints the value 1, not 2, because the GOTO statement jumps past line 30.
The old form of the IF statement works pretty much the same way. You can put a line

number right after THEN, and the program will jump to the specified line if the condition
is true, skipping to the next line if the condition is false. There is no END IF with this
form of the IF statement. Here’s a very simple example.

10 REM Print all Fibonacci numbers less than 20.
20 I = 0
30 J = 1
40 K = I + J
50 PRINT K
60 I = J
70 J = K
80 IF I + J < 20 THEN 40

There are several variations on this theme. Instead of just THEN, you can use THEN
GOTO. You can also replace THEN with GOTO. Regardless of the variation you pick,
the statement does the same thing.

The old form of the IF statement is not limited to jumping, though. You can put any
statement you like after THEN, and you can even put more than one statement, separated
by colons. If the condition is true, all of these statements are executed. If the condition is
not true, they are all skipped, and execution picks up with the line right after the IF
statement.

Modern implementations of BASIC need to be able to handle both the older forms of
the IF statement and the modern block structured form we use in this course. That means
they need a way to tell the old form, which is contained on a single line, from the new
form, which spans multiple lines. The key is whether anything appears after THEN. If
anything at all appears after THEN, GSoft BASIC assumes you are using the old form of
the IF statement. If there is nothing at all after THEN, GSoft BASIC assumes the IF
statement is the first line of a modern block structured statement. With that in mind, you
can see why, earlier in the lesson, there was a warning not to put anything at all after
THEN.

Boolean Logic
Most of the IF statements you’re likely to use will have a fairly simple condition, like

IF TRY = 1 THEN

or

IF ANGLE < 2 * PI THEN

Eventually, though, you’ll want to make more complicated comparisons. To do that
you’ll need three new operations designed for conditional tests and a good understanding
of how BASIC actually deals with conditions. These operations are called Boolean
operators.

Let’s start with a look at how BASIC actually handles conditions. Most of the time
you don’t really need to know this information, but it is critical if you print a Boolean
condition to see whether it is TRUE or FALSE, and it’s also occasionally useful for a
programming trick.

When you do a comparison like TRY = 2, BASIC actually returns a number. If TRY
actually is 2, BASIC returns the value 1; if TRY is anything else, BASIC returns 0. The
IF statement actually takes a number for the condition. If the number is 0, the IF
statement acts as if the condition were FALSE. If the number is anything except 0, the IF
statement acts as if the condition is TRUE.

There’s nothing magic about a comparison. Since BASIC handles comparisons and
other Boolean operations using numbers, you can use a comparison anywhere you would
use any other mathematical expression. The distinction is entirely in the way we think
about Boolean operations, not anything internal to BASIC. Putting this to work, we can
look at a Boolean value by printing it, like this:

PRINT 4 < 3

It’s also possible to store Boolean values in a numeric variable. In fact, the tool
interfaces GSoft BASIC loads automatically include a type called BOOLEAN and two
constants, TRUE and FALSE. You can use these constants and the BOOLEAN type in all
of your GSoft BASIC programs.

While comparisons are the most common Boolean operation, you’ll encounter more
complex expressions later in the course. The first of the Boolean operations is AND,
which tests to see if two conditions are met instead of one. Here’s an example that prints
the values within a specific range.

FOR I = 1 TO 10
 IF (I > 3) AND (I < 8) THEN
 PRINT I
 END IF
NEXT

Learn to Program in GSoft BASIC

The AND operation is true if both of the conditions to either side are true, and false if
either one of the conditions is false. In other words, it means the same thing in BASIC
that it does in English when you use it as a condition. If you’re not sure how AND works,
type in this short program and watch it in action.

The second operation is OR. Like AND, it means the same thing in BASIC as it does
in an English statement about conditions. If either condition is true, OR returns true; if
both conditions are false, OR returns false. Here’s a sample you can use to explore how
this works.

FOR I = 1 TO 10
 IF (I < 3) OR (I > 8) THEN
 PRINT I
 END IF
NEXT

The last Boolean operation is NOT. Just as you’d expect, it reverses the meaning of a
Boolean value. Here’s a simple example you might use in the main part of a program that
waits for the user to do something, then acts on whatever the user did. This is the way
most desktop programs are organized, although you can organize any program that waits
for user events this way.

DONE = FALSE
WHILE NOT DONE
 CALL DOEVENT
 CALL IDLEPROCESS
WEND

Lesson Four – Subroutines

Subroutines Avoid Repetition
In the first few lessons of this course all of the programs we are writing are fairly

short. Many useful programs are short, but as you start to make your programs more
sophisticated, the programs will get longer and longer. A simple game on the Apple IIGS,
for example, is generally 1,000 to 3,000 lines long; most of the programs we have written
so far are 20 to 60 lines long. As the size of your programs increase you will need some
new concepts and tools to write the programs. One of the most important of these is the
subroutine.

For our first look at subroutines, we will start with a program that draws three
rectangles on the graphics screen, filling each with a different color.

REM Draw three colored rectangles with white outlines.

DIM I AS INTEGER :! Loop variable

! Set up for graphics.
HGR
SETPENMODE (0)

! Draw a white rectangle.
SETSOLIDPENPAT (15)
FOR I = 10 TO 120
 MOVETO (10, I)
 LINETO (250, I)
NEXT

! Draw a red rectangle.
SETSOLIDPENPAT (7)
FOR I = 61 TO 99
 MOVETO (220, I)
 LINETO (270, I)
NEXT

! Outline the red rectangle in white.
SETSOLIDPENPAT (15)
MOVETO (220, 60)
LINETO (220, 100)
LINETO (270, 100)
LINETO (270, 60)
LINETO (220, 60)

! Draw a blue rectangle.
SETSOLIDPENPAT (4)
FOR I = 81 TO 159
 MOVETO (50, I)
 LINETO (300, I)
NEXT

! Outline the blue rectangle in white.
SETSOLIDPENPAT (15)
MOVETO (50, 80)
LINETO (50, 160)
LINETO (300, 160)
LINETO (300, 80)
LINETO (50, 80)

! Wait for the user to press return.
INPUT "";A$

If you look at this program closely you will see that there is very little difference
between the parts that draw the red and blue rectangles. In fact, if we put the coordinates
of the rectangles in variables called LEFT, RIGHT, TOP and BOTTOM, and put the
color in a variable called COLOR, we could use exactly the same lines of code to draw
the red and blue rectangles. The code would look like this:

! Draw a rectangle.
SETSOLIDPENPAT (COLOR)
FOR I = TOP + 1 TO BOTTOM - 1
 MOVETO (LEFT, I)
 LINETO (RIGHT, I)
NEXT

Learn to Program in GSoft BASIC

! Outline the rectangle in white.
SETSOLIDPENPAT (15)
MOVETO (LEFT, TOP)
LINETO (LEFT, BOTTOM)
LINETO (RIGHT, BOTTOM)
LINETO (RIGHT, TOP)
LINETO (LEFT, TOP)

While we don’t really need to redraw the outline of the square for the white square,
the same code could even be used to draw the white square. A few extra lines get
executed when the outline is drawn (the outline is white, and so is the color that is filled
in), but the same code could be used. One of the most common uses for a subroutine is
just this situation. When your program needs to do essentially the same thing in several
different places, you can write a subroutine to do the thing, and call it from more than one
place. Let’s try this in a program and then look at what is happening in detail.

REM Draw three colored rectangles with white outlines.

! Set up for graphics.
HGR
SETPENMODE (0)

! Draw white, red and blue rectangles.
CALL RECTANGLE(10, 250, 10, 120, 15)
CALL RECTANGLE(220, 270, 60, 100, 7)
CALL RECTANGLE(50, 300, 80, 160, 4)

! Wait for the user to press return.
INPUT "";A$
END

!--
!
! Rectangle - Draw a rectangle and outline it in white.
!
! Parameters:
! left, right, top, bottom - edges of the rectangle
! color - color of the inside of the rectangle
!
!--

SUB RECTANGLE(LEFT AS INTEGER , RIGHT AS INTEGER , TOP AS
INTEGER , BOTTOM AS INTEGER , COLOR AS INTEGER)

DIM I AS INTEGER :! Loop variable

! Draw the rectangle.
SETSOLIDPENPAT (COLOR)
FOR I = TOP + 1 TO BOTTOM - 1
 MOVETO (LEFT, I)
 LINETO (RIGHT, I)
NEXT

! Outline the rectangle in white.
SETSOLIDPENPAT (15)
MOVETO (LEFT, TOP)
LINETO (LEFT, BOTTOM)
LINETO (RIGHT, BOTTOM)
LINETO (RIGHT, TOP)
LINETO (LEFT, TOP)
END SUB

The Structure of a Subroutine
The subroutine itself starts with the reserved word SUB. Right after the reserved word

SUB is the name of the subroutine; ours is called RECTANGLE. You use this name in
the rest of your program whenever you want to call the subroutine. “Calling” a subroutine
is what programmers say when they mean that you want to execute the statements in the
subroutine.

The stuff in parenthesis right after the subroutine name is the parameter list. In our
subroutine the parameter list looks like this:

(LEFT AS INTEGER , RIGHT AS INTEGER , TOP AS INTEGER , BOTTOM
AS INTEGER , COLOR AS INTEGER)

It is no accident that this looks suspiciously like a DIM statement. In fact, of you
remove the parenthesis and put DIM before the list you would have a perfectly legal DIM
statement. What the parameter list actually does is define these variables within the
subroutine. Any statement within the subroutine can use these variables. You can change
them using an assignment statement, or use them in an expression, as we do in our
program. A very important point to keep in mind, though, is that the variables actually go
away after you leave the subroutine.

Learn to Program in GSoft BASIC

The SUB statement forms a sort of model that tells us how to call the subroutine, as
you can see by comparing the SUB statement with a CALL statement from our sample
program.

SUB RECTANGLE(LEFT AS INTEGER , RIGHT AS INTEGER , TOP AS
INTEGER , BOTTOM AS INTEGER , COLOR AS INTEGER)

CALL RECTANGLE(10, 250, 10,
 120, 15)

You see the SUB statement on the top line. The line is long enough that it’s split
across two lines in this book, but if you look at the program, you can see that it really is
just one long line. The second line shows a call to the subroutine with spaces inserted to
line up the matching fields. When a BASIC program starts to execute it is quickly
scanned for SUB and FUNCTION statements, so when the CALL statement is executed,
GSoft BASIC already knows that a subroutine named RECTANGLE is defined in the
program, and that it expects 5 integer parameters. It expects them to appear after the
procedure name, enclosed in parenthesis, and separated by commas. If you forget one of
these parameters, put in too many, or use a parameter that can’t be converted to an
integer, the program will stop with an error.

When the subroutine is called BASIC starts by assigning the values you put in the
parameter list of the CALL statement to the variables you defined in the parameter list of
the SUB statement. In effect, for the call we are using as an example, BASIC does the
following five assignments before the first statement of the subroutine is executed:

! In effect, this is what BASIC does.

LEFT = 10

RIGHT = 250

TOP = 10

BOTTOM = 60

COLOR = 0

When the subroutine starts, then, the variables from the parameter list already have an
initial value.

After the parameters are set up the statements in the subroutine, like the statements in
the program itself, are executed one after the other. This process continues until the END
SUB statement is reached. At that point, control returns to the place where the CALL
statement was issued, and execution picks up with the line right after the CALL
statement.

In the RECTANGLE procedure you will find the variable I defined for use in a FOR
loop. Like the parameters, the variables defined within the subroutine vanish after the
subroutine finishes executing. The only thing you can access from the program is the
subroutine itself—the variables and parameters don’t even exist until after the CALL
statement starts, and vanish before control returns to the CALL statement.

Where to Put Subroutines
When you run a program, GSoft BASIC starts by quickly scanning the program to

locate all of the subroutines, then begins execution with the first line in the program.
Since execution starts at the first line of the program, subroutines always appear at the
end, after all of the lines in the program itself.

The order in which the subroutines appear doesn’t really matter. I personally place
them in alphabetical order to make it easier to find a particular subroutine, but that’s just
a habit I’ve formed over the years. About the only meaningful restriction is that each
subroutine must be separate from all of the others—one subroutine’s END SUB
statement must appear before the SUB statement for the next one. The only lines that
should appear between subroutines are comments or blank lines. And, of course, each
subroutine’s name must be different from the name of any other subroutine in your
program.

The END Statement
As you know by now, right after the last line of a BASIC program executes the

program stops. Now that your are using subroutines, though, you need to end the program
a different way. The reason for this is that the SUB statement can be called, but not
executed—so you need to force the program to stop before it starts executing the
subroutines at the end of the program.

The END statement stops the program. You can use it anywhere, but you should
always put an END statement right before the first subroutine.

Commenting Subroutines
A program with one subroutine isn’t likely to be too confusing, but as our programs

use more and more subroutines, there are some commenting conventions that will help
make the programs easier to read.

In every programming language I use I always put a block of comments at the start of
every subroutine. The exact format may vary from language to language to take
advantage of specific features in the language, but there is no variation in the basic
content. In each new computer language I learn, I quickly come up with a style that

Learn to Program in GSoft BASIC

works for that language and stick with it for all of my programs, making it much easier to
move a subroutine from one program to a new program.

I use a very rigid format with up to five sections to comment a subroutine. If there is
nothing to put in a section it’s simply left out, which is why you only saw two sections in
the RECTANGLE subroutine. Actually, two of the five sections deal with features you
haven’t seen yet. We’ll get to them later in this lesson, but you’re about to start writing
subroutines of your own. Commenting your subroutines properly is an important habit to
develop. It will save your hours and hours as your programs get longer. Because
commenting is so important, we’re going to look at the issues now so you can think about
commenting from the very first subroutine you write.

Before looking at the sections in the block of comments, though, take a look at how
the entire block of comments is set aside with a line of dashes. This gives an
unmistakable visual cue, making it very easy to spot a block of comments as you scan the
text in a program. The subroutine itself follows right after the block of comments. Once
you’ve created your first subroutine, a quick copy and paste sets up these lines for all of
the other subroutines you ever write—and I promise the effort will be worth it as your
programs creep from dozens of lines to thousands.

Procedure Description
! Rectangle - Draw a rectangle and outline it in white.

The first thing in the block of comments tells what the procedure does. I generally try
to keep this down to a single line, and never more than two lines. I put the name of the
subroutine first, even though it appears right after the block of comments, because it’s
easier to find the comments when you’re scanning text in the editor than it is to find the
SUB statement, and with the name right at the top of the block of comments, I don’t have
to scan down the screen to find the subroutine name. It’s a little thing, but it saves a lot of
time.

There are a few cases where a single line doesn’t adequately describe what a
subroutine does. This doesn’t happen as often as you might think, but it does happen.
When a situation like this pops up, I still put a one line description next to the subroutine
name, then I skip a line and give a detailed description. In effect, the first line is a title
line, and the next lines expand on the title.

Parameters
! Parameters:
! left, right, top, bottom - edges of the rectangle
! color - color of the inside of the rectangle

Next is a parameter declaration section that describes the meaning of each parameter
that appears in the SUB statement. Again, there is usually no need for more than a line, or
perhaps two.

Shared Variables
Shared variables are variables from the main program that are used inside a

subroutine. The section looks like the list of parameters, but it’s labeled Shared variables
rather than Parameters. You’ll see this kind of comment later, when we start discussing
shared variables in detail.

Return Values
There is a kind of subroutine called a function that returns a value. We’ll see those

later in this lesson. It’s important to describe exactly what the function returns.

Notes
If the subroutine is based on some outside reference material, does something

unexpected, or if there is anything I’d like to remind myself of if I ever need to come
back and change the subroutine or move it to another program, I put the information in a
notes section. The notes section looks something like this:

 ! Notes:

 ! 1. For a description of the insertion sort, see

 ! "Algorithms + Data Structures = Programs," p. 85.

As with the other formatting and commenting conventions mentioned in this course,
there are many correct ways to comment and format a subroutine that are different from
the one I have shown you. The important point isn’t which one you use; the important
point is to find one you like that supplies the same information and use it consistently.

Subroutines Let You Create New Commands
We have seen that a subroutine can be used to take a series of similar, repetitious

commands and place them in a single subroutine, making our program shorter and easier
to understand. Subroutines can also be used to create new commands, which helps
organize the program, making it easier to read. The RECTANGLE subroutine we have

Learn to Program in GSoft BASIC

already created is one example. Once you know what the RECTANGLE subroutine does,
it is a lot easier to read the lines

! Draw white, red and blue rectangles.
CALL RECTANGLE(10, 250, 10, 120, 15)
CALL RECTANGLE(220, 270, 60, 100, 7)
CALL RECTANGLE(50, 300, 80, 160, 4)

than it was to read the original program. The idea of using subroutines to neatly package
our program is a very powerful one. It takes some getting used to, but once mastered, the
technique will help you write programs faster and find errors in programs easier.

There is another advantage, too. Most people tend to write a few general types of
programs. For example, an engineer might write several programs to deal with
complicated matrix manipulation, but never deal with graphics to any great degree.
Another person might use his computer to write adventure games. Any time you start
writing programs that fall into broad groups like this, you will find that there are sections
of your program that get repeated over and over again. By packaging these ideas into
subroutines, you can quickly move the proper sections of code from one program to
another.

As an example, let’s look at a small section of code that seems to appear at the
beginning of nearly all of our graphics programs.

! Set up for graphics.
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)

We can package these three lines into a subroutine called INITGRAPHICS like this:

!--
!
! InitGraphics - Set up for graphics
!
!--

SUB INITGRAPHICS
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)
END SUB

With this new procedure, our program becomes even easier to read:

! Set up for graphics.
CALL INITGRAPHICS

! Draw white, red and blue rectangles.
CALL RECTANGLE(10, 250, 10, 120, 15)
CALL RECTANGLE(220, 270, 60, 100, 7)
CALL RECTANGLE(50, 300, 80, 160, 4)

! Wait for the user to press return.
INPUT "";A$
END

It may not be obvious yet, but there is still one more advantage to packaging even
these three simple commands into a subroutine. At some point, you may decide that you
want to set up the graphics screen a bit differently. For example, you may want to paint
the entire screen white so the drawings appear on a white background rather than a black
one. With the graphics initialization in a neat little package, it will be easy to redo the
package and quickly update all of your programs. You will also learn faster ways to color
in a rectangle. If all of your programs use the RECTANGLE subroutine, you can easily
update the subroutine, quickly bringing all of your programs up to date. If the code to
draw rectangles is scattered throughout your programs, though, it would be a daunting
task to change them all, simply because it would be hard to find all of the places that need
to be changed.

Problem 4.1. One use of the RECTANGLE procedure is to draw game boards. For
example, a board for a Reversi game would consist of eight rows and eight columns of
green squares with white outlines. A chess or checker board can be drawn as eight rows
and eight columns of alternating black and white squares.

Use the Rectangle procedure to draw a checker board in the graphics window. Make
each square 20 pixels wide and 20 pixels high, with the top left square at 5,5. Use colors
of 5 and 12, which gives a gray and green board instead of the boring traditional black
and white board.

Hint: Use one FOR loop nested within another to loop over the rows and columns,
like this:

Learn to Program in GSoft BASIC

FOR ROW = 1 TO 8

 FOR COLUMN = 1 TO 8

 <draw a square>

 NEXT

NEXT

This way, you can locate the top of each square as (ROW - 1) * 20 + 5. The bottom of
each square will be at ROW * 20 + 35. The same idea can be used to find the left and
right edge of each square.

Functions are Subroutines that Return a Value
In the last lesson we used a pseudo-random number generator in several programs to

create simulations. One common theme in these simulations was to restrict the range of
the random number and force the single-precision result returned by the RND function
into an INTEGER value. For example, in our number guessing game, we selected
numbers from 1 to 100. To roll dice, on the other hand, we used the same idea to select a
random number from 1 to 6. With what we have learned about subroutines it would seem
that this would be an ideal candidate for packaging. There is a problem, though. The
whole point of the random number code is to produce a number. We need a way to get a
value back from the subroutine. When we need a value back, BASIC gives us a new
flavor of the subroutine called a function. A function is just a subroutine that can return a
single value.

Here’s a program that demonstrates this idea by packaging our random number
generator.

REM This program rolls two dice 20 times.

DIM SIDES AS INTEGER :! # of sides on the dice
DIM NUMDICE AS INTEGER :! # of dice to throw
DIM I AS INTEGER , J AS INTEGER :! loop/index variables
DIM VALUE AS INTEGER :! value rolled on a die

! Set up the number of dice and number of sides.
SIDES = 6
NUMDICE = 2

FOR I = 1 TO 20
 FOR J = 1 TO NUMDICE
 PRINT RANDOMVALUE(SIDES), ;
 NEXT
 PRINT
NEXT
END

!--
!
! RandomValue - Return a random number in the range 1 to max
!
! Parameters:
! max - maximum allowed value for the random number
!
! Returns: Random number in the range 1..max
!
!--

FUNCTION RANDOMVALUE(MAX AS INTEGER) AS INTEGER
DIM VALUE AS INTEGER :! Random value to return

VALUE = 1 + RND (1) * MAX
IF VALUE = MAX + 1 THEN
 VALUE = MAX
END IF
RANDOMVALUE = VALUE
END FUNCTION

There are really only two differences in the way you write a subroutine and function.
The first shows up in the function header, which starts with the reserved word
FUNCTION, rather than the reserved word SUB. The function returns a value. It is
possible for this value to be an integer, a real number, or any other type we’ve covered so
far in this course. Functions cannot return arrays or records, two types we’ll cover later,
but there are easy ways around that issue.

Naturally, you have to tell the compiler what type of value the function returns. You
do this just like you would for a variable, by following the name of the function (and the
parameter list, if there is one) with AS and the type. In the case of our RANDOMVALUE
function, the type is INTEGER.

At some point you need to specify what value the function should return. This is the
second difference between a function and a subroutine. Somewhere in the function, you

Learn to Program in GSoft BASIC

need to assign a value to the name of the function itself. You can do this in more than one
place, if you like, using IF statements to determine which assignment decides the value of
the function. You can also assign a value to the function more than once, perhaps starting
it off with an initial value that may or may not get changed later. You must assign a value
to the function at least one time, however. If you don’t, the value returned by the function
is zero or an empty string, but you really shouldn’t count on this fact.

You can use a function anywhere you could use a value within the BASIC language.
In our program, we use the function in the statement

PRINT RANDOMVALUE(SIDES), ;

When the program gets to this statement it calls the function. The function calculates
a value and returns it. The value is printed, just as the number 4 would be in the statement

PRINT 4, ;

Problem 4.2. You can use a function anywhere you can use a value in BASIC. In
particular, you can use the RANDOMVALUE function to decide how many times to loop
through a FOR loop, like this:

FOR I = 1 TO RANDOMVALUE(20)

 ...

You can also use a function to set the value of a parameter for another subroutine or
function call.

Use these ideas to create a program that will draw a random number of rectangles, not
to exceed 30, in the graphics window. The rectangles should have a left and right value
between 1 and 319, and a top and bottom value between 1 and 199. Use an IF statement
and a temporary variable to make sure the left side is less than or equal to the right side,
and that the top is less than or equal to the bottom, like this:

IF LEFT > RIGHT THEN

 TEMP = LEFT

 LEFT = RIGHT

 RIGHT = TEMP

END IF

Finally, the color of the rectangle should be chosen at random, and should be in the
range 0 to 15. You can get a value from 0 to 3 from the RANDOMVALUE function like
this:

RANDOMVALUE(16) - 1

The call to RANDOMVALUE to get the color of the rectangle should appear in the
parameter list of the call to Rectangle.

Value and Variable Parameters
There are some places where we want to package some code that changes more than

one value. A good example of this is the ball bouncing program from the last problem in
Lesson 3. It would be nice to package the code that updates the position of the ball into a
function and return the new position of the ball. There is a problem, though. A function
can only return one value, but we need to update both an X and Y coordinate.

It turns out that there are two ways to pass a parameter in BASIC. If you pass a
variable as the parameter, and not an expression, and if the variable is the same type as
the subroutine is expecting for a parameter, any changes made in the subroutine are also
made in the main program. Parameters passed this way are called variable parameters. If
the parameter you pass is an expression of any kind at all, even something as simple as
converting an INTEGER to a SINGLE, any changes made in the subroutine have no
effect at all on the variable in the main program.

Let’s look at some examples to see how this works. The first example passes a
variable parameter.

DIM I AS INTEGER

I = 1
CALL TEST(I)
PRINT I
END

SUB TEST (J AS INTEGER)
J = J + 1
END SUB

Since the passed parameter I is the same type as the parameter variable J, and since there
is no expression involved, I is passed as a variable parameter. This means that changing J
in the subroutine changes the value in the main program, too, so the program prints 2.

Learn to Program in GSoft BASIC

With a very simple change, we turn the parameter into a value parameter.

I = 1
CALL TEST(I)
PRINT I
END

SUB TEST (J AS INTEGER)
J = J + 1
END SUB

The only change was to drop the DIM statement that declared I as an INTEGER. As a
result, I is defined with the default type of SINGLE, the type for a single-precision
floating-point variable. This program prints 1, because the change to J in the subroutine
does not change the value of I in the main program.

This brings up a dirty little problem in the BASIC programming language. Every
language has features that sometimes cause problems; this is one of them for BASIC. The
problem is that it’s easy to change a parameter inside a subroutine, then have the
subroutine change the value of a variable in the main program by accident. This isn’t an
obvious bug. You may end up scratching your head for quite a while before you finally
discover the problem. There is one defensive programming technique I would
recommend in all BASIC subroutines that are not supposed to change the value of a
parameter, and that is to use a separate variable internally if you need to change a
parameter value. In our simplistic example, the change would look like this:

DIM I AS INTEGER

I = 1
CALL TEST(I)
PRINT I
END

SUB TEST (J AS INTEGER)
DIM K AS INTEGER

K = J
K = K + 1
END SUB

In this example, I is not changed in the main program, even though it is passed as a
variable parameter. Another way to protect a value from the part of the program making

the call is to turn the parameter into an expression. The traditional way to do this in
BASIC is to put parenthesis around the parameter, like this:

DIM I AS INTEGER

I = 1
CALL TEST((I))
PRINT I
END

SUB TEST (J AS INTEGER)
J = J + 1
END SUB

Once again, this simple change is enough to change the parameter from a variable
parameter into a value parameter, and the program prints 1. In general, though, the extra
typing is a bit of a pain, and you’ll quickly stop using the parenthesis unless you know
they are needed. That’s why I prefer writing the subroutine so it won’t change the value
of a parameter unless that’s the point of the subroutine.

And finally, here’s just such an example. This is my solution to Problem 3.4 rewritten
using subroutines.

REM Draw a ball bouncing across the screen.

DIM X AS INTEGER , Y AS INTEGER :! Coordinates for the ball
DIM XSPEED AS INTEGER , YSPEED AS INTEGER :! Speed of the ball
DIM ITER AS INTEGER :! Number of iterations
DIM I AS INTEGER :! loop counter

! Get the ball's initial position, speed, and the number
! of animated frames.
INPUT "Starting X position: ";X
INPUT "Starting Y position: ";Y
INPUT "X Speed : ";XSPEED
INPUT "Y Speed : ";YSPEED
INPUT "Number of steps : ";ITER

! Set up the graphics window.
CALL INITGRAPHICS
SETPENMODE (2)
SETPENSIZE (4, 4)

Learn to Program in GSoft BASIC

! Make sure the starting position is on the screen.
CALL RESTRICT(X, 0, 319)
CALL RESTRICT(Y, 0, 199)

! Animate the ball.
MOVETO (X, Y)
LINETO (X, Y)
FOR I = 1 TO ITER
 CALL MOVEBALL(X, Y, XSPEED, YSPEED)
NEXT
INPUT "";A$
END

!--
!
! InitGraphics - Set up for graphics
!
!--

SUB INITGRAPHICS
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)
END SUB

!--
!
! MoveBall - move the ball
!
! Move a ball in the graphics window. If the ball hits one
! of the sides, the direction of the ball is changed.
!
! Parameters:
! X, Y - position of the ball
! VX, VY - velocity of the ball
!
!--

SUB MOVEBALL(X AS INTEGER , Y AS INTEGER , VX AS INTEGER , VY
AS INTEGER)

DIM X2 AS INTEGER , Y2 AS INTEGER :! New position for the ball

! Find the new X position for the ball
X2 = X + VX
IF X2 < 0 THEN
 X2 = 0
 VX = - VX
ELSE IF X2 > 319 THEN
 X2 = 319
 VX = - VX
END IF

! Find the new Y position for the ball
Y2 = Y + VY
IF Y2 < 0 THEN
 Y2 = 0
 VY = - VY
ELSE IF Y2 > 199 THEN
 Y2 = 199
 VY = - VY
END IF

! Draw the ball at the new position.
MOVETO (X2, Y2)
LINETO (X2, Y2)

! Erase the old ball.
MOVETO (X, Y)
LINETO (X, Y)

! Update the ball position.
X = X2
Y = Y2
END SUB

!--
!
! Restrict - make sure a value is inside a given range
!
! Parameters:
! X - value to restrict to a range
! LOW, HIGH - allowed range of values
!
!--

Learn to Program in GSoft BASIC

SUB RESTRICT(X AS INTEGER , LOW AS INTEGER , HIGH AS INTEGER)
IF X < LOW THEN
 X = LOW
ELSE IF X > HIGH THEN
 X = HIGH
END IF
END SUB

In this program the MOVEBALL subroutine is used to update the position of the ball
on the screen. We pass four values to the MOVEBALL subroutine; the current x and y
position of the ball and the current velocity of the ball. Each of these four variables can
be changed by the subroutine.

Problem 4.3. By using our neatly packaged subroutine you can quickly write a
program to bounce more than one ball around on the screen. Modify the sample program
to bounce 10 balls simultaneously.

Use the RANDOMVALUE function to choose the initial positions and speeds of the
balls. Move the balls 100 times.

Shared Variables
With the exception of parameters, any variable declared in the program can’t be used

from inside a subroutine or function, and any variable declared inside a subroutine or
function can’t be used from the main program. Fortunately, there is a way to change all
that so variables other than parameters can be shared among the various parts of the
program. Cleverly enough, it’s done with the SHARED command.

The SHARED command is used inside a subroutine when it needs to use a variable
declared in the program. The command is pretty simple; you just put the name of the
variable right after the word SHARED. If you want to share several variables with a
single SHARED command, list all of the variables separated by commas.

One good way to use SHARED variables is to set up values used throughout a
program. For example, our graphics programs frequently use the number of pixels on the
screen as a boundary, making sure balls bounce off the edge and so forth. This boundary
value can change. If you move on to toolbox programming you’ll discover that there is
another way to draw on the Apple IIGS that uses 640 horizontal pixels rather than 320.
You’ll also learn to create windows, and these windows are generally smaller than the
physical screen. By placing the screen size in shared variables you can use a single value
throughout the program, making it easy to change the screen size if you use the same
subroutine in a later program.

Here’s a short example that shows how to use shared variables. As our programs get
longer and more complicated, we’ll find many uses for them that aren’t so simple!

REM Draw a big X across the graphics screen.

DIM MAXX AS INTEGER , MAXY AS INTEGER :! Size of the graphics
screen

! Initialize the size of the graphics screen.
MAXX = 320
MAXY = 200

! Initialize the graphics screen.
CALL INITGRAPHICS

! Draw a big x across the screen.
CALL X

! Wait for the user to press return.
INPUT "";A$
END

!--
!
! InitGraphics - Set up for graphics
!
!--

SUB INITGRAPHICS
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)
END SUB

!--
!
! X - Draw a big X across the screen
!
! Shared variables:
! maxx, maxy - size of the screen
!
!--

Learn to Program in GSoft BASIC

SUB X
SHARED MAXX, MAXY

MOVETO (0, 0)
LINETO (MAXX, MAXY)
MOVETO (0, MAXY)
LINETO (MAXX, 0)
END SUB

Lesson Five –Strings

What Are Strings?
You may have noticed that a string was the first data type we ever dealt with, but you

haven’t seen much of them. Back in Lesson 1 our very first program wrote a string
constant to the screen. Since then we have made extensive use of integers and real
numbers, but the only string variables we’ve used were on INPUT statements, and with
the exception of a very brief aside, that was really just a way to wait for the user to press
return before ending a program. In this lesson we’ll delve deeper into the mysteries of
strings, learning how to declare them and how to manipulate strings in our programs.

In BASIC a string is a simple variable, just like in integer or a real number. Unlike a
number, though, a string does not have a fixed length. It can vary from no characters at
all to a whopper of a string with 32767 characters. It’s important to keep in mind that the
upper limit on the length of a string varies from one implementation of BASIC to
another. In most implementations the upper limit is 255 characters, and frankly, that’s
enough for most situations.

The characters in a string are any of the ASCII characters. The ASCII characters are
the 95 printing characters you see on your keyboard and 33 special purpose characters,
some of which, like the return key, are also on your keyboard. There’s a chart of them a
little later in the lesson, in the section where we discuss character values in detail.
GSoft BASIC also allows the extended ASCII characters supported by Apple on the
Apple IIGS and Macintosh lines of computers.

Since strings can vary in length, they aren’t stored the same way as numbers. A string
variable actually contains information about the location of the characters. The characters
in the string are stored in a separate area of memory in your computer. This puts some
limitations on what we can do with string values. We’ll talk about them in more detail as
various topics come up in the course, but in a nutshell, you can’t fake the creation of a
string or change the length of an existing string behind BASIC’s back—you must allow
BASIC to create, change, and delete strings.

The Two Ways To Read a String
You got a brief look at reading strings from the keyboard in Lesson 3, when we used

this short program to show that the INPUT statement could read strings, too, and not just
numbers.

INPUT "Please type your name: "; NAME$
PRINT "Hello, "; NAME$

We didn’t delve deeper at that time, but now it’s time to look at a major weakness in
the INPUT statement for reading strings. It’s obvious when you make a slight change in
the program, like this:

INPUT "Please type your city, state and zip code: "; ADDRESS2$
PRINT ADDRESS2$

The natural thing to type (in the United States, anyway) is something like this:

Albuquerque, New Mexico 87120

Try it. Everything after the comma is lost. The fact is, the INPUT statement just
doesn’t handle commas well when reading strings. Just as with a number, the comma
signals the end of the string.

That’s not always bad. In fact, in this particular case, it can be very useful. Let’s try
the program again:

DIM CITY AS STRING , STATE AS STRING , ZIP AS LONG

INPUT "Please type your city, state and zip code: ";CITY,
STATE, ZIP

PRINT CITY, STATE, ZIP

If you remember to put a comma after the state, like this:

Albuquerque, New Mexico, 87120

BASIC divides the typed text neatly into two strings and a number, storing the results in
appropriate variables.

But more often than not, experienced BASIC programmers find that the way INPUT
handles commas is more of a hindrance than a help. That’s why there is another form of
the INPUT statement in BASIC called LINE INPUT. The LINE INPUT statement looks
just like the INPUT statement. In fact, there is really only one difference: Instead of
separating the various values you type with commas, you must put them on a separate
line. In most cases you’ll end up using one LINE INPUT statement for each line.

Learn to Program in GSoft BASIC

Here’s the last version of our program for reading the city, state and zip code. This
one reads the entire line, commas and all, into a string variable.

LINE INPUT "Please type your city, state and zip code: ";
ADDRESS2$

PRINT ADDRESS2$

Manipulating Strings
BASIC only has five operations for manipulating strings, but surprisingly, they are

enough for any task you’d like to perform. You can easily create more specialized
operations based on the ones BASIC already has.

The simplest of all of the operations is technically known as string concatenation.
That’s just a fancy term for attaching one string to the end of another. BASIC uses the +
operation to concatenate strings, which sort of makes sense, because you’re adding one
string to the end of another. For example,

A$ = "test"
B$ = "ing"
PRINT A$ + B$

prints

testing

String concatenation gives you an easy way to combine strings to form a bigger one;
the next three functions give you a way to extract a piece of a long string. LEFT$ and
RIGHT$ pull characters from the left or right end of a string. Each of these functions
takes two parameters, a string and the number of characters you want. It is legal to ask for
more characters than are actually in the string; if you do that, you will get the entire string
back. You can see how this works by running this short program, which peels characters
off of the left edge of a test string.

A$ = "testing"
FOR I% = 0 TO 8
 PRINT I%, LEFT$ (A$, I%)
NEXT

The last of the most fundamental string operations is LEN, which figures out how
many characters are in a string. LEN takes a single parameter, a string, and returns the
number of characters in that string.

Let’s put these statements to work in a real program. This particular program takes a
string and reverses the order of the characters. It’s a cute gag program, but it also shows
clearly how LEFT$, RIGHT$ and concatenation can be used to tear apart a string and put
it back together in a wholly different way. Just as important, it shows how to package this
operation as a BASIC FUNCTION, in effect creating a new string manipulation
command that you can copy from one program and paste into others that need to do the
same operation.

REM Reverse
REM
REM This program reads in a string, reverses the order of the
REM characters, and writes the string back to the text screen.
REM It continues doing this until a string of length zero is
REM entered. To get a string of length zero, press the RETURN
REM key without typing any other character.

DIM INSTRING AS STRING :! input string
DIM OUTSTRING AS STRING :! output string

! Loop until there is no input string.
DO
 ! Get a string.
 LINE INPUT "String to reverse: ";INSTRING

 ! Reverse the characters in the string.
 OUTSTRING = REVERSE$(INSTRING)

 PRINT "Reversed string : ";OUTSTRING
 PRINT
LOOP WHILE LEN (INSTRING) <> 0
END

Learn to Program in GSoft BASIC

!--
!
! Reverse$ - Reverse the characters in a string
!
! Parameters:
! s - string to reverse
!
! Returns: String with the characters reversed
!
!--
FUNCTION REVERSE$(S AS STRING) AS STRING

DIM I AS INTEGER :! loop variable
DIM S1 AS STRING :! remaining characters in the input string
DIM S2 AS STRING :! string with characters reversed

S1 = S
S2 = ""
FOR I = 1 TO LEN (S1)
 S2 = S2 + RIGHT$ (S1, 1)
 S1 = LEFT$ (S1, LEN (S1) - 1)
NEXT
REVERSE$ = S2
END FUNCTION

It may seem strange to create a completely new string variable, S1, to hold the same
string that was passed as a parameter. If you think so, try taking it out and renaming the
parameter S1. What happens to the program?

I did warn you about this sort of thing. In the last lesson, I suggested that you always
copy a parameter into a local variable if you would be changing the value of the variable
in the subroutine, since it was possible you would change the variable in the original
program, with unwanted results. That’s just what happens in this case if you don’t make a
copy of the original parameter. The REVERSE$ function gradually removes characters
from one string while building a second. When in finishes, the original string has been
reduced to an empty string, which is another name for a string that doesn’t have any
characters. Back in the main program the DO loop ends unexpectedly because
INSTRING got changed to the empty string, too.

The last of the five string manipulation functions is MID$. This function takes
characters from the middle of the string rather than the right or left side. MID$ uses three
parameters rather than two. The first is still the string to work on. Next comes the index
of the first character you want MID$ to return, counting from 1. The last parameter is the
number of characters you want back. For example,

PRINT MID$("This is a test.", 6, 2)

prints the second word, “is”. Remember, spaces are characters, too, so the space between
“This” and “is” counts as a character.

Like LEFT$ and RIGHT$, MID$ does sensible things if you ask for characters that
are not there. If you start in the middle of the string and ask for more characters than
there are left in the string, MID$ returns the ones that are there. For example,

PRINT MID$("This is a test.", 11, 50)

returns the string “test.” If the index is larger than the number of characters in the string,
MID$ returns an empty string.

Here’s the string reversing program, rewritten to use MID$ and a backwards-stepping
FOR loop to reverse the characters in the input string.

REM Reverse
REM
REM This program reads in a string, reverses the order of the
REM characters, and writes the string back to the text screen.
REM It continues doing this until a string of length zero is
REM entered. To get a string of length zero, press the RETURN
REM key without typing any other character.

DIM INSTRING AS STRING :! input string
DIM OUTSTRING AS STRING :! output string

! Loop until there is no input string.
DO
 ! Get a string.
 LINE INPUT "String to reverse: ";INSTRING

 ! Reverse the characters in the string.
 OUTSTRING = REVERSE$(INSTRING)

 PRINT "Reversed string : ";OUTSTRING
 PRINT
LOOP WHILE LEN (INSTRING) <> 0
END

Learn to Program in GSoft BASIC

!--
!
! Reverse$ - Reverse the characters in a string
!
! Parameters:
! s1 - string to reverse
!
! Returns: String with the characters reversed
!
!--
FUNCTION REVERSE$(S1 AS STRING) AS STRING

DIM I AS INTEGER :! loop variable
DIM S2 AS STRING :! string with characters reversed

S2 = ""
IF LEN (S1) > 0 THEN
 FOR I = LEN (S1) TO 1 STEP - 1
 S2 = S2 + MID$ (S1, I, 1)
 NEXT
END IF
REVERSE$ = S2
END FUNCTION

If you looked closely at this example, you may have noticed a feature of the FOR
loop we’ve never covered before. The STEP size of -1 is used to tell the FOR loop to
loop from a large number down to a small one. For example,

FOR I = 10 TO 1 STEP -1
 PRINT I
NEXT

does a countdown from 10 to 1. Other than counting down instead of up, this loop works
just like all of the other FOR loops you’ve used.

In some ways this version is simpler than the one that uses LEFT$ and RIGHT$, and
in some ways it is more complex. This version doesn’t need to make a copy of the input
parameter, since it isn’t changed, and it uses one fewer statements inside the FOR loop to
manipulate the strings, since it doesn’t have to remove a character from the input string.
On the other hand, it needs an extra IF statement to make sure there are characters in the
string before the FOR loop starts.

As a general rule, this version is better than the first. They are both about the same
size and complexity, but the version based on MID$ has one fewer statement in the FOR

loop. While there are certainly exceptions, programs are generally faster when you reduce
the number of statements inside a loop. That’s because statements in a loop are almost
always executed more times than statements that are outside of the loop, sometimes
thousands of times more often, so moving things out of the loop tends to make the
program faster. In many programs, the difference is minimal or unimportant, but in others
the difference is dramatic. In fact, reducing the number of operations in a loop is one of
the most effective ways to make a slow program run faster.

Problem 5.1. If you do a lot of string manipulations, you’ll start to build up a library
of more powerful commands. One that you might add is INSERT$, which inserts a string
in the middle of an existing string.

Write a function that takes two strings and a position as input. Your function should
insert the second string parameter into the first at the position given by the third, numeric
parameter. Be sure your subroutine handles any argument reasonably. If the position is
less than 1, the second string should appear at the beginning of the first string. If the
position is greater than the length of the first string, the second string should appear at the
end of the first string.

Write a program that tests this function. It should use a sequence of input statements
to read test strings and a position, then print the result returned by the function. The
program should stop if you press return immediately for both input strings, but not until it
calls INSERT$ with this odd case!

Test your program with every combination of add data you can think of. Do your best
to trick your subroutine, trying to make it fail. If it’s going to fail, it’s best if it fails while
you are testing it, rather than later, when someone is using your program!

Characters
Way back in Lesson 1, you learned that

"Hello, world."

is a string constant. A string constant consists of any number characters enclosed in quote
marks. That “any number” is quite literal—two quote marks in a row form a legal string
constant for a string with no characters. In various books you’ll see this called the empty
string or the null string. Any character you can type can appear in a string constant except
for the double quote mark itself. Later in the lesson we’ll find a way to force the quote
mark into a string.

Learn to Program in GSoft BASIC

The ASCII Character Set
Characters and integers enjoy a special relationship with each other. To decide what it

means to compare two strings, for example, we need to decide if one character is less
than another. While you can get pretty good agreement from most people whether the
character ‘a’ is less than the character ‘b’, things get a little less definite when you ask if
the character ‘^’ is less than the character ‘*’. For this reason, as well as other reasons
we’ll explore, we often convert characters to integers and integers to characters.

There are two functions in BASIC that are used to convert characters to numbers and
numbers to characters. The CHR$ function takes a number as a parameter and returns a
string with a single character. The number should be in the range 0 to 255; if it is not,
CHR$ adds or subtracts 256 from the value you give until the number is in this range.

The ASC function does just the opposite. It takes a string and returns the numeric
value associated with the first character in the string. If the string has no characters, ASC
returns the value 0.

The ASCII character set defines the relationship between the characters and their
numeric equivalents. It also lists all of the characters you can use. It has one character for
each of the values from 0 to 127. Some of these values are known as printing characters.
For example, the numeric value 65 is used to represent an uppercase ‘A’. The lowercase
letter ‘a’ is represented by 97. Some of the values in the ASCII character set are non-
printing characters. These are used for special purposes. The character whose value is 13,
for example, is used to separate lines in files of characters and to move to a new line on
the text screen.

The table below shows the complete ASCII character set in tabular form. Non-
printing characters are shown as the name of the value. To obtain the integer value used
to represent one of the characters, add the number at the top of the column to the number
at the start of the row. Try that for ‘A’ and ‘a’, which have values of 65 and 97, to make
sure you understand how this works.

0 16 32 48 64 80 96 112
0 nul dle 0 @ P ` p
1 soh dc1 ! 1 A Q a q
2 stx dc2 " 2 B R b r
3 etx dc3 # 3 C S c s
4 eot dc4 $ 4 D T d t
5 enq nak % 5 E U e u
6 ack syn & 6 F V f v
7 bel etb ‘ 7 G W g w
8 bs can (8 H X h x
9 ht em) 9 I Y i y
10 lf sub * : J Z j z
11 vt esc + ; K [k {
12 ff fs , < L \ l |
13 cr gs - = M] m }
14 co rs . > N ^ n ~
15 si us / ? O _ o rub

The ASCII character set is the dominant character set on microcomputers, but it is not
universal. On the Apple IIGS, and on most microcomputers, you can write your programs
specifically for the ASCII character set. If you will be writing programs that must run on
a variety of computers, though, you should be aware that the numeric equivalents of
characters may vary. If possible, find out what character set is used on the various
machines before you start to write your program, and make sure it will work with all of
the character sets.

Problem 5.2. Write a program that loops over the numbers from 32 to 126, converts
these numbers to strings using the CHR$ function, and prints the characters to the screen.
Skip to a new line after every 16 characters.

Modify this program to switch to the graphics screen. Use the MOVETO command to
move to 15, 15 before you start to print the characters. As you can see, you have a simple
but effective way to put text on the graphics screen.

The Extended Character Set
Apple defined extensions to the ASCII character set to allow Macintosh and

Apple IIGS computers to display special characters used in non-English speaking
countries that still use more or less the same alphabet as English speaking countries. This
extended character set is not implemented for the text screen that most of our programs
use, but it is available on the graphics screen. The characters in the Apple extended
character set are shown in this table.

Learn to Program in GSoft BASIC

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A0 B0 C0 D0 E0 F0
0 0 @ P ` p Ä ê † ∞ ¿ –

1 � ! 1 A Q a q Å ë ˚ ± ¡ —

2 � " 2 B R b r Ç í ¢ ≤ ¬ “

3 � # 3 C S c s É ì £ ≥ √ ”

4 � $ 4 D T d t Ñ î § ¥ ƒ ‘

5 % 5 E U e u Ö ï • µ ≈ ’

6 & 6 F V f v Ü ñ ¶ ∂ ∆ ÷
7 ‘ 7 G W g w á ó ß ∑ « ◊
8 (8 H X h x à ò ® ∏ » ÿ

9) 9 I Y i y â ô © π …

A * : J Z j z ä ö ™ ∫ spc
B + ; K [k { ã õ ´ ª À

C , < L \ l | å ú ¨ º Ã

D - = M] m } ç ù ≠ Ω Õ

E . > N ^ n ~ é û Æ æ Œ

F / ? O _ o è ü Ø ø œ

• The characters from the space ($20) to the tilde ($7E) are all standard printing
ASCII characters.

• While they have standard definitions, the characters $11..$14, $AD, $B0..$B3,
$B5..$BA, $BD, $C2..$C6 and $D6 tend to be rare in most fonts.

• Character $CA is the non-breaking space.

One thing worth pointing out is that you can change the font used to draw characters
when you are using the graphics screen. The reason this is important is that not all fonts
implement all of the special characters you see in the table. If one of the characters shown
exists in the font, it will almost always use the character code shown, but there aren’t
many fonts that implement all of these characters. In fact, many specialized fonts don’t
implement any of the characters you see in the table, even the standard ASCII characters.
For example, there are Hebrew, Greek, and hieroglyphic fonts, not to mention symbol
fonts that implement all sorts of pictures as font characters. You generally have to try the
fonts to see what they actually do.

Problem 5.3. Write a program that displays all 256 possible characters on the graphics
screen. Some characters won’t exist. To account for this fact, try drawing each character
at a screen coordinate that matches the position of the character with a position in the
table of fonts.

You can do this by using a MOVETO command right before you draw each
character. One odd fact you must take into account is that the position you move to
specifies the base line for the character. This is the bottom left position for a character

like M that lies entirely above the baseline. For a character like y, this position is still at
the left edge of the character, but it is part way up, roughly where the tail starts to dip
below the rest of the character. You will need to experiment a bit to find the proper
number of pixels to leave between each character.

While the program will work either way, you will be able to see the characters easier
if you paint the screen white with a series of MOVETO and LINETO commands before
drawing the characters themselves.

P-Strings, C-Strings, and Other Confusions
If you have read much about programming or browsed through Apple’s toolbox

reference manuals, you know that there are several kinds of strings in the various
computer languages. The two most popular are generally called p-strings and c-strings.
The toolbox manuals also refer to text blocks, and the Apple IIGS disk operating system
makes use of still another format for encoding file names.

P-strings get their name from the Pascal programming language because
microcomputer implementations of Pascal like UCSD Pascal popularized the format.
Ironically, they have little to do with the official definition of Pascal, but that’s another
story! The first character position in a p-string is actually occupied by a number, not a
character. This number is the number of characters that follow. On almost all computers,
and certainly on all of the computers where I’ve seen p-strings used, each character uses
one byte of storage. While we won’t go into the details of representing numbers using
bits and bytes, take my word for it that this means the number of characters in a p-string
is limited to the range 0 to 255 on practically any computer. The characters in the string
itself follow right after the length byte.

C-strings are named after the C programming language, which is the most famous
language that uses them. C strings are a sequence of characters followed by a null
terminator, which is a character whose numeric value is zero. This gives another common
name for this kind of string, the null terminated string.

As you can see, one advantage of c-strings over p-strings is that there is no fixed limit
to the number of characters in a single string. A minor disadvantage is that you have to
scan the entire sequence of characters looking for the null terminator to find the length of
a string, which is a very common operation when you are doing string operations.

Text blocks are just sequences of characters. You can’t tell from looking at the string
itself how many characters it has; the length is kept in a separate variable.

GS/OS, the Apple IIGS disk operating system, uses something a lot like a p-string, but
instead of using a single byte to represent the length of the string GS/OS uses two bytes.
This gives a theoretical upper limit of 65535 characters in a string. GS/OS itself limits the
size of a path name to 8192 characters, but there is nothing to prevent a future version

Learn to Program in GSoft BASIC

from implementing a larger limit. GS/OS also uses a variation on this format that has two
lengths rather than one. The first value is the amount of memory available for the string,
while the second is the current length.

With all of these formats available, it’s fair to ask what GSoft BASIC uses.
Essentially, GSoft BASIC uses c-strings. The format consists of a sequence of characters
followed by a null terminator. There are some internal limits in the microprocessor used
in the Apple IIGS that make it easier to deal with strings that are no longer that 32767
characters, though, so GSoft BASIC imposes an upper limit of 32767 characters on each
individual string. If you try to create a string longer than 32767 characters, it is truncated.
The final string is made up of the first 32767 characters of the string you would expect if
there was no upper limit.

Comparing Strings
The same comparison operations used with numbers can also be used with strings.

Two strings are compared by comparing the characters in the string, one after the other,
until the characters don’t match. One string is “less than” another of the numeric value of
the first nonmatching character is less than the numeric value of the character at the same
position in the second string.

For example, “A” is less than “B”, since the numeric value of the character “A” is 65,
while the numeric value of the characters “B” is 66. Following the rules, “that” is less
than “this”, since the numeric value of the first nonmatching character, the “a” in “that”,
is 97, while the numeric value of the “i” from “this” is 105.

If two strings are not equal in length, but all of the characters up to the end of the
shorter string match, then the shorter string is less than the longer one. And, of course, if
the strings are the same, they are equal.

Looking at the ASCII character chart and thinking about these rules, they seem to
make a lot of sense. Words compare pretty much the way we would expect from looking
in, say, a dictionary. If a word is alphabetically before another, BASIC will say the first
word in alphabetical order is less than the second. There is one major exception, though.
Comparing strings fails to match our preconceptions miserably if one of the strings uses
uppercase letters but the other does not. In the ASCII character chart, uppercase letters
always come before lowercase letters, so the string “Washington” is less than the string
“president”. You can take care of this problem by converting both strings to all uppercase
letters or all lowercase letters before comparing them, though.

Problem 5.4. Write a function and a program to test it that converts any string to all
uppercase characters. Make sure the function does not change characters that are not
lowercase alphabetic characters.

Numbers and Strings
The two remaining string functions take care of a chore that is pretty tough to do by

writing your own subroutines: Converting strings to numbers and numbers to strings.
The STR$ function takes any number and converts it to a string that has the same

characters you would see if you used the PRINT statement to print the same number. It’s
cousin, the VAL function, takes a string and converts it to a numeric value. VAL always
returns a double-precision floating-point number; STR$ can take any number format, and
formats each according to the rules used for that type of number by PRINT.

One use for these functions is in programs that need foolproof input of numbers. As
you know by now, an INPUT statement that expects a number will ask for one if the user
of the program enters something the program can’t handle, but the way it handles the
error may not be exactly what you’re after. You can use the LINE INPUT statement,
though, and read the input as a string. It’s not all that tough to write a subroutine that will
check to see if the text is a valid floating-point number, and it’s pretty easy to check to
see if the text is an integer. If your subroutine reports that the text is a number, you can
convert the value easily with VAL. If the text the user typed is not a number, you can
handle the error in a way that is more appropriate in your program than the severe method
BASIC uses by default.

Garbage Collection
As your programs get longer, and especially if they use lots of strings, you may

occasionally notice a slight pause. This is probably garbage collection. We’ll explore
what garbage collection really is and how you can manage it in this section.

Each time you create a string in BASIC it is stored in an area of memory that BASIC
sets aside for variables. You can visualize the process as writing the string on a line of
notebook paper. When the next string is formed, it is written on the next line. This
process continues until memory fills up completely.

To see how this works, let’s follow a very simple program,

A$ = "Test 1"
B$ = "Test 2"
A$ = "Test 3"

Following along on paper, the lines on the notebook paper version of memory look like
this:

Test 1

Learn to Program in GSoft BASIC

Test 2
Test 3

You might object that A$ contains the string “Test 3” when the program finishes, so the
string “Test 1” is no longer needed. You’re right, but it’s still in memory. It’s garbage,
and the process of garbage collection is nothing less and nothing more than checking all
of the variables in the program to see which ones are string variables, and of those, which
strings they are actually using, then deleting the strings that are no longer needed. When
garbage collection finishes, the strings in memory would be

Test 2
Test 3

The problem is that checking all of the variables in your program and compressing
the memory can take a noticeable amount of time. Most of the time it’s not noticeable,
and even when it is it’s not worth worrying about, but every once in a while you will
write a program that is just plain annoying to use if garbage collection happens at a
particular point while the program runs. Maybe that’s right in the middle of an animation,
or during a time-critical part of a communications program. Whatever the reason, you can
force BASIC to do garbage collection using the FRE function. This forces BASIC to do
garbage collection, which makes is far less likely that garbage collection will happen in
the next few lines of code.

The FRE function takes a parameter. For garbage collection, it should be 0. It also
returns a value. The value returned is the number of free bytes that are left in the
variables area. That’s a good way to see if you’re running out of memory, which could
cause garbage collection to occur way too often, slowing the program down a lot. If you
have less than 10000 bytes of free space, I’d suggest you should increase the amount of
memory. We won’t cover how that’s done in this course, but you can find the appropriate
commands in the GSoft BASIC reference manual.

Don’t overuse the FRE function! Even if there is little or no garbage collection to do,
the FRE command can take a fair amount of time. If you use it too often the entire
program can slow noticeably. In fact, you should not use the FRE command at all unless
you are trying to control when the garbage collection is done. BASIC will do garbage
collection automatically whenever it is needed, and your program will run fastest if you
let BASIC choose when to do garbage collection. The only advantage to FRE is that you
can force the garbage collection to occur before a time-critical section of the program
starts to execute.

Lesson Six –Arrays

Groups of Numbers as Arrays
Computers can deal with very large amounts of data. On the Apple IIGS, you can

easily write programs that will deal with thousands of numbers, names, zip codes, or
whatever. So far, though, the methods we have for dealing with these values are fairly
limited. A database of a hundred friends, each of whom has a name, street address, a city,
a state, and a zip code would be a daunting task if each value had to be placed in a
separate variable.

One way we have to deal with large amounts of data is called an array. An array is a
group of values, each of which is the same type. We use an index to determine which of
the values we want to access at a given time.

For our first look at an array, let’s do a simulation of rolling dice. We’ve done this
several times before, on a small scale, but this time we’re going to roll the dice 10000
times and keep track of how many times we get a 2, how many times we get a 3, and so
forth. We could, of course, use a separate variable for each of the totals, but that would
get to be a bit tedious. Instead, we will use an array.

To define an array, you need to specify how many things you want in the array and
what kind they are. In our case, we are adding up the number of times a particular value
shows up on a pair of dice. We can get any value from 2 to 12 from a pair of dice, so the
easy way to create the array is to use the numbers 2 to 12 as indexes. We’ll define the
array this way:

DIM TOTALS(12) AS INTEGER :! number of spots showing

With the array defined this way, we can put a number into the array or take one out
by giving the name of the array followed by the index in parenthesis. For example, if the
variable DICE contains the number of spots we rolled, the expression

TOTALS(DICE) = TOTALS(DICE) + 1

will take the current value from the array, add one, and store the changed value back into
the array.

There is one subtle point here. The 12 as the index for the array says the last value in
the array is indexed with 12, as in

PRINT TOTALS(12)

But what is the first value? Actually, for every array in BASIC, the index of the first
value is 0. In our dice rolling program we will never use TOTALS(0) or TOTALS(1). In
some programs wasting two integer numbers is a big deal. The space is important. In
other programs, wasting a few bytes is not nearly as important as writing a program that
is easy to understand. In this program we’ll sacrifice the extra four bytes of space for
clarity’s sake.

As with regular variables you can specify what kind of value the array holds using the
special type characters, so

DIM TOTALS%(12)

defines an array that works just as well in our program. As with our other programs,
though, we’ll usually dispense with the extra character by defining arrays with a named
type in the DIM statement. One way isn’t necessarily any better than the other. I
generally use characters when I’m writing short programs, and use named types for
longer ones.

One other interesting feature about BASIC is that you can have an array and a
variable with the same name. This is usually something you find out when you make a
mistake and start trying to find out why a program doesn’t work! I wouldn’t recommend
using the same name for a variable and an array because it’s easy to get the two confused.

You can use an element of the TOTALS array anywhere that you could use an integer
variable. You can, for example, print an element of an array, use it in an expression, or
pass it as a parameter to a subroutine. There are very few cases, though, where you can
use the entire array. You can’t write an array using PRINT, for example. We will explore
when and how you can use an entire array as we get to know arrays better.

Now, finally, it’s time to look at a real program that uses arrays.

REM This program simulates rolling dice. It counts the number
REM of times each value appears, printing a summary after the
REM run is complete.

DIM TOTALS(12) AS INTEGER :! number of spots showing

! Do the dice simulation.
CALL SIMULATION(10000)

Learn to Program in GSoft BASIC

! Write the dice array.
CALL WRITEARRAY
END

!--
!
! RandomValue - Return a random number in the range 1 to max
!
! Parameters:
! max - maximum allowed value for the random number
!
! Returns: Random number in the range 1..max
!
!--

FUNCTION RANDOMVALUE(MAX AS INTEGER) AS INTEGER
DIM VALUE AS INTEGER :! Random value to return

VALUE = 1 + RND (1) * MAX
IF VALUE = MAX + 1 THEN
 VALUE = MAX
END IF
RANDOMVALUE = VALUE
END FUNCTION

!--
!
! Simulation - roll the dice, saving the results in totals
!
! Parameters:
! rolls - number of times to roll the dice
!
! Shared Variables:
! totals - array holding the total number of rolls
!
!--

SUB SIMULATION(ROLLS AS INTEGER)

SHARED TOTALS()

DIM I AS INTEGER :! loop variable
DIM SUM AS INTEGER :! # of spots for this roll

! Set the totals to zero.
FOR I = 2 TO 12
 TOTALS(I) = 0
NEXT

! Do the simulation.
FOR I = 1 TO ROLLS

 ! Roll the dice.
 SUM = RANDOMVALUE(6) + RANDOMVALUE(6)

 ! Increment the correct total.
 TOTALS(SUM) = TOTALS(SUM) + 1
NEXT
END SUB

!--
!
! WriteArray - Write the results.
!
! Shared Variables:
! totals - array holding the total number of rolls
!
!--

SUB WRITEARRAY

SHARED TOTALS()

DIM I AS INTEGER :! loop variable

PRINT "spots", "times"
FOR I = 2 TO 12
 PRINT I, TOTALS(I)
NEXT
END SUB

Before you run this program, I want to let you know that it will take a long time. In
fact, this program will run for over eight minutes on an accelerated Apple IIGS! This is
the first computationally intense program you have seen in this course. If you like, you

Learn to Program in GSoft BASIC

can try various tactics to speed up the program. You can also use this program too see
how big an impact sloppy coding might have. One easy example of this is using single-
precision floating-point values instead of integer variables. If you switch all of the
variables to real numbers the program actually takes over eleven minutes.

There is one other thing to notice about this sample program. In the last lesson you
learned how to create shared variables so a value could be used in the main program and
in a subroutine. This program shows how to use shared variables with an array. For the
most part, sharing an array is done the same way as sharing a variable. If you remember,
though, I said you could have an array and a variable with the same name, so you need
some way to tell a variable from an array. You tell BASIC you want to share an array by
placing the parenthesis after the array name. You don’t put in the type or size of the
array, though. Those values are adapted from the size and type declared in the main
program.

Problem 6.1. There is often a trade-off between a program that is fast and a program
that is easy to understand. Which factor is the most important is one that the programmer
has to make as the program is written. The answer is really an engineering choice, and
not something you can predict in advance.

The dice rolling program calls RANDOMINTEGER 20,000 times. That’s really what
takes most of the time. Change the program so it doesn’t call a function by including the
code from the RANDOMVALUE function inside of the FOR loop.

How much faster is the program?

The Shell Sort
There are a few basic tasks that show up over and over when you are writing real

programs. One of these is sorting. If you use a program to keep track of your Christmas
list, for example, you might want to sort the list by zip code so the Post office will let you
send the Christmas cards out by bulk mail. If you want to check your Christmas list to see
who’s been naughty and nice, though, and are trying to find E. Scrooge, you may want
the same list sorted alphabetically by name.

There are many ways to sort an array; each has its advantages and disadvantages. You
will learn about other ways to sort an array later in the course, but we will start out now
with one of the classic sorting methods. While there are faster ways to sort large arrays,
the shell sort is very easy to understand, very easy to implement, and actually works
better on short arrays than the more complicated sorts you will learn later.

The idea behind the shell sort is very simple. You start by scanning the array from
front to back. At each step, you look to see if the value that comes after the current one in

the array is smaller than the current array element. If it is, you change them and continue
scanning. As an example, we will sort the following array by hand.

index value
1 6

2 43

3 1

4 6

We start off with the first array element and check to see if the value is smaller than
the value in the second element of the array. (The arrow shows which element of the
array we are working on.)

index value
à 1 6

2 43

3 1

4 6

In this case, 6 is smaller than 43, so we do nothing. Moving on, we check the next
element.

index value
1 6

à 2 43

3 1

4 6

This time, 1 is smaller than 43, so we exchange the values in the second and third spots,
ending up with this array:

index value
1 6

à 2 1

3 43

4 6

Learn to Program in GSoft BASIC

Checking the third element, we find that 6 is also smaller than 43, so we again make a
swap.

index value
1 6

2 1

à 3 6

4 43

We don’t check the last element of the array, since there is nothing that follows it.
At this point, we have successfully moved 43 to the last spot in the array, where it

belongs, but the array is still not completely sorted. To sort the array completely, we need
to keep track of whether or not we swapped any array entries. If we didn’t need to swap
any entries then the array is sorted. If we did swap two of the array elements, though, we
need to make another pass over the array. Our second pass makes one swap, moving 1 to
the first array element.

index value
1 1

2 6

3 6

4 43

Notice that we only want to swap elements of the array if the next element is actually
less than the one we are inspecting. If we swap elements when the values are equal, we
would loop over our sample array over and over, swapping 6 with itself on each pass.

Before diving into an example program that shows an actual sort, let’s take a moment
to examine concept that we will use that has nothing to do with arrays. It’s something you
saw briefly back in Lesson 3, but this is the first time it has appeared in a real program.
While we are sorting the array, one of the things we need to keep track of is whether or
not we have swapped any entries in the array. If we have, we need to make another pass
through the array; if we have not swapped any entries, the sort is complete, and we can
stop. One way to keep track of whether any swaps have been made would be to keep
track of the number of swaps, and check to see if the number is zero. We could be a little
more efficient, and set a number to zero, then set it to one if any swaps were made. It
turns out this works very well in BASIC. The reason is the way BASIC handles true and
false situations.

So far, every place where you’ve used a true or false condition has been on an IF
statement or a loop of some kind, and the true or false condition occurred because you
compared two values. BASIC actually returns a number for a test like this, though. Try

PRINT 2 < 1

and you’ll see that the program prints 1. If you try

PRINT 2 > 1

the program will print 0. Following this idea, if you try

IF 0 THEN
 PRINT "testing…"
END IF

you will see that nothing is printed, while

IF 1 THEN
 PRINT "testing…"
END IF

does print the string.
In fact, BASIC actually accepts a number anytime a condition is expected. If the

number is zero the condition is false, while any other value is treated as true. This lets us
keep track of true and false values with a normal numeric variable, generally an integer.
You can see this idea used in the sample program to keep track of whether or not we have
swapped a value; the sample program does this with the variable NOSWAP.

REM This program reads in an array of up to 100 real numbers.
REM It then sorts the array, and prints the numbers in order.
REM Numbers are read until a zero is found.

DIM NUMBERS(99) AS SINGLE :! array to sort
DIM NUM AS INTEGER :! # of numbers actually read

! read the list of numbers
CALL READEM

Learn to Program in GSoft BASIC

! sort the numbers
CALL SORT

! write the list of numbers
CALL WRITEEM
END

!--
!
! ReadEm - Read the list of numbers
!
! Shared Variables:
! numbers - array of numbers read
! num - number of numbers read
!
!--

SUB READEM

SHARED NUMBERS(), NUM

DIM RVAL AS SINGLE :! number read from the keyboard

NUM = 0
DO
 INPUT RVAL
 IF RVAL <> 0.0 THEN
 NUMBERS(NUM) = RVAL
 NUM = NUM + 1
 END IF
LOOP UNTIL RVAL = 0.0
END SUB

!--
!
! Sort - Sort the list of numbers
!
! Shared Variables:
! numbers - array of numbers read
! num - number of numbers read
!
!--

SUB SORT

SHARED NUMBERS(), NUM

DIM TEMP AS SINGLE :! temp variable; used for swapping
DIM DIDSWAP AS INTEGER :! has a swap occurred?
DIM I AS INTEGER :! loop variable

! loop until the array is sorted
IF NUM > 1 THEN
 DO
 ! no swaps, yet
 DIDSWAP = 0

 ! check each element but the last
 FOR I = 0 TO NUM - 2
 ! if a swap is needed then...
 IF NUMBERS(I + 1) < NUMBERS(I) THEN
 ! note that there was a swap
 DIDSWAP = 1

 ! swap the entries
 TEMP = NUMBERS(I)
 NUMBERS(I) = NUMBERS(I + 1)
 NUMBERS(I + 1) = TEMP
 END IF
 NEXT
 LOOP WHILE DIDSWAP
END IF
END SUB

!--
!
! WriteEm - Write the list of numbers
!
! Shared Variables:
! numbers - array of numbers read
! num - number of numbers read
!
!--

SUB WRITEEM

Learn to Program in GSoft BASIC

SHARED NUMBERS(), NUM

DIM I AS INTEGER :! loop variable

FOR I = 0 TO NUM - 1
 PRINT NUMBERS(I)
NEXT
END SUB

Try the program a few times to see if you can make it fail. Start with a list of five
numbers that are the same. Try a list of five numbers that are already sorted. You might
also try the values from the sorting example we worked at the start of this section; the
values will be handled internally as real numbers, but INPUT can read an integer and
convert it to a real number.

Problem 6.2. The sample program from this section sorts an array so that the smallest
number comes first. Sometimes we want the largest number first. Change the sample to it
sorts the values with the largest first, proceeding to the smallest.

Problem 6.3. Modify the sample program from the last chapter that reversed the order
of characters in a word. This time, sort the characters.

Sort the characters by breaking the string up into individual characters which are
stored in an array of strings. Sort the array of strings just like the numbers were sorted,
then combine the characters to form the final result string.

You will need to set an upper limit on the size of the string you can sort. Use 255
characters, which also happens to be the largest number of characters the LINE INPUT
statement can read from a single line typed from the keyboard.

Multidimensional Arrays
The arrays we’ve dealt with so far are a series of similar values. It’s possible to use

more than one subscript, though, forming blocks of numbers. There are all sorts of
examples of multidimensional arrays from mathematics, especially linear algebra, and
from engineering. There’s a great example that doesn’t use any math at all, though:
Conway’s game of Life. We’ll use that game as a way to introduce multidimensional
arrays.

Life is really more of a simulation than a game. It starts with a world consisting of a
two dimensional grid with cells, like a sheet of graph paper. Looking at a small chunk of
a sheet of graph paper you can see that each cell has eight neighboring cells.

In theory, the number of cells is infinite, extending off in all
four directions forever. Life proceeds in generations, filling or
emptying each cell based on a simple set of rules.

1. If a cell is filled and has two or three neighbors that are
also filled, it stays filled on the next generation.

2. If a cell is empty and has exactly three filled neighbors,
it is filled on the next generation.

3. Any other cell will be empty on the next generation.

It sounds simple, doesn’t it? That’s the point. Life was invented to explore how
complex systems could become when they are based on a very small number of very
simple rules. The results of exploring these simple rules literally fill volumes of
information!

Let’s try a seemingly simple example, the r-pentominoe. It’s a fancy name for this
shape:

•
• • •

•

Here’s the figure as we’re getting ready for the second generation. All of the cells that
started empty and become filled are marked with an asterisk. All cells that start filled and
become empty are shown with a dash. All of the cells that start filled and stay that way
are shown with a dot, and of course, all of the cells that start empty and stay that way
have no symbol.

•
• - •
* • *

Getting rid of the special characters, the second generation looks like this:

•
• •
• • •

1 2 3

4 5

6 7 8

Learn to Program in GSoft BASIC

Here’s the next few generations. Follow along with the rules to make sure you
understand how they are applied.

Generation 3
 •

• • •
• •

•

Generation 4
 • •
• • •
• • •

•

Generation 5
• • •

 •
• •

• •

We’ll use a multiply dimensioned array of integers to represent the grid in the
computer. In fact, we’ll use two grids: One for the current generation, and one for the one
we’re working on. We’ll keep the array fairly small for now, restricting it to 20 cells by
20 cells. The array declaration looks like this:

DIM GRID(19, 19) AS INTEGER

This looks fairly similar to the
array declarations we’ve used so far.
The only difference is the addition of a
comma and a second array subscript.
This forms a grid of 400 numbers,
each specified by a unique
combination of index values. For
example, GRID(3, 7) is a different
value than GRID(7, 3)—each uses the

1

2

3
4

5

6
7

8

9

1 0

1 1

1 2
1 3
1 4

1 5

0

1 6

1 7

1 8
1 9

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

same two index numbers, but the order is very important! For our purposes, we can think
of the numbers as row and column numbers, with the first index as a column number and
the second as a row number. Thinking of the array that way, we could draw it on a piece
of paper like you see here.

Each of the squares can be filled in with a distinct value. We refer to a particular
value by reading its column number from above the value and its row number to the left
of the value. The location for GRID(7, 3) is marked with a spot.

For our Life simulation, though, we’ll let each cell represent a distinct cell on the
grid. A value of 1 represents a filled cell, while zero represents an empty cell. Here’s a
program that displays the first fifty generations of the r-pentominoe.

REM Conway's game of Life.
REM
REM This version is played on a small, 20 by 20 grid mapped as
REM spots on the Apple IIGS graphics screen.

DIM GRID(21, 21) AS INTEGER :! The current state of the world.
DIM R AS INTEGER , C AS INTEGER :! Row and column number.
DIM G AS INTEGER :! Generation number.

! Set up the world.
FOR R = 0 TO 21
 FOR C = 0 TO 21
 GRID(C, R) = 0
 NEXT
NEXT
GRID(10, 10) = 1
GRID(10, 11) = 1
GRID(11, 11) = 1
GRID(12, 11) = 1
GRID(11, 12) = 1

! Set up the graphics screen.
CALL INITGRAPHICS

! Draw the screen.
CALL DRAWSCREEN

Learn to Program in GSoft BASIC

! Create and move through the generations.
FOR G = 1 TO 50
 CALL NEXTGENERATION
 CALL DRAWSCREEN
NEXT
INPUT "";A$
END

!--
!
! DrawScreen - Draw the cells on the graphics screen
!
! Shared variables:
! Grid - array containing the state of the spots
!
!--

SUB DRAWSCREEN

SHARED GRID()

DIM R AS INTEGER , C AS INTEGER :! Row and column number.

SETPENSIZE (3, 3)
FOR R = 1 TO 20
 FOR C = 1 TO 20
 IF GRID(C, R) = 0 THEN
 SETSOLIDPENPAT (0)
 ELSE
 SETSOLIDPENPAT (15)
 END IF
 MOVETO (C * 4, R * 4)
 LINETO (C * 4, R * 4)
 NEXT
NEXT
END SUB

!--
!
! InitGraphics - Set up for graphics
!
!--

SUB INITGRAPHICS
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)
END SUB

!--
!
! NextGeneration - Calculate the next generation
!
! Shared variables:
! Grid - array containing the current state of the
! spots; this is updated.
!
!--

SUB NEXTGENERATION

SHARED GRID()

DIM WORK(20, 20) AS INTEGER :! Used to generate the next state
of the world.

DIM R AS INTEGER , C AS INTEGER :! Row and column number.
DIM N AS INTEGER :! Number of occupied surrounding cells.

FOR R = 1 TO 20
 FOR C = 1 TO 20
 N = GRID(C - 1, R - 1) + GRID(C, R - 1) + GRID(C + 1, R -

1) + GRID(C - 1, R) + GRID(C + 1, R) + GRID(C - 1, R + 1) +
GRID(C, R + 1) + GRID(C + 1, R + 1)

 IF N = 3 THEN
 WORK(C, R) = 1
 ELSE IF N = 2 THEN
 WORK(C, R) = GRID(C, R)
 ELSE
 WORK(C, R) = 0
 END IF

Learn to Program in GSoft BASIC

 NEXT
NEXT
FOR R = 1 TO 20
 FOR C = 1 TO 20
 GRID(C, R) = WORK(C, R)
 NEXT
NEXT
END SUB

There are a couple of interesting points about the way the program is written. First,
notice that we used a 22 by 22 grid, not a 20 by 20 grid. By adding an extra row of cells
around the entire grid we were able to simplify the entire program enormously. A single
loop handles all of the calculations, even for the corners and edges. Without that extra
row we would need an extra chunk of program to deal with the top row, another to deal
with the bottom row, a third to deal with the left edge, and a fourth for the right edge. Not
only that, but we would need extra code for each of the four corners! That would be nine
chunks of code to do the calculations instead of one, making the program longer, harder
to write, harder to read, and increasing the chance of making a mistake. One extra row
around the outside of the grid is well worth the extra space!

Another point is the way the rules are applied. They aren’t quite the same rules we
listed earlier in this section. The rules coded in the program do the same thing as the ones
listed earlier, but they have been reorganized to fit the way programs are written, not the
way people think. That’s another trick that often makes a program smaller and easier to
write.

When you run the program you’ll notice that it’s pretty slow. There are many reasons
for this. The bottom line, of course, is that the program is doing a lot of work to loop over
400 cells, examining as many as 3600 cells in the process. Still, it seems slow, even
allowing for all that work. Part of the reason is that the program itself can be written to
run faster using lots of programming tricks. Those tricks apply strictly to this case,
though, and not to a broad class of programs you are likely to write, so we won’t spend
time going over them. Another reason the program is slow is that GSoft BASIC is an
interpreter. Interpreters are not as fast as compilers, which in turn are not as fast as hand-
coded assembly language. This particular program is a prime candidate for an assembly
language subroutine implemented as a user tool. Even versions written with compilers
like C and Pascal are slow on a stock Apple IIGS!

Every programmer eventually declares an array that is way too big for the available
memory. This sort of problem sneaks up on you, because the numbers involved can look
very manageable. For example, you might be tempted to try a three dimensional version
of Life, setting up a moderate size grid for experimenting like this:

DIM GRID(100, 100, 100) AS INTEGER

While this declaration looks innocent, though, it eats memory at a ferocious rate.
There are 100*100*100 numbers, for a total of 1,000,000 values. Integers are one of the
smallest number formats you can use, but each does use two bytes of memory. The entire
array would take almost two megabytes. (A megabyte is 1024*1024 bytes, or 1,048,576
bytes.) Two copies of the array would use all of the available memory on a fairly well-
equipped Apple IIGS computer, and four copies would burn up all of the memory you can
put on the best equipped Apple IIGS!

There is another problem, too. While GSoft BASIC lets you use all of available
memory, there is a limit on the size of each individual array. No single array can use
more than 32767 bytes of memory. Even if you use several smaller arrays, you can’t use
more than 65536 bytes of memory for all of your variables unless you use the SETMEM
command to expand the available memory.

We won’t deal with such large chunks of memory in this course. If you would like
more information about how memory is used and how to use the SETMEM command to
extend the amount of memory available to GSoft BASIC, see the GSoft BASIC reference
manual.

Problem 6.4. Another interesting shape for Life is called a glider. It’s shown below.
Change the Life program so it follows a glider for ten generations instead of the r-
pentominoe for fifty generations.

•
•
• • •

This is one of the key discoveries in the game of life. A glider moves from one place
to another, so it cam be used to carry information. After all, what’s really the difference
in principal between an electron flowing through a wire to carry a bit in a computer chip
and a glider moving along a grid? As it turns out, not as much as you might think.
Building on ideas like this, researchers have demonstrated that the rules for the game of
life are rich enough to construct the same logic circuits that are used in modern digital
computers!

Problem 6.5. A matrix is an array of numbers, frequently two dimensional. Linear
Algebra defines operations on matrices, just like every day arithmetic defines operations

Learn to Program in GSoft BASIC

on numbers. One simple matrix operation is matrix addition, where the corresponding
cells in two arrays are added to create a third array. For example, adding these two arrays

1 2 3 1 1 1
4 5 6 1 1 1
7 8 9 1 1 1

gives this matrix

2 3 4
5 6 7
8 9 10

Write a program with three arrays, A, B and C. Each array should hold nine SINGLE
values, with two subscripts in each array than range from 0 to 2. Fill in the arrays A and
B with the values shown above, then add the two matrices. Print the result and make sure
it matches the result you see above.

Hint: Don’t try to package the matrix addition as a subroutine. There are some subtle
features of BASIC involved that we haven’t covered yet.

Passing Arrays to a Subroutine
So far we’ve used shared variables to use arrays from within subroutines. You can

also pass arrays as parameters, and in fact doing so will speed up our program a bit. We’ll
look at why in a moment.

First, though, let’s look at the mechanics of passing an array. If you recall, an array
and a variable can share the same name. That forced us to use parenthesis after the name
of an array in the SHARED statement, and it forces us to do exactly the same thing for a
passed parameter. When you pass an array to a subroutine, place parenthesis after the
name of the array in both the subroutine or function call and the parameter list on the
SUB or FUNCTION statement. Here’s the Life program rewritten to use arrays passed as
parameters rather than shared variables.

REM Conway's game of Life.
REM
REM This version is played on a small, 20 by 20 grid mapped as
REM spots on the Apple IIGS graphics screen.

! GRID1 and GRID2 hold the state of the world on alternate
generations.

DIM GRID1(21, 21) AS INTEGER , GRID2(21, 21) AS INTEGER

DIM R AS INTEGER , C AS INTEGER :! Row and column number.
DIM G AS INTEGER :! Generation number.

! Set up the world.
FOR R = 0 TO 21
 FOR C = 0 TO 21
 GRID1(C, R) = 0
 GRID2(C, R) = 0
 NEXT
NEXT
GRID1(10, 10) = 1
GRID1(10, 11) = 1
GRID1(11, 11) = 1
GRID1(12, 11) = 1
GRID1(11, 12) = 1

! Set up the graphics screen.
CALL INITGRAPHICS

! Draw the screen.
CALL DRAWSCREEN(GRID1())

! Create and move through the generations.
FOR G = 1 TO 25
 CALL NEXTGENERATION(GRID1(), GRID2())
 CALL DRAWSCREEN(GRID2())
 CALL NEXTGENERATION(GRID2(), GRID1())
 CALL DRAWSCREEN(GRID1())
NEXT
INPUT "";A$
END

Learn to Program in GSoft BASIC

!--
!
! DrawScreen - Draw the cells on the graphics screen
!
! Parameters:
! Grid - array containing the state of the spots
!
!--

SUB DRAWSCREEN(GRID() AS INTEGER)

DIM R AS INTEGER , C AS INTEGER :! Row and column number.

SETPENSIZE (3, 3)
FOR R = 1 TO 20
 FOR C = 1 TO 20
 IF GRID(C, R) = 0 THEN
 SETSOLIDPENPAT (0)
 ELSE
 SETSOLIDPENPAT (15)
 END IF
 MOVETO (C * 4, R * 4)
 LINETO (C * 4, R * 4)
 NEXT
NEXT
END SUB

!--
!
! InitGraphics - Set up for graphics
!
!--

SUB INITGRAPHICS
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)
END SUB

!--
!
! NextGeneration - Calculate the next generation
!
! Parameters:
! Grid1 - array containing the current state of the spots
! Grid2 - array containing the new state of the spots
!
!--

SUB NEXTGENERATION(GRID1() AS INTEGER , GRID2() AS INTEGER)

DIM R AS INTEGER , C AS INTEGER :! Row and column number.
DIM N AS INTEGER :! Number of occupied surrounding cells.

FOR R = 1 TO 20
 FOR C = 1 TO 20
 N = GRID1(C - 1, R - 1) + GRID1(C, R - 1) + GRID1(C + 1, R

- 1) + GRID1(C - 1, R) + GRID1(C + 1, R) + GRID1(C - 1, R + 1) +
GRID1(C, R + 1) + GRID1(C + 1, R + 1)

 IF N = 3 THEN
 GRID2(C, R) = 1
 ELSE IF N = 2 THEN
 GRID2(C, R) = GRID1(C, R)
 ELSE
 GRID2(C, R) = 0
 END IF
 NEXT
NEXT
END SUB

As you can see, the only difference between sharing an array and passing it as a
parameter is that you need to include the type of the array when you declare the
parameter.

Parameters can be passed by value or by reference, as you learned in the last lesson.
Arrays are always passed by reference, since you can’t use the array in an expression.
You can use an element of an array, of course, and we’ve done that in many of our
programs, but you can’t add 1 to an array as a whole entity, nor can you do any other
operation on an entire array. This is a very important point. It means that every array in
BASIC can be changed by any subroutine you pass the array to—a fact we use in the Life
program, since the NEXTGENERATION subroutine fills in the GRID2 parameter with
the appropriate values for the next generation in the game.

Learn to Program in GSoft BASIC

You might be tempted to make copies of array parameters in subroutines and
functions, and there are certainly situations where that makes sense. Unlike the case with
variables, though, making a copy of an array has a serious downside. When you make a
copy of a variable in a subroutine the copy doesn’t use much memory. The exact amount
depends on the kind of variable and the name, but it’s generally about a dozen bytes. If
you make a copy of the GRID1 array, though, the values in the array use 22x22x2 bytes
of memory, or 968 bytes total. It takes time to set up that array, and the array itself eats
up a significant chunk of memory. Copying the array from the one passed as a parameter
to the local variable also takes time. It’s not something to do lightly!

You might think the impact of copying an array would not be a big deal. You’d be
wrong. Take a close look at this new version of Life. In the original version of the
program NEXTGENERATION calculates the new grid values, then copies them back
into the original grid. In this version NEXTGENERATION doesn’t copy the values from
GRID2 to GRID1; instead, the main program draws the values directly from GRID2, then
calls NEXTGENERATION again, this time passing GRID2 as the current generation.
NEXTGENERATION creates the new grid in GRID1, which the main program draws,
completing a two-generation cycle. That’s why the main loop goes from 1 to 25 rather
than 1 to 50, but still draws the same number of generations.

That simple change speeds the program up by about 12%. That may not seem like
much, but over the space of an hour you would save seven minutes—and seven minutes
is a long time to wait!

Problem 6.6. Redo problem 6.5, this time using a subroutine named ADD to add two
matrices.

Lesson Seven – Types and Constants
So far we’ve concentrated on the mechanics of BASIC programs. We’ve learned how

programs execute and how to use loops and subroutine calls to change the normal flow of
a program. Along the way you’ve become used to three kinds of variables, INTEGER,
SINGLE and STRING. In this lesson we’ll discuss the other built in types in more detail,
learn how to declare types of our own, and learn about a powerful new kind of variable,
the record. We’ll also learn about constants, which offer a shortcut for an idea we’ve
already used occasionally in the course.

Simple Types and Named Types

The Six Built-in Types
Back in Lesson 2 you got a very brief introduction to the built-in types in BASIC

when you learned that you could use the DIM statement to create integer variables using
the type INTEGER, single-precision floating point values using SINGLE, and strings
using STRING. There are three other predefined types in GSoft BASIC. All six types are
shown in the table.

name character size minimum maximum

BYTE ~ 1 0 255
INTEGER % 2 -32768 32767
LONG & 4 -2147483648 2147483647
SINGLE ! 4 1.2E-38 3.4E38
DOUBLE # 8 2.3E-308 1.7E308
STRING $ 1 to 32768

There is also a strange seventh type called UNIV. It is only used as the type of a
parameter for some Apple IIGS tools. Unlike the other variable types, you can pass any
four-byte value at all as a value to a UNIV tool parameter.

The first three types are all different kinds of integer values. As you know by now,
this means the value can be a whole number, like 43 or -2, but not a value that lies
between whole numbers, like 3.14159 or 2.56. Of the three, INTEGER appears in
virtually every implementation of BASIC ever written, LONG appears in most
implementations of BASIC that are not restricted in size because they are on a small

machine, and BYTE is rather rare. It appears in GSoft BASIC to support certain values
used by the Apple IIGS toolbox.

SINGLE and DOUBLE are the types for floating-point numbers. SINGLE is almost
always implemented in BASIC, although the exact range of values varies. Applesoft
BASIC, for example, uses 5 bytes for each SINGLE value. Most implementations of
BASIC that are not implemented on small computers with limited memory also support
DOUBLE, which works just like SINGLE but gives a larger range for exponents and
more digits of precision. In GSoft BASIC, SINGLE numbers offer seven digits of
precision, while DOUBLE numbers offer fifteen digits.

The whole concept of precision may seem a little strange at first. To get an idea what
it means think about paying for something with money. The smallest denomination of
money used in the United States is a cent, which is 0.01 dollars. We can’t express money
with more precision than this using actual currency, so values involving a portion of a
cent are rounded or truncated. For example, one third of a dollar would be 33 cents, even
though we know there is another one third of a cent not accounted for. Floating-point
numbers have the same sore of problem, but the precision is limited to a specific number
of digits, not a specific value like 0.01. With the seven digits of precision offered by
SINGLE numbers you can represent dollar and cent amounts up to $99,999.99, for
example; or you can represent the mathematical value π to six decimals, 3.141593.

Floating-point numbers also loose overall accuracy as calculations pile on top of each
other. Going back to the one-third of a dollar example, if you pay one-third of a dollar
three times, you would expect to pay a total of 100 cents. If you actually spend one-third
of a dollar three times, though, you will have one cent left. Exactly the same kind of error
can pile up as you do calculation after calculation using SINGLE or DOUBLE numbers.
Eventually, you may literally see values like 0.9999999 when you know that in theory the
value should be 1. There is an entire field of study called numerical analysis that deals
with this sort of issue and others related to calculating values on digital computers. We
won’t go into this field any further, but if the sort of programs you write need accurate
calculations with floating-point numbers you can certainly find a lot of reading material!

Finally, if you look closely at the table, you’ll notice that the smallest number you can
represent with a SINGLE or DOUBLE number is listed as a very small positive number.
You can have negative SINGLE and DOUBLE values, of course. The table is showing
you how close to zero the number can get. Numbers between the value shown and zero
are truncated to zero. The reason this happens is rather complicated; it has to do with the
way the numbers are actually stored internally. In a few kinds of programs, though, it’s
important to know that a number will drop to zero if it gets too small, so you need to
know this can happen as you plan your programs.

The last built-in type is the STRING, which you’ve already learned about.

Learn to Program in GSoft BASIC

Problem 7.1. Double-precision floating-point numbers require twice the memory of
single-precision floating-point numbers, but there is another difference that is sometimes
just as important: Calculations with double-precision numbers take more time.

Write a program that stores 1.2 into one floating-point number and 2.3 into another.
Loop over a line that multiplies these and saves the result in a third variable. Use a FOR
loop with a LONG control variable so you can loop 100,000 times, which gives a result
long enough to time with a watch that displays seconds. Run the program two times, once
using SINGLE variables and once using DOUBLE variables, comparing the times.

Some of the programs in this course may seem rather slow, and you might be tempted
to think that compilers are the only way to get adequate speed. For some kinds of
programs that’s true, although many programs run fast enough with an interpreted
language. An interesting point, though, is that some programs actually run faster using
GSoft BASIC than they do in ORCA/C or ORCA/Pascal! That’s because most languages
on the Apple IIGS use Apple’s floating-point package, SANE, to do calculations. SANE
does all calculations using 92 bit numbers, even if you only need the precision of
SINGLE calculations. GSoft BASIC has it’s own floating-point routines which run much
faster than SANE because they only do calculations to the required accuracy.

The TYPE Statement
You can also define your own named types. We’ll find many uses for this as the

course goes on, but we already have one good one. We’ve been using true and false
values throughout the course in IF statements and loops, and in one case we needed to
store a true or false value in a variable. Rather than continuing to piggyback on the
INTEGER type we can declare an entirely new one called BOOLEAN, which is the name
used for this type of value in many languages, including Pascal. The declaration looks
like this:

TYPE BOOLEAN AS INTEGER

After this statement there is a new type with the name of BOOLEAN that can be used
in DIM statements, parameters and function return values, just like we normally use the
six predefined types. In this case we’ve really just defined a new name for INTEGER;
any BOOLEAN variable works just like any INTEGER variable. The new name works
like a comment, though, reminding us what values we expect to store in the variable.

CONST
In a few of our programs we’ve used specific values that we might want to adjust at

some later date. A good example is the Life program in the last lesson, where we used 20

for the size of the grid and 50 for the number of generations. It would be reasonable to
put these values at the top of the program where we could change them quickly. We
could do that easily like this:

DIM SIZE AS INTEGER
SIZE = 20

There’s another way to do it that combines these two statements into a single line.

CONST SIZE = 20

A CONST statement has another advantage over a variable besides just saving a line,
though. You can’t accidentally change the value of a CONST variable anyplace in the
program.

The added organization this offers isn’t very important in a 50 or even a 500 line
program, but many programs are thousands of lines long, and in programs that large, any
trick to make the program more organized is worth the effort. We’ll start to use CONST
values in many of our programs for the remainder of the course.

One of them will be for BOOLEAN values. Here’s two CONST statements that fit
and in glove with the BOOLEAN type from the previous section.

CONST TRUE = 1
CONST FALSE = 0

If you try these you’ll be in for a surprise, though: You’ll get an error message saying
you misused a constant. That’s because these constants are actually already declared!
GSoft BASIC loads the declarations for the Apple IIGS toolbox automatically, and these
two constants are declared in the toolbox header file. You can find a list of all of the
constants, types and subroutines in the tool interface file by editing the tool interface file
itself, which is named GSoftTools.int.

Records Store More than One Type
Programs are written to manipulate information of one sort or another. So far I’ve

deliberately kept the kind of information we were using simple, using just a few numbers
or a few strings. In many real programs, though, you will mix several kinds of values
together to represent a single entity, or it will make more sense to use names rather than
array indices to combine values.

Learn to Program in GSoft BASIC

Let’s look at a classic example, a mailing list. Each entry in a mailing list contains a
name, address, city, state and zip code. You might break it down into first name and last
name or add more information, but for our example this is enough! If you create a
program to handle up to 100 addresses, you would end up with declarations like this:

CONST SIZE = 99

DIM NAME(SIZE) AS STRING
DIM STREET(SIZE) AS STRING
DIM CITY(SIZE) AS STRING
DIM STATE(SIZE) AS STRING
DIM ZIP(SIZE) AS LONG

Well, this works, but it’s cumbersome. Fortunately there is a better way. We can
create a new type using a record that contains each of the various pieces of information in
a named field, like this:

TYPE ADDRESS
 NAMEFIELD AS STRING
 STREET AS STRING
 CITY AS STRING
 STATE AS STRING
 ZIP AS LONG
END TYPE

ADDRESS is now a type, just like INTEGER. The various values within the
ADDRESS type are called fields; they can be any type at all, including other records.
You can use the new ADDRESS type to declare variables or parameters. There is one
restriction, though: You cannot return a record from a function. Later we’ll learn an easy
way around this restriction using pointers.

The name of the first field may seem a little odd. Why not just call it NAME?
Looking way back to Lesson 1 you can find the answer: NAME is a reserved word, so we
can’t use it for a field name, just as we can’t use it for a variable or subroutine name.

Returning to the address book, we can declare an array of addresses like this:

DIM ADDRESSES(SIZE) AS ADDRESS

There are two names involved for each value, the name of the variable and the name
of the field within the record. You need to use both names separated by a period. Here’s a
short section of code that sets up one entry in the ADDRESSES array.

ADDRESSES(I).NAMEFIELD = "Byte Works, Inc."
ADDRESSES(I).STREET = "8000 Wagon Mound Dr. NW"
ADDRESSES(I).CITY = "Albuquerque"
ADDRESSES(I).STATE = "New Mexico"
ADDRESSES(I).ZIP = 87120

You can use fields from the record in expressions just like variables. For example,
you can print a field like this:

PRINT ADDRESSES(43).CITY

You can assign one record to another without stepping through each field, as in this
set of assignments that might be used in a bubble sort to sort records by zip code.

IF ADDRESSES(I).ZIP > ADDRESSES(I + 1).ZIP THEN
 DIDSWAP = TRUE
 TEMP = ADDRESSES(I)
 ADDRESSES(I) = ADDRESSES(I + 1)
 ADDRESSES(I + 1) = TEMP
END IF

That’s the only operation you can perform on an entire record, though. You can’t add,
subtract, or even compare records; for those kinds of operations you need to work with a
specific field. For example, the IF statement shows a comparison of the zip code fields in
our address record.

Problem 7.2. Write a program that declares a two variables of type ADDRESS, as
shown above. Fill one in with your name and address. After filling it in, copy this record
to the second record variable, then print the values from that record.

Lesson Eight – Files
A lot of fun and useful programs never save a file to disk or read from a disk file.

Arcade games, some adventure games, many scientific and engineering calculations, and
all of the programs you have written so far in this course all read data from the keyboard
or do calculations based on internal values. On the other hand, the vast majority of
programs do read and write disk files. Spread sheets, word processors, data base
programs, many games, GSoft BASIC itself—all of these programs read and write files.
This lesson introduces files as used in GSoft BASIC.

An Overview of the Process
Any program that makes use of a file has to go through three distinct steps. They are

similar to the steps you go through when you use a program like a word processor, so
we’ll compare the steps to using a word processor, but don’t get too carried away with
the analogy—as the text will point out, there are significant differences as well as
similarities.

The first step in using a word processor is to either create a new document or open an
existing document. That’s also the first step in using a file from GSoft BASIC. Whether
the file already exists or is a completely new file, though, we always call the process
opening a file. You must always open a file before doing anything else to the file.

Once a word processing file is open and before you close the file, you generally edit
the file. There are exceptions, of course. Sometimes you open a word processor file to
read the file or print the file, and don’t make any changes at all. The same is true when
you are programming. Once the file is open you either read from the file or write to the
file.

The third and final step is to close the file. When you are using a word processor, you
close the window that displays the file. Closing the window doesn’t mean you exit the
word processor, it simply means you are through with the particular document you have
closed. There may be other documents open, or you might open another document after
closing the first one. Again, files in GSoft BASIC work the same way. The only real
difference is how a document is saved. With the word processor, changes are not saved to
disk until you issue a save command. In BASIC, information you write to a file is saved
as soon as you issue the command that writes that piece of information.

One big difference between a word processor and GSoft BASIC is that GSoft BASIC
files are opened for reading or writing, but generally not both. Let’s look at how this
would work if we were writing a word processor.

When the user opens a document in the word processor, the program would open the
document on disk, read the entire document into memory, and close the disk file. From
that point on it’s the copy in memory the user sees, prints, and changes. Nothing is
happening to the disk file at all, and in fact, most word processors will let you eject the
disk while the file is open. The disk file isn’t needed again until the file is saved, and
even then the file might be saved to a new file in a new location. If that happens the
original disk file isn’t needed again at all.

When the word processor document is saved, the program opens the file. If the
updated document is replacing the original copy on disk the next step is a little scary:
Everything in the original file is actually deleted! At this point the file the program is
about to write to is empty, whether it is a new file in a new location or whether the
program is replacing an old file. The word processor writes the entire contents of the file,
then closes the file.

Thinking about this process, the word processor actually went through the process of
using the file twice. The first time the process was open—read—close, and the second
time it was open—write—close. That’s typical, although as we will see in this lesson it
isn’t universal. As it turns out, the way the file is opened is actually quite important. You
always open a file for input, output, or both, and its generally easier to write the program,
and the program runs faster, if you don’t open the file for both input and output at the
same time.

Opening a File for Output
In theory files can be of any length. Basically, that means that there is no fixed limit

to the number of things you can put in a file. Of course, there’s no free lunch. The
information you stuff into a file has to be saved somewhere. In the case of the Apple IIGS

it is saved on one of the devices GS/OS handles. This is usually a floppy disk or hard
disk, but it can also be a network, a tape drive, a printer, or anything else that GS/OS
recognizes.

To write a value to a file you need to open the file for output. You open a file with the
OPEN statement, which has this general format:

OPEN "myfile" FOR OUTPUT AS #1

The file name is a string. In the samples in this course you’ll end up using a string
constant, like “myfile” in the example, but you can use a string variable as well.

The number at the end is called the file number. You can use any integer value from 1
to 32767 as a file number, and just as with the file name, you can also use a variable. It’s
this number that identifies the file you have opened; you will use this number in every

Learn to Program in GSoft BASIC

command that refers to this file from the time you open it until the time you are finished
with the file and close it.

You can open more than one file at a time, so long as the file number you use for each
file is unique. Other than the obvious limit of 32767 files imposed by the number of
available file numbers, BSAIC doesn’t limit the number of files you can have open at one
time. Memory and the limits of the GS/OS disk operating system used by the Apple IIGS

will have a bigger impact than the number of available file numbers.

Writing to a File
There are several ways to write to a file, and we’ll cover the most important ways as

we go along. The simplest way to write to a file, though, is to use PRINT or PRINT
USING, writing more or less the same way you would write to the computer screen. The
only difference is the addition of the file number, which tells the program both that you
are writing to a file instead of to the screen, and which file you are writing to. For
example, the command

PRINT #1, "Hello, world."

writes the string to file number 1.
All of the formatting you are used to works with files just as well as it works on the

computer screen.

Closing a File
Once you finish writing the file you need to close it. This is an important step. In

many cases a computer language buffers the output, saving the information you think is
being written to disk in memory until a significant amount of information builds up, then
writing it all at once. The GS/OS disk operating system does the same thing. This makes
file output enormously faster than it would be without the buffering, but it also means
that some of the information that you think has been written to the disk file may still be in
memory when the program finishes. Among other things, closing the file flushes the
buffer, writing any buffered information to the disk file.

GSoft BASIC does use file buffering, although you won’t find that fact spelled out in
so many words in the documentation. Like many aspects of programming, the reference
manual doesn’t explicitly state facts about internal details that don’t matter when you are
writing programs. You are supposed to close the file, and if you don’t it’s a bug in your
program—and, in the eyes of people who write operating systems and computer
languages, it’s your problem if you break the rules, not theirs! This may seem like a

heartless attitude, but there is a reason: details like whether files are cached in a buffer
and how big the buffer actually is change from one version of a program to another to
take into account problems encountered in programs, changes in operating systems, and
even changes in how people use computer languages. By not documenting details like
these, or clearly stating that these details can change, the people who write languages are
giving themselves some freedom to maneuver when they need to make changes.

Closing a file is pretty simple. You use the CLOSE command with the file number for
the file you want to close.

CLOSE #1

Writing Our First File
Let’s put all of this together to create a program that writes ten numbers to a file.

REM Write the numbers 1 to 10 to a file on ten separate lines.

! Open the file.
OPEN "temp" FOR OUTPUT AS #1

! Write the numbers.
FOR I% = 1 TO 10
 PRINT #1, I%
NEXT

! Close the file.
CLOSE #1

This program creates a new file named temp on your disk drive and writes ten lines to
the file. Each line has a number. The file itself is a text file. You can open the file using
any program that can read text files, including the editor you use with GSoft BASIC.

Reading from a File
Reading a file is just as easy. To read from a file, you first have to open it for input.

The OPEN statement is almost identical to the one you used to write a file, but instead of
opening the file for OUTPUT, you open it for INPUT.

Here’s a program that opens a text file named temp, reads the first ten lines, and
prints them to the screen. The file named temp must exist; if it doesn’t, you’ll get an error
when you run the program.

Learn to Program in GSoft BASIC

REM Read ten lines from the file TEMP and print the lines.

! Open the file.
OPEN "temp" FOR INPUT AS #1

! Write ten lines from the file.
FOR I% = 1 TO 10
 LINE INPUT #1, LINE$
 PRINT LINE$
NEXT

! Close the file.
CLOSE #1

You can open a file for input or output, do some operation on the file, close it, and
then reopen it to do some other operation, as this program shows. It opens the file temp
and adds a new number to the file before rewriting the file. The only restriction is that the
file can’t be opened twice unless you close it first. You can open several files at the same
time, but they must all be distinct files.

REM Read ten lines from the file TEMP, add an eleventh line,
REM and write the results back to the file.

DIM NUMBERS(9) AS INTEGER

! Open the file for input.
OPEN "temp" FOR INPUT AS #1

! Read the lines from the file.
FOR I% = 1 TO 10
 LINE INPUT #1, NUMBERS(I% - 1)
NEXT

! Close the file.
CLOSE #1

! Open the file for output.
OPEN "temp" FOR OUTPUT AS #1

! Write the old lines to the file.
FOR I% = 1 TO 10
 PRINT #1, NUMBERS(I% - 1)
NEXT

! Write a new line to the file.
PRINT #1, 11

! Close the file.
CLOSE #1

Problem 8.1. We used numbers in the example, but the file contains ASCII
characters. You can see this for yourself by writing a program that writes strings to the
file instead of numbers. Writing the names of the months in the year to a file named
temp. Next, open the file for input, read the strings from the file, and print them.

File Names, Directories, Path Names and Folders

File Names, GS/OS and ProDOS
So far we’ve used the less than descriptive name temp for all of our files. As you start

writing larger programs you’ll want to use more descriptive names, so it helps to know
what the rules are.

GSoft BASIC runs under the GS/OS disk operating system, and supports all file
names that the disk operating system itself supports. As far as GSoft BASIC is
concerned, a file name is just a string it sends to the operating system. If GS/OS likes the
name, GSoft BASIC is happy, too.

GS/OS is actually rather flexible about its rules for file names. It grew out of an older
disk operating system called ProDOS, and still supports ProDOS format disks. ProDOS
can still read and write GS/OS disks, too, although ProDOS can’t properly handle files
with a resource fork. Because of this heritage, GS/OS still uses the file name rules for the
ProDOS operating system whenever it reads from or writes to ProDOS disks. The rules
for ProDOS file names are:

1. A file name starts with an alphabetic character.
2. The remainder of the file name is made up of alphabetic characters, numeric

digits, and periods.
3. A file name must have at least one character, and no more than 15 characters.

Learn to Program in GSoft BASIC

4. GS/OS does not distinguish between uppercase characters and lowercase
characters. In other words, the file names MYFILE, MyFile and myfile all refer to
the same file on disk.

GS/OS supports other disk formats, too, like the HFS format disks that are used by
the Macintosh operating system. If you are reading or writing files on a disk that is not
formatted for ProDOS you can use the file name rules that apply for that kind of disk. For
HFS, for example, the rules are rather broad: a file name consists of 1 to 31 characters,
and you can’t use a colon. We’ll stick to ProDOS format names in this course, both
because it’s the dominant file system on the Apple IIGS computer and because all
ProDOS names are also valid on HFS disks, and ProDOS and HFS are the only two file
systems that are widely used on the Apple IIGS.

Path Names
The remainder of this section deals with how folders are named and how path names

are used to specify particular files on the computer. If you’re used to the name directory
instead of folder, just keep in mind that they are just two different named for the same
thing.

I will assume that you are already familiar enough with your computer to move
around using a desktop program like the Finder. In the Finder, the first thing you see on
the desktop is a list of the disks, lined up along the right-hand side of the screen. Below
each disk is a name. To give the name of a disk in a BASIC program you use exactly the
same name, but you start it off with a colon character. For example, the disk where the
GSoft BASIC program is located is called GSoft. In a file name, you would type

:GSoft

Double-click on the disk icon and the Finder will open a window showing the various
files and folders. For example, one of the folders is called Samples. If you want to look at
a file in the samples folder, you add the name of the folder to the disk name, separating
the two with another colon, like this:

:GSoft:Samples

If the folder contains other folders, you can repeat this process, adding the new folder
name to the name you have already accumulated.

Eventually, you will get to the right folder, and you will see the file you want to read.
Let’s assume that you want to read the file Float from the Benchmarks folder, which is

itself in the Samples folder. Once again, you tack the file name onto the names you
already have, using a colon to separate the file name from the name of the disk and
folder.

:GSoft:Samples:Benchmarks:Float

The result is called a full path name. It specifies exactly what file you want to read or
write.

Partial Path Names and the Default Prefix
So far our programs just gave a file name. Of course, the computer still writes to a

specific place on the disk. When you leave off the name of the disk and any folders, the
file name is added to a default directory called prefix 8. Prefix 8 is also called the default
prefix. In a desktop program you set the default prefix by using one of the file related
commands, like open. When you click on the disk button, it changes the default prefix to
the name of a new disk. Opening a folder on the disk adds the name of the folder to the
default prefix. Closing a folder, of course, removes the name of the folder from the
default prefix. The computer remembers this location, and uses it for all files that only
have a file name.

Names in Programs
The process of forming names for the OPEN statement, then, is fairly simple. To get

at a file in the default prefix, just use the file name. If the file is in a folder in the default
prefix, give the name of the folder, followed by the file name, using a colon to separate
the two. If you need to give the name of the disk, too, start off with a colon and the name
of the disk, then add the folders and file names, again separated by colons.

If this is new to you, the best thing to do is to practice. The easiest way to practice is
with the CAT, EDIT and PREFIX commands, which you can use from the shell. The
PREFIX command sets the default prefix. To set the default prefix to :GSoft, for
example, you would use

prefix :gsoft

The CAT command catalogs the current prefix, showing you what files and folders
are there. Folders are marked with a file type of DIR in the second column.

You’ve used the EDIT command all through this course to edit programs, but so far
you’ve used it with file names or to edit the program that is already in memory. The
command

Learn to Program in GSoft BASIC

edit :gsoft:samples:benchmarks:float

will load and edit a file using a full path name.

Colons and Slashes
ProDOS uses a slash where GS/OS uses a colon to start path names and separate the

names of files, folders and disks. The only difference between the slash and colon is the
character used; they do exactly the same thing. One of the design goals of GS/OS was to
allow Macintosh format HFS disks to be used directly from an Apple IIGS computer,
though, and HFS uses colon for a separator. Worse, HFS allows you to use a slash as part
of a file name. Obviously something had to give.

The GS/OS design team decided to switch from the slash character to the colon
character, but they actually added the colon without getting rid of the slash. You can still
use the slash character as long as you are using ProDOS format disks. Frankly, I use it
instead of the colon when I am using an Apple IIGS. I think it is easier to read a path
name with slashes, which are easier to pick out of text than colons, and the slash is easier
to type because it doesn’t involve using the shift key.

But that leaves a lingering problem. If both slashes and colons are allowed, how does
GS/OS deal with names on HFS disks that contain slashes? The answer is pretty
pragmatic. As GS/OS scans a file name, it looks for the first character that is either a
slash or a colon. Once one of these characters is found, that character is used for the
separator for the entire path name.

Problem 8.2. Insert your GSoft BASIC disk and use the PREFIX command to set the
current prefix to :GSoft:Samples:Benchmarks. Verify that you did it right by using this
command to open the Float program:

edit float

Finding the End of a File
In real programs it’s rare to actually know how many values are in a file before you

open the file and look. When a program reads a file it uses a function called EOF to find
the end of a file. The EOF function takes a file number as a parameter, and returns a
Boolean value. The value returned is true if the program has reached the end of the file
and there is nothing left to read, and false if there is still information in the file.

You can’t open and file for input if the file does not exist. If you try, the program will
stop with a run-time error. On the other hand, it is perfectly legal for a file to exist, but
not have anything in it. You can create a file with no values by opening it for output but
never writing any values to the file. In the case of an empty file, EOF is true right after
you open it.

Putting all of these rules together, we will change our sample program from a few
sections back to read the temporary file of numbers without knowing in advance how
many numbers are in the file. That’s a good thing, since there could be ten or eleven,
depending on which of the sample programs you ran most recently!

REM Read any number of lines from the file TEMP and print the
REM lines.

! Open the file.
OPEN "temp" FOR INPUT AS #1

! Read the lines until we hit the end of file mark.
WHILE NOT EOF (1)
 LINE INPUT #1, LINE$
 PRINT LINE$
WEND

! Close the file.
CLOSE #1

Problem 8.3. At this point, you have the tools to merge two files. The basic method is
simple: you open one file for input and another for output. You read values from one file,
writing them to the other, until you get to the end of the first file. Once the first file is
copied you can close it. Next you use OPEN to open the second file, then repeat the
process of reading and writing values. The only difference is that you don’t open the
output file a second time. Once the second file is copied, you close both files.

Write a program that writes the integers 1 to 10 to a file called FILE1.
Write a second program to create a second file, called FILE2, that contains the

integers 11 to 20.
Write a third program to read FILE1, writing it to a file called FILE3. It should then

read FILE2, adding the contents of FILE2 to FILE3. The program should not depend on
knowing the length of either file.

Check your work with yet another program that reads the values in FILE3 and writes
them to the text screen.

Learn to Program in GSoft BASIC

Problem 8.4. Some folks like uppercase, and some like lowercase. Let’s assume that,
for some reason, you want to convert the source code for one of your programs to
lowercase characters. Change the sample program so it reads a line, converts all of the
characters to lowercase, and then writes the line to a new file. Since the new file is a text
file, you can open it with a text editor to see if the program worked. Don’t try to check
the file from GSoft BASIC using the EDIT command, though, since GSoft BASIC will
convert most of the program back to uppercase characters in the process of reading the
program!

Keep in mind that you can save a program several ways using GSoft BASIC. This
program will not work on a program saved with the SAVE command; you must save the
program using SSAVE or TSAVE. All of the sample files on the solutions disk are saved
with SSAVE, so you can use any of those files as input to your program.

Problem 8.5. One way publishers measure the size of an article or book is by counting
the number of words. Of course, they count them by hand, right? Well, you can do it
better.

Write a program that asks for the name of a text file. Scan the file, counting the
words. For our purposes, a word is defined as any sequence of characters that starts with
an uppercase or lowercase character. It includes all of the characters up to the next
character that is not an uppercase or lowercase character or a digit. For example, all of the
following are words:

word stuff V1

On the other hand, a number, like 9.6, is not a word.
As an added bonus, keep track of the lengths of the words. Use an array to track how

many words of each length appear in the file. Lump any words longer than 30 characters
together into a single element in the array, counting them as if the word was actually 30
characters long. That’s long enough to handle any word in the English language.

After scanning the file, print the number of words, the number of characters, the
average length of a word, and a table showing how many times a word of each length
appeared in the file.

Be sure to use long integers for your character counters. After all, an integer can only
hold values up to 32767. Each of these lessons has 30,000 to 40,000 characters, not
counting the solutions to the problems.

Note: Be careful! You can’t divide the character count by the number of words to get
the average word length, because the character count includes spaces, commas, periods,
and so forth! You must either compute the average from the word length array or keep a
separate character counter for characters that appeared in a word.

Test your program by typing the following text into a file and saving it to disk. If
you’re feeling lazy, this file is on the solutions disk; it’s called WordTest.

How, now, brown cow.

single

i c a b

thisisaverylongwordtotesttoseeiflongwordsarecaught

Leaving out the histogram entries where there were no entries, the results should be:

83 characters.

10 words.

4 lines.

The average word length is 5.4.

 length number

 ------ ------

 1 4

 3 3

 5 1

 6 1

 30 1

One final note of caution about this problem. In terms of the complexity of the logic
involved, this is the hardest problem so far in this course. It’s worth spending some time
on it to test and develop your skills. If you get tangled up, though, don’t hesitate to scrap
your program and try another approach. There are relatively easy ways to make this
program work, and very hard ways. Don’t get stuck struggling with a hard way.

Printing with Files
It is possible to write a driver for almost any input or output device that you can use

with GS/OS. One of the most useful examples is one that comes with GSoft BASIC
called .PRINTER. As the name implies, this driver is used to send information to printers.

If you have a printer, you have probably used it with two kinds of programs. Desktop
programs use a Print… command from the File menu which brings up a dialog filled with
printer options. This method of printing is great as far as it goes, but it has severe
drawbacks for simple text based programs. AppleWorks classic and Applesoft BASIC are

Learn to Program in GSoft BASIC

examples of the other way to use a printer. These programs only send text to the printer,
and they generally don’t support fonts. The .PRINTER driver works the same way.

You need to install the .PRINTER driver before you can use it. You’ll find
instructions in the GSoft BASIC reference manual. Once it is installed, using it is a snap.
You simply open a file named .PRINTER for output and print. The only real trick is
ejecting pages, which you can do by sending the character CHR$(10) to the printer.
Here’s an example.

OPEN ".PRINTER" FOR OUTPUT AS #1
PRINT #1, "Hello, printer."
PRINT #1, CHR$(10);
CLOSE #1

Binary Files
So far all of the files we have written and read have contained text. While text files

are common and useful, most of the files you deal with aren’t really plain ASCII text files
like the ones we’ve dealt with. In fact, even word processor files put other kinds of
information into the file. For example, fonts, sizes, underscores, index entries, tab stops
and formatting information are all imbedded in a typical word processor file.

There are several ways to handle all of this information, but the most common is for
the programmer to design a way to place the information in the file using bytes, integers
or long integers. Since these files contain information that is not simple ASCII text you
need some way to distinguish them from text, and some way other than INPUT and
PRINT to read and write the files. All of these files are collectively referred to as binary
files. There is a binary file type on the Apple IIGS, just like there is a text file type.
You’ll also find a wide variety of other file types on the Apple IIGS; most of these are
binary files, although a few, like the source files used by GSoft BASIC are actually
special purpose ASCII text files.

Opening and Closing Binary Files
You open a binary file for BINARY input and output, like this:

OPEN "temp" FOR BINARY AS #1

Unlike text files opened for INPUT or OUTPUT, binary files are always open for
both input and output. If the file already exists, reading will start with the first value in
the file, and writing will begin by overwriting the first value in the file. Just as with

opening a text file for OUTPUT, opening a binary file that doesn’t exist creates a new,
empty file.

The CLOSE command closes a binary file the same way it closes text files.
If you recall, I said opening a file for both input and output was generally harder to

deal with and less efficient than opening a file for one or the other. You’ll learn some of
the intricacies of dealing with reading and writing to the same file as you go through this
lesson. The one big efficiency tip for dealing with binary files is to clump read and write
operations so that you’re not constantly switching between one and the other. The reason
has to do with the way files are buffered. When you write a value to the file, it isn’t really
written right away; instead, the value is stored in an internal buffer. When the buffer is
full the entire buffer is written in one chunk. This seems minor, but it can make disk
output faster by a factor of 10 to 20! The same thing happens when you read a value.
Actually, and entire buffer full of information is read into memory. On your next read,
the value is already in memory, so it takes less time to read. If you constantly switch
between reads and writes these buffers have to be flushed, either writing a small amount
of information to disk or dumping all of the information in the read buffer. That causes
the program to slow down considerably.

Writing Binary Files
The first example of file output in this lesson was writing the numbers 1 to 10. Let’s

return to that example to see how it would work with a binary file.

REM Write the numbers 1 to 10 to a binary file.

! Open the file.
OPEN "temp" FOR BINARY AS #1

! Write the numbers.
FOR I% = 1 TO 10
 PUT #1, , I%
NEXT

! Close the file.
CLOSE #1

As you can see, the PUT statement looks a lot like a PRINT statement. There are
some differences, though.

First, there are two commas. The missing piece of information between the commas
is there so you can say where you would like the value to be written in the file. We’ll
return to that field when we look at random access files later in this lesson; it works the

Learn to Program in GSoft BASIC

same way for both binary and random access files. If you leave the value out, as we’ve
done, the PUT statement writes the information to the next available spot in the file. If
you’re writing a new file, as we are here, the information is appended to the end of all of
the information already in the file. That’s exactly what happened with the text files from
the earlier examples.

The other difference is that PUT will only write one value at a time, and that value
must be a variable. The technical term is l-value, which stands for the left-hand value in
an assignment statement. You can use anything that you could assign a value too, but you
are not allowed to use anything that must be calculated or any constants. Because of this
rule these two statements are illegal.

PUT #1, , 4 :! illegal
PUT #1, , I% + 1 :! illegal

The value that is actually written to disk is written in the same format it is stored in
memory. That has two advantages over the text file we wrote earlier. First, a lot of time is
saved because the number doesn’t have to be converted from its internal binary format to
a series of characters and back again. Second, the values are usually smaller, so binary
files take less space. A binary representation of an integer value requires the equivalent of
two characters worth of space. “Aha,” you think. “The character version only took one
character of space!” Well, yes and no. First, the text version of our program also had to
use at least one more character to separate the numbers. In our example it was an end of
line mark. That ties the two methods for the values 0 to 9. Even our simple example had a
value of 10, though, so with the end of line mark the text version of the file was one byte
longer than the binary version. And you have to admit that only ten values even tie binary
files, and in most applications you will use lots of values that need more than one
character to represent the value.

There’s a third advantage of binary files over text files when floating-point numbers
are involved. Unlike integer values, it’s very difficult to precisely convert floating point
values from their internal binary representation to a text representation and back again
and end up with exactly the same value you started with. At the very least it takes a lot of
text digits. Binary files don’t have that problem. When you write a value to a binary file
and read it back into a variable, you’re guaranteed to get the same value you originally
wrote.

Reading Binary Files
Reading values from a binary file is the mirror image of writing them. You use GET

instead of PUT, but other than that everything is the same. Here’s an example that reads
the file of integers created by the last sample.

REM Read numbers from a binary file and print them.

! Open the file.
OPEN "temp" FOR BINARY AS #1

! Read and print the numbers.
WHILE NOT EOF (1)
 GET #1, , I%
 PRINT I%
WEND

! Close the file.
CLOSE #1

Reading and Writing Practically Any File
Every file on every modern desktop computer, and almost any other computer, is

ultimately made up of a series of eight-bit bytes. In practical terms this means
GSoft BASIC can open, read, and write any file you’ll find on an Apple IIGS disk. By
reading the file as a series of BYTE values, rather than the INTEGER values we used in
the examples, you can see the contents of absolutely any file.

Problem 8.6. Write a program that asks for the name of a file, reads the file, and
writes it’s contents to the screen as a series of BYTE numbers.

Try your program on a text file. How are the ends of lines marked?

More About File Types and File Formats
As you look around at the various files in your computer it’s fair to ask what’s in

them and how you can read and write the files from your programs. Unfortunately, the
answer in many cases is that you can’t. It’s not a limitation in BASIC itself that keeps
you from dealing with the files, but rather a lack of information. To read files you have to
have a pretty good idea what the format is, and to write them you have to have a very
good idea or very good backups! What’s the exact format for a WordPerfect word
processing file? I have no idea.

There are some places you can go to find information about file types. The single
most complete source is File Type Notes, a collection of detailed information about the
internal contents of dozens of popular file formats, like AppleWorks classic files and
several kinds of graphics files. This document was originally created by Apple Computer,
and is still available from the Byte Works, Inc. Sometimes you’ll find file formats in the

Learn to Program in GSoft BASIC

documentation that comes with a program, although that’s rare. You can find the formats
for public formats like TIFF or JPEG graphics files in various books, from various
standards organizations, or by searching the Internet. There really isn’t a single repository
for all file formats, and there isn’t even a guarantee that the file format has ever been
documented. Many programmers rely on internal comments within program source code
for documentation of file formats.

So why are companies so stingy with information about their files? The reasons vary.
In some cases they don’t want competitors to be able to read and write their files. You
can argue with their logic, but it is a common reason. I think the main reason, though, is
simply that it takes a long time to document a file format in a way that someone who is
not familiar with the source code for the program can understand, and once the
documentation is available, the companies don’t really want to have to deal with the
inevitable questions from people trying to use the format. Worse still, myriads of
programs floating around creating almost correct files, or files that work with one version
of the program but end up failing with a later version, could cause the company a lot of
grief in terms of customer support.

In any case, there are some kinds of files that you simply won’t be able to read or
write without spending an enormous amount of time essentially decoding how the file is
constructed.

A second issue is the file type itself. Our programs create either text (TXT) or binary
(BIN) files. How do you change the file type, or for that matter, how do you tell what
type a file is from inside a program? It turns out that detecting and changing file types is
so closely tied to the underlying operating system that most languages don’t have a way
to do it. You have to make calls directly to the operating system, in this case using the
GS/OS operating systems GetFileInfo and SetFileInfo calls, to detect or set the file type.
That’s not something we’ll cover in this course, but you’ll know enough to strike out on
your own after the next lesson. The GS/OS operating system is documented in Apple
IIGS GS/OS Reference. It was written by Apple Computer and originally published by
Addison-Wesley. Reprints are available from the Byte Works, Inc. The whole subject of
dealing with GS/OS is also discussed in Toolbox Programming in GSoft BASIC. As of
this writing it hasn’t been published, but is expected out in 1999, again from the Byte
Works, Inc.

Random Access
Let’s say you have a file with five numbers, 1, 2, 3, 3, and 5. Of course, we want a

file with a 4 in the fourth spot. On a short file like this one, we could just read the entire
file into an array or linked list, make any changes we want, and write the modified file. If
you know you have enough memory to work on the file that way, it’s a good choice in
any language.

Of course, in real life, we may not have enough memory to handle a file. It isn’t
uncommon to work with a mailing list with several thousand entries, for example. A
reasonable sized record for handling the entries would be about 200 bytes long. A 10,000
person mailing list, then, would take 2,000,000 bytes, which is more free memory than
you are likely to find on most Apple IIGS computers.

Let’s face it, if you are using a database, you might be willing to wait when you open
a file, and wait again when you save the changed file. Asking you to wait while the file is
read and written for each change is a bit much, though.

The obvious solution is to open the file for input and output at the same time. You
then scan through the file until you find the value than has to be changed, or, if you
already know where the value is, jump right to it. You then read the old value, change it,
and write the modified value back to the file.

In GSoft BASIC you open a file for random access input and output by opening the
file for RANDOM. You still give OPEN a file name and a file number. Unlike opening
the file for OUTPUT, though, the old contents of the file are not destroyed if it already
exists. There is also one new piece of information. Random access files let you jump
right to a specific record within the file, and the only way the file system can do this is if
it knows in advance how long each record is. The last piece of information is the length
of each record.

Thinking this through, what we’re really doing is turning a file into a kind of array.
Each entry in the file is called a record, and each of the records is the same size as every
other record in the file. If you know the size of each record, you can jump right to a
specific record.

While random access file records aren’t the same thing as the records you learned to
create in the last lesson, in practice it usually makes sense to read and write BASIC
record variables from and to the file. After all, if you’re writing individual numbers, there
really isn’t much difference between a random access file and a binary file.

Let’s use the mailing list from the last lesson to see how this works. The record we set
up looked like this:

TYPE ADDRESS
 NAMEFIELD AS STRING
 STREET AS STRING
 CITY AS STRING
 STATE AS STRING
 ZIP AS LONG
END TYPE

Learn to Program in GSoft BASIC

Opening the file is really the only change between using random access files and
binary files, so let’s look at what an OPEN statement would look like for a file made up
of this kind of record.

OPEN "temp" FOR RANDOM AS #1 LEN SIZE

There are many ways to choose the value for SIZE. In general you want the smallest
value that will hold all of the information you are stuffing into each database record. In
virtually all cases, random access files are made up of a series of record variables or
numbers that all hold the same kind of information, like a file of ADDRESS records. In
that kind of situation, the SIZEOF function is a huge help. SIZEOF takes a single
parameter, which can be the name of a type, like ADDRESS, or the name of a variable.
Either way, SIZEOF returns the number of bytes used by the variable. Putting it to use in
our OPEN statement turns the OPEN statement into this:

OPEN "temp" FOR RANDOM AS #1 LEN SIZEOF (ADDRESS)

Unfortunately, it isn’t quite that simple. The problem is that string values don’t
occupy a specific amount of space. That’s good and bad. We’ll see the good points in a
moment, but first let’s deal with the bad: You can’t tell how large the file records need to
be without knowing how long the string values will be.

To understand what this means, let’s look at exactly how records are stored in a
random access file. As long as the record does not contain strings it is simply copied into
the file, just like numbers are copied into BINARY files. Strings are actually stored as the
location in memory where the string value can be found. When you write a record
containing a string to a disk file, this value is converted into an offset past the start of the
disk record. If you skip that number of bytes past the start of the record you will find the
first character in the string. The string continues until all of the characters have been
placed in the file, then a zero byte marks the end of the string. If there is more than one
string in the record, the next string starts right after the first, and so on.

This dump of an actual file shows an ADDRESS record. The address shown is

Byte Works, Inc.
8000 Wagon Mound Dr. NW
Albuquerque, NM 87120

$000000 14000000 25000000 3D000000 49000000 ' % = I '
$000010 50540100 42797465 20576F72 6B732C20 'PT Byte Works, '
$000020 496E632E 00383030 30205761 676F6E20 'Inc. 8000 Wagon '
$000030 4D6F756E 64204472 2E204E57 00416C62 'Mound Dr. NW Alb'
$000040 75717565 72717565 004E4D00 00000000 'uquerque NM '
$000050 00000000 00000000 00000000 00000000 ' '
$000060 00000000 00000000 00000000 00000000 ' '
$000070 00000000 00000000 00000000 00000000 ' '
$000080 00000000 00000000 00000000 00000000 ' '
$000090 00000000 00000000 00000000 00000000 ' '
$0000A0 00000000 00000000 00000000 00000000 ' '
$0000B0 00000000 00000000 00000000 00000000 ' '
$0000C0 00000000 00000000 ' '

The file dump uses hexadecimal values to show the values of the bytes. Hexadecimal
numbers use the characters A to F to represent the values 10 to 15; two hexadecimal
digits can represent all of the 256 possible values for a byte. The actual values aren’t that
important, since you can see a text version of the file dump to the right of the
hexadecimal values. In the text version it is easy to see how the four string values come
after the record itself, which uses the first twenty bytes. Each of the strings shows up in
the record as a four-byte hexadecimal offset. The first value is hexadecimal 14, which is
the equivalent of the decimal value 20, telling us that the string starts 20 bytes after the
start of the record.

If you’re head is spinning by now, take heart: The details aren’t that important. The
important thing you have to remember is that any record that contains strings needs more
space in the file than SIZEOF returns as the size of the record. How much more space?
You need to add the length of all of the strings as returned by the LEN function, plus one
extra byte for each string to store the zero that marks the end of the string.

One way to allow for the extra space is to add the lengths of the longest string that
appears in each field. Assuming you’ve found the length of the largest string for each
field and stored the sum in a variable called STRINGLENGTHS, your OPEN statement
would look like this:

OPEN "temp" FOR RANDOM AS #1 LEN SIZEOF (ADDRESS) +
STRINGLENGTHS + 4

You might want to add more entries to your database later, though, and some of those
entries may be longer than the ones already in the database. It’s a good idea to add some
extra bytes to allow for longer fields in the future. Here’s the good news about how
records are stored: If a record has one exceptionally long string, say a street name, but the
other strings are below average length, the strings will still fit in the file records if the

Learn to Program in GSoft BASIC

total length is small enough. By using the size of the longest string occupying each field
for the size of our records we are building in some extra space, since it is unlikely that
any one record will contain the longest string in every one of it’s fields.

So what happens if the strings are too long? Basically, they are chopped off. Any
characters that won’t fit in the file record are dropped, and will be missing when you read
the record from the file.

Reading and writing random access files works just like it does for binary files. The
big difference is that you’re more likely to want to read a specific value from the file, so
you’re more likely to want to use that second parameter for the GET and PUT statement.
Here’s a GET statement that reads the third record from a random access file, placing the
value in a record variable named ADDR.

GET #1, 3, ADDR

There’s a file on the solutions disk called MailingList. We’ll use this file for all of the
problems that deal with random access files. Here’s a program that prints the contents of
the mailing list file. It does double duty by showing you how to put all these ideas
together into a working program as well as giving you a program that will check your
answers for some of the problems. The program itself is also in the solutions disk; it’s
called PrintList. Both the program and the data file are in a folder called Lesson.8.

 REM Write the contents of the file MailingList.

 TYPE ADDRESS
 NAMEFIELD AS STRING
 STREET AS STRING
 CITY AS STRING
 STATE AS STRING
 ZIP AS LONG
 END TYPE

 CONST SIZE = 200:! Number of bytes in one file record

 DIM ADDR AS ADDRESS:! Address read from the file

 ! Write all entries in the file.
 OPEN "MailingList" FOR RANDOM AS #1 LEN SIZE
 WHILE NOT EOF (1)
 GET #1, , ADDR
 PRINT ADDR.NAMEFIELD
 PRINT ADDR.STREET
 PRINT ADDR.CITY;", ";ADDR.STATE;" ";ADDR.ZIP
 PRINT
 WEND
 CLOSE #1

Problem 8.7. Write a program that opens the MailingList file and prints the 3rd record
from the file.

Problem 8.8. Write a program that let’s you type new values from the keyboard, then
stores those values in a record, writing the record at the end of the current MailingList
file. (Be sure to make a copy of the file first!)

Problem 8.9. The folks in the marketing department keep running across names that
are so long that the current record size is causing problems. Write a program that reads
the MailingList file and writes it to a new file whose records are ten bytes longer. Check
your work with a modified form of the PrintList program that appears in this section as a
sample program.

Lesson Nine – Pointers and Lists

What is a Pointer?
By now, you have used two very powerful techniques to organize information in

BASIC. Arrays are use to handle a large amount of information when all of the pieces are
the same type. Records are used to collect different kinds of information into a single
variable.

While these types are very powerful, there is one situation they do not handle well. In
many programs you don’t know in advance how many pieces of information you need to
deal with. For example, a program to manage a mailing list may have a few hundred
entries when one person uses it, but several thousand for another person. One solution is
to allocate an array that will be big enough to hold some maximum number and leave it at
that. Of course, that presents a problem, too. If one person has a computer with 1.25M of
memory, they may be able to handle a mailing list with 7000 or 8000 entries.
Unfortunately, the program would be too large to run on a computer with 768K, and
would not make effective use of all of the memory in a 2M machine.

Of course, you may not ever intend to write a commercial application. On your own
machine, you know how much memory you have, right? Well, that could be true, but
fixed size arrays present other problems. Many programs have to handle more than one
kind of data at the same time. For example, an adventure game might need one array for
handling the rooms in a castle, and another array for keeping track of the various
inhabitants. You can try to make effective use of memory by guessing in advance how
big each array needs to be, but if you guess wrong, you could overflow one array while
there is still plenty of room in the other.

And, of course, all of this ignores the fact that the current implementation of
GSoft BASIC on the Apple IIGS limits the maximum size of a single array to 32K.

In all of these situations, the problem is that you know there is a lot of memory out
there, but you don’t always know, in advance, how much memory is available or exactly
what you will need to use it for when the program runs. The amount of memory used by
an array or record is determined when the program is written. You can’t change it without
changing the program itself. What we need is a way to ask for a chunk of memory while
the program is running. Programmers call this dynamically allocated memory. Since
GSoft BASIC doesn’t know where the memory will be when you compile the program,
or even how much will be allocated, you need some way of keeping track of the memory.
That, in a nutshell, is what pointers are for. A pointer points to a memory location. In
terms of the BASIC program, a pointer points to a variable. The variable can be a simple
variable, like an integer or a real number; a record; an array; or even another pointer. In

short, a pointer can point to a variable of absolutely any type except an array—and it can
point to an element of an array, or a record containing an array.

I don’t want to scare you off, but pointers tend to give beginners a lot of trouble. I
would like to talk for a moment about what kind of trouble people have so you can watch
out for these issues as you read through the lesson. We will try to deal with each of the
issues.

Part of the reason people have trouble with pointers is that the idea of dynamically
allocated memory is foreign to those of you who cut your teeth on traditional
implementations of BASIC, which don’t support pointers. If pointers are a new concept
for you, you should expect it to take some time before you become comfortable with
them. Another factor is that pointers have their own operator that you must learn to use.
A lot of people get confused by this operator, which controls when you are dealing with a
pointer, and when you are dealing with the thing it is pointing to. Finally, there is a bit of
magic about pointers in a high-level language. The other data types we have dealt with
were definite, fixed structures. You could get a handle on what they do, and how they
work. From a language like BASIC, there are some mysteries to how pointers work, since
the language takes care of a lot of details. It is only from assembly language that you
really see how pointers work—and, if you ever learn enough assembly language to learn
how pointers work, you will probably follow in the footsteps of the vast majority of
programmers, and return to a language like BASIC that handles all of those mucky
details for you!

A realistic example of how pointers are used in a real program is well beyond what
you are likely to understand at this point, so some of the first few examples will seem
very simplistic and contrived. You will look at them and wonder why we are using
pointers at all, when you can easily see better ways to write the program without a
pointer. Well, you are right, but we will use some simple programs to get used to the
mechanics of pointers. By the end of the lesson, though, you will be dealing with data
structures that you could not handle with arrays. In the next few lessons, we will start
doing things with pointers that are very difficult to do with arrays. In some cases, in
BASIC at least, some of the things we will do can’t be done any other way than by the
use of pointers. That’s especially true if you continue on to toolbox programming after
this course. The Apple IIGS toolbox it littered with various kinds of pointers.

Pointers are Variables, Too!
The first thing we need to explore is how to define a pointer. Like an array, which

must be an array of something, a pointer must point to something specific. You can’t
define what a pointer points to using a type character on the variable name as we have
done with simple variables. You always use a TYPE statement to declare a pointer type
and a DIM statement to create a pointer variable.

Learn to Program in GSoft BASIC

DIM IP AS POINTER TO INTEGER

The variable IP is a variable, just like any other. It just has an odd type. The type of IP
is POINTER TO INTEGER. There are only two things that you normally do with this
variable in BASIC: assign it to another pointer variable or compare it for equality or
inequality with another pointer value. Of course, for either operation, the pointers must
point to the same kind of value. For example, the following program is legal in BASIC:

DIM IP AS POINTER TO INTEGER
DIM JP AS POINTER TO INTEGER

IP = JP

The pointer is virtually worthless without the ^ operator. The ^ operator, appearing
right after the pointer variable, gives us the value the pointer points to rather than the
pointer itself. For example, the assignments shown in the following program are legal,
although the program itself has some problems. Do not run this program!

DIM IP AS POINTER TO INTEGER
DIM I AS INTEGER
DIM J AS INTEGER

J = 4
IP^ = J
I = IP^
PRINT I

Let’s step through the program, looking at what it is doing. First, we assign the value
4 to J. Nothing is new there; you’ve done that sort of thing dozens of times. The next line,
though, assigns the integer J to the value pointed to by IP. Keep in mind that we are not
assigning a value to the variable IP, we are assigning a value to the variable pointed at by
the variable IP. That’s what the ^ operator does for us; it tells BASIC that we want the
value pointed at, not the pointer.

If that’s confusing, think about how records work for a moment. If A and B are the
same kind of record, then the assignment

A = B

copies the contents of the record B into the record A. This is very, very different from the
assignment

A.LEFT = 4

which copies the value 4 into one field of the record. The .LEFT tells the program to use
a specific field from the record, not the record itself. The ^ operator is doing something
similar for a pointer variable. It tells the program to copy the value into the variable
pointed to by IP, not into the pointer IP itself.

The next line,

IP^ = J

uses the same idea to assign the value pointed to by IP to the variable I. Finally, the value
of I is printed. The value should be 4.

Unfortunately, this program has a very, very serious flaw. In is a very common error
in programs that use pointers. In fact, it is one of the most common causes of crashes on
the Apple IIGS, in any kind of program, in any language. Did you catch the flaw? If
you’ve never seen pointers before, probably not.

What does IP point to?
What if IP points to the location in memory that turns on your floppy disk drive? The

disk drive would start to spin.
What if IP happens to point to memory allocated by the GS/OS operating system that

holds a block of a data file? When you save the file, it will have some garbage
information in it.

What if IP points into the middle of your program? Your program may crash.
Worst of all, what if IP points to some memory that isn’t being used for anything?

You might think the program works, and pass it around to friends. It could then do all of
these nasty things to their computer. This, of course, is not a good way to keep friends.

Allocating and Deallocating Memory
In short, pointers are no good without a way to get some memory for them to point to.

BASIC gives us a statement called ALLOCATE to get some new memory. When you are
finished with the memory, the DISPOSE statement can be used to get rid of the memory.
Both statements need the name of the pointer for which you want to allocate or deallocate
memory. We can change our program from the last section into a safe one using these
procedures. This program is one you can run!

Learn to Program in GSoft BASIC

DIM IP AS POINTER TO INTEGER
DIM I AS INTEGER
DIM J AS INTEGER

ALLOCATE (IP)
J = 4
IP^ = J
I = IP^
PRINT I
DISPOSE (IP)

When this program runs, it starts by making a call to ALLOCATE. This statement
performs some advanced magic. The result is that, after the call, two bytes of memory
have been obtained. The exact process involved in getting this memory is a bit involved,
and not particularly important to you, the BASIC programmer. The process is covered
below, just in case you’re curious. In any case, this memory is safe. It belongs to your
program, and no other correctly written program will disturb it.

Just before the program ends you see the DISPOSE statement. This statement goes
through a complicated mechanism that gets rid of the two bytes of memory. After calling
DISPOSE, the memory does not belong to your program anymore. It could be reused
within 1/60th of a second by an interrupt routine, which is a small program that does
things like tracking the mouse or reading the keyboard in the background while your
program runs. Even if it isn’t reused, because of the process used to allocate and
deallocate memory, the location IP points to doesn’t contain 4 anymore. In short, once
you call DISPOSE, the memory isn’t yours anymore, and you should not access or
change the value pointed at by IP.

How New and Dispose Work
The process used to allocate and deallocate dynamic memory is a bit involved, and

has nothing in particular to do with the way you write your BASIC program, but it is
interesting. If it’s not interesting to you, though, you can safely skip this entire
description.

One of the basic parts of the Apple IIGS operating system is the Memory Manager.
The Memory Manager is responsible for finding free memory and giving it to the various
programs in the computer. Even if your program is the only one you think is running, it
turns out that many other programs are calling the Memory Manager to get memory, too.
The GS/OS disk operating system calls the Memory Manager, as do many of the
Apple IIGS tools. GSoft BASIC is calling the Memory Manager to get space for your
program. Many desk accessories call the Memory Manager. Some of them may even

install interrupt handlers, which can be running while your program is doing something
else.

When you call ALLOCATE for the first time, GSoft BASIC makes a call to the
Memory Manager to get a 4K block of memory. This memory is then subdivided into
smaller and smaller pieces, dividing the block in half each time, until the program gets a
chunk of memory of about the right size. In our program you need two bytes to hold the
integer, and the library subroutine allocating the memory needs four bytes to keep track
of all of the small pointers, so a total of eight bytes is actually taken from the 4K chunk of
memory. (Remember, the number of bytes will be a power of two.) This method tends to
waste a few bytes of memory now and then, but it turns out that it is very fast. It has some
other technical advantages, too, that we won’t go into here.

When you call DISPOSE at the end of the program the small block of memory is
deallocated. Since it was the only piece of memory being used in the 4K block, the 4K
block is also returned to the Memory Manager, where it can be reused by other programs.
If you had allocated other pieces of memory in addition to the one IP points to, and those
were still in use, the block would not be deallocated and returned to the Memory
Manager until all of the individual pieces were disposed of.

An interesting point about this memory is where it comes from. Unlike variables,
arrays, and even strings, memory allocated by calling ALLOCATE doesn’t come from
the fixed size variable space your program allocates when it starts. ALLOCATE gets
memory directly from the Memory Manager. It will continue to allocate memory until all
of the available memory in the Apple IIGS is used.

Problem 9.1. A pointer can point to any variable type. Use that fact to change the
program shown in this section to allocate a pointer to a real number. Assign the value 1.2
to the location pointed to by the pointer, and print the result. Do all of this without an
intermediate real variable; in other words, assign the value directly to the value pointed at
by the pointer, and use the pointer with the ^ operator in the PRINT statement.

Problem 9.2. You can, of course, use IP^ anywhere that you could use an integer
variable. Making use of that fact, write a program to add two numbers and print the
result. The only variables you should define are three pointers, IP, JP, and KP. Be sure
and allocate memory for all of them using ALLOCATE, then assign 4 to the first, and 6
to the second. Add the two values together and save them at KP^, then print the result. Be
sure and follow your mother’s advice, and clean up after yourself by calling DISPOSE to
deallocate the memory areas reserved by the calls to ALLOCATE.

Learn to Program in GSoft BASIC

Linked Lists
So far all of our programs have used a pointer to a single variable. That’s about as

useful as your mother on a hot date. A single variable is easier to use, takes less space,
produces a smaller program, the resulting program runs faster, and there is no chance of
stepping on someone else’s memory because you forgot to use ALLOCATE to allocate
the memory. We used arrays to organize a fixed number of values into a data structure
that was easier to use. The equivalent for a pointer is one of the many forms of a linked
list.

Basically, a linked list is a series of connected records. Each of the records in the
linked list contains, among other things, a pointer. The pointer points to another record in
the list. A single pointer variable in the program points to the first record in the linked
list.

For our first look at a linked list, we will create a list of integers. The record, then,
must have a pointer to the next record, and an integer. It looks like this:

TYPE LISTRECORD
 NEXTP AS POINTER TO LISTRECORD
 I AS INTEGER
END TYPE

TYPE LISTPOINTER AS POINTER TO LIST

DIM FIRST AS LISTPOINTER
DIM TEMP AS LISTPOINTER

With these definitions we can start to create a linked list. For each element in the list
we will need to call ALLOCATE to get space for a new record, and then place a value
into the integer, like this:

ALLOACTE (TEMP)
TEMP^.I = 4

Look carefully at the assignment that places a 4 in the record. The characters ^. may
seem confusing at first, but they are the same simple ideas you are used to, combined to
do something a bit more complicated. TEMP, of course, is a pointer, so to put a value
into TEMP we need to use the ^ operator. TEMP^ points to a record. To place a value
into the field I within a record we add .I. The whole expression, TEMP^.I, then, refers to
the integer variable I, located inside a record that is pointed to by the pointer TEMP.

That’s a complicated concept, but it is simple when you break it down into parts, reading
the expression one symbol at a time from left to right, the way BASIC itself does.

At this point we have a dynamically allocated record with an integer value in it. The
pointer in the record still does not point to anything. The next step is to add this record to
the list of records that the variable list points to.

TEMP^.NEXTP = FIRST
FIRST = TEMP

On the first line we are assigning a value to the pointer in our new record. The value
we are assigning is FIRST; FIRST points to the first element currently in the list. We
really don’t know how many things are in the list at this point. There may not be any, or
there may be several thousand. The beauty of the linked list, though, is that we don’t have
to know! It doesn’t matter at all how many things are already in the linked list.

The second line assigns TEMP to FIRST. The first thing in the list, at this point, is
our new record. Our record contains an integer variable with a value of 4, and a pointer to
the rest of the list.

The next thing we need to learn is how to take something off of the list. Let’s say that
we want to remove the first item. Basically, then, we reverse the process of putting a
record into the list, like this:

TEMP = FIRST
FIRST = TEMP^.NEXTP

There is one more detail that we need to deal with before we can use these ideas to
write a program. So far we have ignored the issue of the end of the list. How do we know
when we get to the end of the list? We could keep a counter, but actually there is a better
way. It involves the use of a predefined pointer constant called NIL. NIL is type
compatible with any pointer type. You can set a pointer to NIL or compare a pointer to
NIL. By convention, NIL is used to mean that the pointer doesn’t point to anything, and
that it how we mark the end of our list. By initializing list to NIL at the start of the
program and checking to see if list is NIL before removing an item from the list, we can
tell when there is nothing in the list.

Stacks
Using what we now know about linked lists, we can create our first program.

Learn to Program in GSoft BASIC

REM This program reads in a first of integers, and then prints
REM them in reverse order. The program stops when a zero
REM value is read.

TYPE LISTRECORD
 NEXTP AS POINTER TO LISTRECORD
 I AS INTEGER
END TYPE

TYPE LISTPOINTER AS POINTER TO LISTRECORD

DIM FIRST AS LISTPOINTER:! points to the top item in the first

CALL GETLIST(FIRST):! read a list
CALL PRINTLIST(FIRST):! print a list
END

!--
!
! GetList - Read a list from the keyboard
!
! Parameters:
! first - pointer to the head of the list
!
!--

SUB GETLIST(FIRST AS LISTPOINTER)

DIM I AS INTEGER :! value read from the keyboard
DIM TEMP AS LISTPOINTER:! work pointer

! initialize the list pointer
FIRST = NIL

DO
 ! read a value
 INPUT "Enter a number: ";I
 IF I <> 0 THEN

 ! allocate a record
 ALLOCATE (TEMP)

 ! place i in the record
 TEMP^.I = I

 ! put the record in the list
 TEMP^.NEXTP = FIRST
 FIRST = TEMP
 END IF
LOOP UNTIL I = 0
END SUB

!--
!
! PrintList - Print a list
!
! Parameters:
! first - pointer to the head of the list
!
!--

SUB PRINTLIST(FIRST AS LISTPOINTER)

DIM TEMP AS LISTPOINTER:! work pointer

WHILE FIRST <> NIL
 ! remove an item from the list
 TEMP = FIRST
 FIRST = TEMP^.NEXTP

 ! print the value
 PRINT TEMP^.I

 ! free the memory
 DISPOSE (TEMP)
WEND
END SUB

We have already talked about all of the ideas in this program, this is just the first time
you have seen them all in one place. Looking through the program, the first step is to get
a list of numbers. GetList does this, reading numbers using familiar methods until you
enter 0. For each number, GetList allocates a new record, saves the number in the record,
and puts the record in the list.

Learn to Program in GSoft BASIC

PrintList loops for as long as there are entries left in the list. Each time through the
loop the top record in the list is removed from the list, the value is printed, and the
memory used by the record is dumped.

Notice how the PrintList procedure cleans up after itself. The memory used by every
record is carefully disposed of after we are finished with the record. This is an important
step in a program that uses dynamic memory. If you forget to dispose of some of the
memory in a few places, the memory areas will eventually fill up, and there won’t be any
free memory for new calls to ALLOCATE. This is known as a memory leak.

It is very important to understand exactly how this program works, since the ideas
used in this program form the basis for many of the fundamental techniques in modern
programming practice. Stop now, and type in the program. Run the program with the
following input:

1
2
3
4
0

The program responds with this:

4
3
2
1

This may not have been exactly what you expected. What happened is this: When the
program creates the list, each new element is added on top of the old list. As the program
retrieves records from the list, the last one added is removed first. This mechanism is
called a stack. The common analogy is to think of it like a stack of plates. You pile the
list elements up on top of one another. To get one back, you pull the top record off of the
stack.

Just as a footnote, I should warn you about terminology buffs. Many high school
teachers, a few college professors, and even an occasional book author figure that the
way to become a good programmer is to learn a bunch of arcane words. It is true that you
need some new words, like dynamically allocated memory, to describe new concepts, but
these terminology buffs want you to know that a stack is called a LIFO data structure, for
Last In, First Out. Let’s face it, they write the tests, so you better know the term if you
want to get a good grade in a class. Be warned, though: if you walk up to a group of
programmers at a conference and start babbling about LIFO data structures, you will find

a wide gap forming around you. A few people will glance at your shirt pocket, looking
for the pencil holder, or examine the thickness of your glasses. In real life, these things
are called stacks.

Stacks are a very flexible data structure. They are used in a wide variety of
applications. A stack is appropriate any time you need to collect a large amount of
information, especially if you don’t particularly care in what order you use the
information, or for the occasional case when you want to handle the most recent piece of
information first. Stacks are also frequently used as a part of a more complicated data
structure, like a hash table. We’ll look at complex data structures like this later in the
course. Stacks are used in such diverse applications as burglar alarms, data bases, mailing
lists, operating systems, and arcade games.

There are many variations on the basic ideas covered in this section. Some of these
are explored in the problems. I highly recommend that you work both of these problems.

Problem 9.3. Many applications require you to process the information in a list from
back to front. In some cases, you know this in advance, and a slightly different form of a
list is used, called a queue. That situation is covered in the next section. In other cases,
though, you may not know that the list needs to be reversed in advance, or you may need
to process the list in both orders in different parts of the program. In a case like that, you
need to be able to reverse the list.

Reversing a list is really quite easy. To do it, you use two lists. The new list starts out
empty. You then loop through the old list, just like we do in the PrintList procedure, but
instead of printing the value and disposing of the record, you add the record to the new
list.

Write a procedure to reverse the order of a list. Use this procedure in the sample
program so it prints the numbers in the same order they are read.

Problem 9.4. In some applications we read in a list, then scan the list repeatedly,
looking for records with certain characteristics. For example, in a burglar alarm, we
might use one subroutine to add new alarms to a list. Another might repeatedly scan the
list, looking for fires. If no fires were found, the list could be rechecked for broken
windows, and so on.

Implement this idea in our sample program by counting the number of times a
particular number appears in the list. Use a FOR loop to loop from 1 to 5. For each value,
scan the list, incrementing a counter if the number is found. Print a table of the results.

Try this program at least two times. The first time, enter zero immediately. The
second time, use this data:

Learn to Program in GSoft BASIC

1

2

3

4

5

2

3

4

5

3

4

5

4

5

5

The results should be one one, two twos, and so forth.
Hint: To scan a list, set a pointer to the head of the list. Use a WHILE loop to loop

until this pointer is NIL. At the end of the WHILE loop set the pointer to the next record,
like this:

TEMP = TEMP^.NEXTP

Queues
Another commonly used form of a list is the queue. A queue looks just like a stack,

but it is formed differently. A queue is used when you want to process information in the
same order it is read, so instead of adding new records to the beginning of the list, you
want to add them to the end of the list. In a sense, the records are lined up and processed
on a first-come, first served basis. The terminology freaks call a queue a FIFO list, for
First In, First Out, but again, don’t embarrass yourself in a crowd by talking about stuff
like that.

There are three basic ways to form a queue. If all of the information is read in first,
then processed, you could just use the simple stack to read the data, then reverse the order
of the list, like we did in problem 9.3. In many programming situations, though, you read
some data, process a little bit, read some more, and so forth. In those cases, you need to
build the list in the proper order.

One way to build a queue is to keep a second pointer, which we will call LAST. This
pointer starts at NIL, like the pointer that points to the first member of the list. When we

add the first element to the list the pointer LAST is set to the value of the new pointer.
The next pointer in the new record is always set to NIL. From then on, we add a new
record by setting the next pointer in the record pointed to by LAST to point to the new
record, and then set LAST to point to the new record.

In BASIC code, then, we set the list up like this:

FIRST = NIL
LAST = NIL

To add a record to the end of the list, we check to see if the record is the first one in
the list. If so, we set both LAST and FIRST to point to the new record. If not, we chain
the record to the end of the list.

IF LIST = NIL THEN
 FIRST = TEMP
 LAST = TEMP
ELSE
 LAST^.NEXTP = TEMP
 LAST = TEMP
END IF

Of course, since both branches of the IF statement assign TEMP to LAST, we can
make the program shorter and still do the same thing by pulling the assignment outside of
the IF statement, like this:

IF LIST = NIL THEN
 FIRST = TEMP
ELSE
 LAST^.NEXTP = TEMP
END IF
LAST = TEMP

We also don’t actually make use of LAST before it is assigned a value for the first
time, so setting it to NIL when we initialize the list is also unnecessary.

Problem 9.5. You probably saw this one coming. Change the GetList procedure from
the sample in the last section so it forms a queue instead of a stack. Use the mechanism
described in this section to do it.

Learn to Program in GSoft BASIC

Running Out Of Memory
What happens if you ask for more memory, but none is available? If this happens,

ALLOCATE sets the pointer to NIL rather than to a valid memory location. Just for fun,
the following program does this on purpose.

After running this program, quit GSoft BASIC and reenter the program. That cleans
up the memory the program allocated and never disposed of. Also, be aware that this
program could run for a very long time, especially if you have a lot of memory.

DIM P AS POINTER TO INTEGER
DIM COUNT AS LONG

COUNT = 0
DO
 ALLOCATE (P)
 COUNT = COUNT + 1
LOOP UNTIL P = NIL
PRINT COUNT;" integers were allocated."

The practical ramifications of this program are very important. In real programs you
need to make sure a call to ALLOCATE really worked. That means you need to check
after each and every call to see if ALLOCATE returned NIL. If it did, your program has
to do something to handle the situation. That might mean reporting an error and quitting,
disposing of some buffers you no longer need, or informing the user that an operation
can’t be carried out. The one thing you can’t do is ignore the problem!

Lesson Ten – Miscellaneous Useful Stuff
The first nine lessons of this course have taken you on a tour of the BASIC language.

By this time you have learned most of the mechanics of the language itself. Because the
lessons have been developed using specific examples, though, a few topics have slipped
through the cracks. This chapter covers those topics.

I don’t want you to get the impression that these topics are unimportant. Quite the
contrary: a great deal of the power of the BASIC language is tied up in the topics we will
look at in this lesson. In our tour of the BASIC language, though, we have concentrated
on the mechanics of writing short, simple programs. As we learn more about writing
larger programs, programming efficiently, and organizing programs, the new techniques
covered in this lesson will be put to use over and over.

The SELECT CASE Statement
You’ve learned to use IF and ELSE IF to select from a series of possible conditions.

Here’s an example that accepts a number from 1 to 13, representing the value from a
deck of cards, and prints the name of the card.

!--
!
! PrintCard - Print the name of a card
!
! Parameters:
! V - point value of the card
!
!--

SUB PRINTCARD (V AS INTEGER)

IF V = 1 THEN
 PRINT "Ace";
ELSE IF V = 2 THEN
 Print "Two";
ELSE IF V = 3 THEN
 Print "Three";
ELSE IF V = 4 THEN
 Print "Four";
ELSE IF V = 5 THEN
 Print "Five";
ELSE IF V = 6 THEN
 Print "Six";
ELSE IF V = 7 THEN
 Print "Seven";
ELSE IF V = 8 THEN
 Print "Eight";
ELSE IF V = 9 THEN
 Print "Nine";
ELSE IF V = 10 THEN
 Print "Ten";
ELSE IF V = 11 THEN
 Print "Jack";
ELSE IF V = 12 THEN
 Print "Queen";
ELSE IF V = 13 THEN
 Print "King";
END IF
END SUB

BASIC has a special statement called the SELECT CASE statement that is used in
situations like this. The SELECT CASE statement is like a multiple branch. It works the
same as the series of IF and ELSE IF checks, but there is a little less typing and the
program runs a little faster. Using a SELECT CASE statement the PrintCard subroutine
becomes

!--
!
! PrintCard - Print the name of a card
!
! Parameters:
! V - point value of the card
!
!--

Learn to Program in GSoft BASIC

SUB PRINTCARD(V AS INTEGER)

SELECT CASE V
 CASE 1
 PRINT "Ace";
 CASE 2
 PRINT "Two";
 CASE 3
 PRINT "Three";
 CASE 4
 PRINT "Four";
 CASE 5
 PRINT "Five";
 CASE 6
 PRINT "Six";
 CASE 7
 PRINT "Seven";
 CASE 8
 PRINT "Eight";
 CASE 9
 PRINT "Nine";
 CASE 10
 PRINT "Ten";
 CASE 11
 PRINT "Jack";
 CASE 12
 PRINT "Queen";
 CASE 13
 PRINT "King";
END SELECT
END SUB

When the SELECT CASE statement executes, it starts by evaluating the expression
that comes after CASE. In our example, the expression is a simple one, consisting of a
single variable. The next statement executed is the one right after the value that
corresponds to the value of the expression. You can put more than one statement there, of
course, even though we only used one statement after each CASE label in this example.
As soon as the next CASE label is encountered the program skips to the statement after
the END SELECT statement. In other words, the SELECT CASE statement works
exactly like a series of IF ELSE clauses. The SELECT CASE statement is just a bit easier
to read, and gives you another way to organize your program.

The PrintCard subroutine shows the classic way to organize a SELECT CASE
statement, but in situations like this one where there is a single value to check and a
single thing to do for each specific value, I like to use the : statement separator to
combine the CASE statement with the statement that handles the condition, like this:

!--
!
! PrintCard - Print the name of a card
!
! Parameters:
! V - point value of the card
!
!--

SUB PRINTCARD(V AS INTEGER)

SELECT CASE V
 CASE 1: PRINT "Ace";
 CASE 2: PRINT "Two";
 CASE 3: PRINT "Three";
 CASE 4: PRINT "Four";
 CASE 5: PRINT "Five";
 CASE 6: PRINT "Six";
 CASE 7: PRINT "Seven";
 CASE 8: PRINT "Eight";
 CASE 9: PRINT "Nine";
 CASE 10: PRINT "Ten";
 CASE 11: PRINT "Jack";
 CASE 12: PRINT "Queen";
 CASE 13: PRINT "King";
END SELECT
END SUB

Personally, I think this makes the program a lot easier to understand.
There are many situations where you will want to use several different case labels for

the same statement. To do this, separate the case labels with a comma, as the following
example shows.

Learn to Program in GSoft BASIC

FOR I = 1 TO 10
 SELECT CASE I
 CASE 1, 2, 3, 5, 7
 PRINT I; " is prime"
 CASE 4, 6, 8, 10
 PRINT I; " is even"
 CASE 9
 PRINT I; " is odd"
 END SELECT
NEXT

While listing specific values is appropriate for the majority of SELECT CASE
statements you’re likely to write, there are two ways to handle ranges of values. The first
is to give start and end values for a range of values, separated by the word TO. The
second is useful for collecting all of the remaining values that have not been picked off
by a specific CASE statement. The CASE ELSE statement should be the last CASE
statement before END SELECT. It works just like an ELSE in a series of ELSE IF
statements.

Here’s an example that might appear in a program that reads text, like a compiler or
an adventure game.

SELECT CASE MID$(LINE$, I, 1)
 CASE "A" TO "Z", "a" TO "z"
 CALL DOWORD(LINE$, I)
 CASE "0" TO "9", "."
 CALL DONUMBER(LINE$, I)
 CASE ELSE
 CALL DOPUNCTUATION(LINE$, I)
END SELECT

Finally, if there is no matching CASE statement for a value at all, the program skips
to the statement right after END SELECT.

Problem 10.1. Write a program that generates a deck of cards using an array of 52
integers. Initialize the unshuffled deck by placing the numbers 1 to 52 in the array.

Use a subroutine called SHUFFLE to shuffle the deck. This should loop one time
through the deck swapping each array element with another chosen at random.

Print the first five cards in the shuffled deck using the PRINTCARD subroutine from
this section and a similar subroutine you design to handle printing the suit of the cards.

Just in case your card skills are a little rusty, the names of the suits are Spades,
Hearts, Clubs and Diamonds. There are 13 cards in each suit. Card 1 would be the Ace of
Spaces; card 14 the Ace of Hearts, and so on.

Revisiting the FOR Loop
Once upon a time, in a lesson long, long ago, you learned about the FOR loop. When

FOR loops were first introduced, though, you didn’t know enough about BASIC to
understand some of the features that apply to FOR loops. In this section we will take a
more detailed look at FOR loops to fill in some minor gaps in your knowledge.

The first point about FOR loops is one you have seen by example, but it is a good
idea to spell it out. You can use any valid BASIC expression to decide what the start and
stop value for the loop should be. For example, you can loop a random number of times
using the results of the random number function we have used in so many simulations:

FOR I = 1 TO RANDOMVALUE (20)
 <<<do something here>>>
NEXT

You might be justifiably concerned about what would happen if RANDOMVALUE
were called every time the condition was tested. The answer, of course, is that the stop
value would change each time through the loop! BASIC evaluates the stop condition one
time, though, and saves the value. Even if the stop condition doesn’t change, you might
be worried about the efficiency of your program. The fact that BASIC computes the stop
value before the loop starts, and saves the value, means that even a very complex
expression for the stop value won’t slow down the loop itself.

There is another interesting point about using an expression for the start or stop value.
What happens if the stop value is less that the start value when the loop starts? For
example, what does this program do?

I = 1
J = -2
FOR K = I TO J
 PRINT K
NEXT

The FOR loop can handle this situation. If the stop value is smaller than the start value,
the body of the loop is executed one time with the initial value for the loop variable. As
soon as the NEXT statement is encountered the loop will stop. This particular program
prints the value 1 the first time through the loop, then stops.

Learn to Program in GSoft BASIC

So far, all of our FOR loops have started with a small value and looped up towards a
larger one. That isn’t the only way to loop. You can start with a large value, and loop
down to a smaller one. The difference is that you use STEP to set a step size of -1, telling
the loop to go down by one each time through the loop rather than up. The program

FOR I = 10 TO 1 STEP -1
 PRINT I
NEXT

prints a countdown from 10 to 1.
The step size also shows one of the most powerful features of the FOR loop. It isn't

limited to INTEGER or even LONG values like the FOR loops in some languages. You
can use floating-point loop variables and step by values that are not whole numbers.
Here's a short example that uses this fact to step from 0.0 to 2π in increments of π/50.0.
Even if the math is a little beyond what you're used to, you can still see how the FOR
loop can be used to loop over non-integer increments.

REM Draw 50 random circles on the screen the "hard" way.

DIM I AS INTEGER :! loop variable
DIM R AS INTEGER :! radius of the circle
DIM X, Y AS INTEGER :! position of the center of the circle

CALL INITGRAPHICS
FOR I = 1 TO 50
 R = 10 + RANDOMVALUE(40)
 X = 50 + RANDOMVALUE(220)
 Y = 50 + RANDOMVALUE(100)
 SETSOLIDPENPAT (RANDOMVALUE(15))
 CALL DRAWCIRCLE(X, Y, R)
NEXT
INPUT "";A$
END

!--
!
! DrawCircle - Draw a circle using trigonometry
!
! Parameters:
! cx, cy - position of the center
! r - radius
!
!--

SUB DRAWCIRCLE(CX AS SINGLE , CY AS SINGLE , R AS SINGLE)

CONST PI = 3.1415926535

DIM A AS SINGLE :! for loop angle
DIM X AS SINGLE , Y AS SINGLE :! position on the edge of the

circle

MOVETO (CX + R, CY)
FOR A = 0.0 TO 2 * PI STEP PI / 50.0
 X = CX + R * COS (A)
 Y = CY + R * SIN (A)
 LINETO (X, Y)
NEXT
LINETO (CX + R, CY)
END SUB

!--
!
! InitGraphics - Set up for graphics
!
!--

SUB INITGRAPHICS
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)
END SUB

Learn to Program in GSoft BASIC

!--
!
! RandomValue - Return a random number in the range 1 to max
!
! Parameters:
! max - maximum allowed value for the random number
!
! Returns: Random number in the range 1..max
!
!--

FUNCTION RANDOMVALUE(MAX AS INTEGER) AS INTEGER
DIM VALUE AS INTEGER :! Random value to return

VALUE = 1 + RND (1) * MAX
IF VALUE = MAX + 1 THEN
 VALUE = MAX
END IF
RANDOMVALUE = VALUE
END FUNCTION

There is one other feature of the FOR loop that you won't see in this course, but you
might run across in books that show BASIC programs. You can list the loop variable on
the NEXT statement, like this:

FOR I = 1 TO 10
 PRINT I
NEXT I

There are two reasons you might want to do this. The first is to give yourself both a
comment about which FOR loop the NEXT statement belongs to, and to ask BASIC to
check up on you. If you give the wrong FOR loop variable the program will stop with an
error.

The other reason to give the name of the FOR loop variable is to tell BASIC to finish
two loops with a single NEXT statement. Here's an example that initializes a 10 by 10
matrix with zeros.

FOR I = 1 TO 10
 FOR J = 1 TO 10
 A(I, J) = 0.0
NEXT J, I

While this does save one line, I personally think it makes the program harder to read,
so I use two separate NEXT statements in situations like this one. It’s really a matter of
taste, though.

Problem 10.2. One way to reverse a sequence of characters is to loop backwards,
starting at the last character in the string, and looping towards the first. Write a program
that uses this idea to reverse the characters in a string.

Your program should prompt for a string. Next, print the string in reverse order, using
STEP -1 and looping from the length of the string down to 1.

Continue processing strings until the user enters a null string (one with a length of 0).

The GOTO Statement
BASIC became popular on microcomputers before structured programming took

hold. Most of the early versions of BASIC did not have modern loop and logic statements
like the DO loop, REPEAT loop, or the IF-THEN ELSE statement. Before these
statements were available, programmers relied on GOTO statements almost exclusively
to control how their programs executed.

The GOTO statement is a jump. The program moves to the destination of the GOTO
and starts executing with that statement. The following program gives a very simple
example of this idea.

 GOTO 3
 PRINT "This gets skipped."
3 PRINT "This gets printed."

As you can see, there isn’t much to a GOTO statement. In fact, it’s just the reserved
word GOTO followed by a number called a label. The number tells the compiler where to
go to; a corresponding number must appear somewhere in the program at the beginning
of a line.

Modern implementations of BASIC like GSoft BASIC also let you use a name for the
label. To use a named label, follow the label name with a colon, like this:

GOTO THERE
PRINT "This gets skipped."
THERE: PRINT "This gets printed."

The GOTO statement has an interesting history. In a sense, it is a good example of
how an idea can be misapplied, abused, and eventually twisted into something the person

Learn to Program in GSoft BASIC

who came up with the idea did not intend. What I am referring to, of course, is the idea
that GOTO statements are bad. In fact, many people group structured programming and
so-called "GOTO-less programming" together, treating them as synonymous. In many
computer classes students are still taught that the GOTO statement is always bad.
Nothing could be farther from the truth.

In a sense, ignoring the GOTO statement while you learn BASIC is a good idea, up to
a point. This is especially true if you learned to program in BASIC or FORTRAN using
an older implementation that did not have structured statements like WHILE loops, DO
loops and IF-THEN-ELSE statements. Before these statements were available, BASIC
programmers had to use IF statements and GOTO statements to do the same thing. That’s
not altogether a bad thing, but the programs that were written this way tended to jump
around seemingly at random, leading to a coding style derisively referred to as spaghetti
code. Experience has shown that most programs written using modern statements instead
of GOTO statements are easier to read, more efficient, and have fewer bugs than
programs written with GOTO statements. So, while you learn the structured statements,
and how to use them to organize programs logically, it is a good idea to forget that the
GOTO statement exists.

The reason we haven’t used the GOTO statement isn’t because it is bad, or has no
use. The reason we haven’t used the GOTO statement is because it isn’t needed as much
in GSoft BASIC as it is in older versions of BASIC. There are two places, though, where
the GOTO statement is very useful, easy to understand, and will make your program
much more efficient. These two places are an error exit and an early exit from a loop.

A good example of an early exit from a loop is when you are searching a linked list
for a particular item. As a simple example, let’s assume that you want to scan a list of
names to see if a particular name exists. This problem is a very common one in
programming: The list could be a list of names in a customer database, a list of
commands that an adventure game recognizes, a dictionary in a spelling checker, or a list
of variables in a BASIC program. If the name is in the list, you want to print true. If the
name is not in the list, you want to print false.

The ONERR GOTO Statement
Even more important is ONERR GOTO, a variant of the GOTO statement that allows

you to intercept errors the BASIC language detects and deal with them on your own
terms. ONERR GOTO doesn’t actually do anything right away. The line number after the
statement is remembered by BASIC, though, and if any error occurs that would normally
cause BASIC to stop the program, it jumps to the statement identified in the ONERR
GOTO statement instead. You can handle the error there, cleaning up before you exit the
program or even handling the error and continuing on.

Here’s a short example that shows a complete ONERR GOTO handler. The error
itself is something that shouldn’t happen in a properly written program—there are better
ways to make sure an array subscript isn’t out of range than using an ONERR GOTO
statement—but this example has the merit of being short.

 ONERR GOTO 99

 DIM A(5) AS INTEGER

 FOR I = 0 TO 5
 A(5) = 5
 NEXT
 I = 7
 B = A(I)
 PRINT "A(";I;") = ";B
 END

 99 IF ERR <> 11 THEN
 ONERR GOTO 0
 ERROR ERR
 END IF
 IF I > 5 THEN
 I = 5
 ELSE IF I < 0 THEN
 I = 0
 END IF
 RESUME

Following along as the program executes shows how ONERR GOTO does it’s job,
and also introduces a few commands that you will often use with ONERR GOTO to
create an effective error handler.

The ONERR GOTO statement itself doesn’t do anything except tell BASIC where to
go if an error occurs. If no error is found the program will work exactly the same way
with or without the ONERR GOTO statement.

A few lines later the program tries to extract a value from the array A using an index
of 7, but the maximum index that is valid for the array is 5. This causes a run-time error,
which triggers the error handler. Control jumps immediately to line 99.

The error handler itself shows the three components of a properly written error
handler. First the error handler checks to see if the error is something it can handle by
checking the value returned by the ERR function. This error handler will only handle
error number 11. You can find a list of the errors and error numbers in the GSoft BASIC

Learn to Program in GSoft BASIC

reference manual. If the error is not something the error handler can deal with, it uses the
statement

ONERR GOTO 0

to turn off ONERR GOTO handling. Next the error handler causes an error using the
ERROR statement, which tells BASIC to behave as if a real error was detected. In effect,
the error handler has refused to handle any error but error 11, telling BASIC to handle it
the way it normally would. Of course, if the program had not turned ONERR GOTO
error handling off before doing this, the program would have jumped right back to line 99
to start handling the error again!

The error occurred because the index I was out of range, so the next thing the error
handler does is fix the index. Finally, it uses the RESUME statement. This causes the
program to go back to the statement that caused the error in the first place and try
executing the statement again. If the error occurred inside of a subroutine or function the
RESUME statement jumps back to the line in the main program that made the subroutine
or function call, not to the line in the subroutine or function that actually generated the
error.

You don’t have to use the RESUME statement at the end of the error handler. You
can use END instead, just like you do at the end of a BASIC program. This lets you stop
the program after doing whatever you need to do to handle the error gracefully.

This example is short, but it isn’t something that would happen in a real program—or
at least not in a well written program. A much better example of a real error you might
want to trap is error number 56, a file I/O error. If your program has just modified a
critical database or spent hours calculating values for a file, you don’t want to loose the
information because a disk was full or has a bad block! A properly written error handler
can detect this sort of error, giving you a chance to put in a new disk.

Variant Records
We have already seen how records can be used to organize information in our

program, grouping any type of variable together into a record about a particular thing. For
example, we could use a record to record a person’s name, address, and state (all strings),
zip code and phone number (possibly integers), and sex. All of these facts about a person
can be collected into a single variable, so they can be kept together.

What if we need to keep different information about different groups of people,
though? For example, a pet store might want to list whether a fish is a salt-water fish or
fresh-water fish, but they certainly wouldn’t need to waste space on the same information
about a dog. For the dog, they might want to list if it has been spayed or neutered, but the

same information hardly applies to the fish. Rather than waste space by including all of
this information when it isn’t needed, a variant record can be used.

In a variant record you use a tag variable to keep track of what the record is for. For
the pet store, for example, the variant record might look like this:

CONST BIRD = 0
CONST FISH = 1
CONST DOG = 2

TYPE ANIMALRECORD
 NEXTP AS POINTER TO ANIMALRECORD
 INSTOCK AS INTEGER
 KIND AS INTEGER
 CASE BIRD
 CASE FISH
 FSEX AS INTEGER
 FRESHWATER AS INTEGER
 CASE DOG
 DSEX AS INTEGER
 SPAYED AS INTEGER
END TYPE

There is a wealth of information in this record, so we will take a few moments to
study it in detail. The first three variables in the record are NEXTP, INSTOCK and
KIND. Up to this point the record looks exactly like any other record, and it is. These
three variables are needed no matter what kind of animal we are dealing with, and they
will appear in every record of type ANIMALRECORD.

The CASE statement is what makes this record a variant record. The CASE statement
looks vaguely like a CASE label in a program, but there are differences. In the variant
record, the CASE condition is really just a placeholder. In GSoft BASIC the variable isn’t
used for anything, although this may change in future versions. It’s a good idea to create
some constants to record the kind of the record, though, and use the same constants as
CASE labels. That’s what KIND is for; it will be filled in with BIRD, FISH or DOG to
indicate what kind of animal the record refers to.

In this record we decided to record the sex of a FISH or a DOG. Fields in the record
must have unique names, even if they appear in different parts of a variant record, so we
can’t use SEX as the name of both variables. To avoid a conflict, we append a unique
letter to the start of the variable names, creating FSEX for the sex of a fish, and DSEX for
the sex of a dog. There are other ways to handle the problem of duplicate names, but
appending a unique prefix to the field name is a common solution.

Learn to Program in GSoft BASIC

Let’s take a look at how the same information would be stored in a standard record,
and compare the standard record to the variant record. The standard record would look
like this:

TYPE ANIMALRECORD
 NEXTP AS POINTER TO ANIMALRECORD
 INSTOCK AS INTEGER
 KIND AS INTEGER
 SEX AS INTEGER
 FRESHWATER AS INTEGER
 SPAYED AS INTEGER
END TYPE

This record requires 14 bytes of memory: 4 bytes for the pointer (NEXTP), and two
bytes for each of the other fields. It also has a FRESHWATER field for birds and dogs,
which is not the sort of thing that promotes clarity. The variant record, on the other hand,
has a variable size, depending on what kind of animal we are dealing with. In all cases,
the size is less than 14 bytes. In the case of a bird, the record has three variables, NEXTP,
INSTOCK and KIND. These variables use 8 bytes of memory.

The following example shows one use of variant records. In this example, we create
and then animate 10 shapes. The shapes can be squares, triangles, or stars. Each of the
shapes does a random walk across the screen, moving one pixel in a random direction on
each cycle through the program.

To animate the shapes, we need to keep track of what kind of a shape it is and the
coordinates for the shape. Since each shape has a different number of points, we use a
variant record. All of the shapes have a color, so that is stored in a non-variant part of the
record.

REM Do a random walk with 10 random shapes

CONST NUMSHAPES = 10:! # of shapes to animate
CONST WALKLENGTH = 100:! # of "steps" in the walk

CONST TRIANGLE = 0:! shapes
CONST SQUARE = 1
CONST STAR = 2

! information about one shape
TYPE SHAPERECORD
 COLOR AS INTEGER
 KIND AS INTEGER
 CASE TRIANGLE
 TX1 AS INTEGER
 TX2 AS INTEGER
 TX3 AS INTEGER
 TY1 AS INTEGER
 TY2 AS INTEGER
 TY3 AS INTEGER
 CASE SQUARE
 SX1 AS INTEGER
 SX2 AS INTEGER
 SX3 AS INTEGER
 SX4 AS INTEGER
 SY1 AS INTEGER
 SY2 AS INTEGER
 SY3 AS INTEGER
 SY4 AS INTEGER
 CASE STAR
 PX1 AS INTEGER
 PX2 AS INTEGER
 PX3 AS INTEGER
 PX4 AS INTEGER
 PX5 AS INTEGER
 PY1 AS INTEGER
 PY2 AS INTEGER
 PY3 AS INTEGER
 PY4 AS INTEGER
 PY5 AS INTEGER
END TYPE

DIM I AS INTEGER , J AS INTEGER :! loop variables
DIM SHAPES(NUMSHAPES) AS SHAPERECORD:! current array of shapes
DIM OLDSHAPES(NUMSHAPES) AS SHAPERECORD:! shapes in last

position

! set up the graphics window
CALL INITGRAPHICS
SETPENMODE (2)

Learn to Program in GSoft BASIC

! set up and draw the initial shapes
FOR I = 1 TO NUMSHAPES
 CALL CREATESHAPE(SHAPES(I))
 CALL DRAWSHAPE(SHAPES(I))
NEXT

! do the random walk
FOR I = 1 TO WALKLENGTH

 ! move the shapes
 FOR J = 1 TO NUMSHAPES
 OLDSHAPES(J) = SHAPES(J)
 CALL UPDATESHAPE(SHAPES(J))
 NEXT

 ! redraw the shapes
 FOR J = 1 TO NUMSHAPES
 CALL DRAWSHAPE(SHAPES(J))
 CALL DRAWSHAPE(OLDSHAPES(J))
 NEXT
NEXT
END

!--
!
! CreateShape - creates a shape
!
! The type, color and initial position are chosen randomly.
! The size of the shape is based on precomputed values.
!
! Shared Variables:
! triangle, square, star - possible shapes
!
! Parameters:
! s - shape to create
!
!--

SUB CREATESHAPE(S AS SHAPERECORD)

SHARED TRIANGLE, SQUARE, STAR

DIM CX AS INTEGER , CY AS INTEGER :! center point for the
shape

! get a color
S.COLOR = RANDOMVALUE(15)

! get the center position, picking the point so the shape is
! on the graphics screen.
CX = RANDOMVALUE(300) + 10
CY = RANDOMVALUE(184) + 8

! set the initial position
SELECT CASE RANDOMVALUE(3)
 CASE 1
 S.KIND = TRIANGLE
 S.TX1 = CX - 9
 S.TY1 = CY + 4
 S.TX2 = CX
 S.TY2 = CY - 8
 S.TX3 = CX + 9
 S.TY3 = CY + 4

 CASE 2
 S.KIND = SQUARE
 S.SX1 = CX - 7
 S.SY1 = CY - 6
 S.SX2 = CX + 7
 S.SY2 = CY - 6
 S.SX3 = CX - 7
 S.SY3 = CY + 6
 S.SX4 = CX + 7
 S.SY4 = CY + 6

Learn to Program in GSoft BASIC

 CASE 3
 S.KIND = STAR
 S.PX1 = CX - 6
 S.PY1 = CY + 7
 S.PX2 = CX
 S.PY2 = CY - 8
 S.PX3 = CX + 6
 S.PY3 = CY + 7
 S.PX4 = CX - 10
 S.PY4 = CY - 3
 S.PX5 = CX + 10
 S.PY5 = CY - 3
END SELECT
END SUB

!--
!
! DrawShape - draw a shape
!
! Shared Variables:
! triangle, square, star - possible shapes
!
! Parameters:
! s - shape to draw
!
!--

SUB DRAWSHAPE(S AS SHAPERECORD)

SHARED TRIANGLE, SQUARE, STAR

! set the pen color for the shape
SETSOLIDPENPAT (S.COLOR)

! draw the shape
SELECT CASE S.KIND

 CASE TRIANGLE
 MOVETO (S.TX1, S.TY1)
 LINETO (S.TX2, S.TY2)
 LINETO (S.TX3, S.TY3)
 LINETO (S.TX1, S.TY1)

 CASE SQUARE
 MOVETO (S.SX1, S.SY1)
 LINETO (S.SX2, S.SY2)
 LINETO (S.SX4, S.SY4)
 LINETO (S.SX3, S.SY3)
 LINETO (S.SX1, S.SY1)

 CASE STAR
 MOVETO (S.PX1, S.PY1)
 LINETO (S.PX2, S.PY2)
 LINETO (S.PX3, S.PY3)
 LINETO (S.PX4, S.PY4)
 LINETO (S.PX5, S.PY5)
 LINETO (S.PX1, S.PY1)
END SELECT
END SUB

!--
!
! InitGraphics - Set up for graphics
!
!--

SUB INITGRAPHICS
HGR
SETPENMODE (0)
SETSOLIDPENPAT (15)
END SUB

!--
!
! RandomValue - Return a random number in the range 1 to max
!
! Parameters:
! max - maximum allowed value for the random number
!
! Returns: Random number in the range 1..max
!
!--

FUNCTION RANDOMVALUE(MAX AS INTEGER) AS INTEGER
DIM VALUE AS INTEGER :! Random value to return

Learn to Program in GSoft BASIC

VALUE = 1 + RND (1) * MAX
IF VALUE = MAX + 1 THEN
 VALUE = MAX
END IF
RANDOMVALUE = VALUE
END FUNCTION

!--
!
! UpdateShape - move the shape across the screen randomly
!
! Shared Variables:
! triangle, square, star - possible shapes
!
! Parameters:
! s - shape to update
!
!--

SUB UPDATESHAPE(S AS SHAPERECORD)

SHARED TRIANGLE, SQUARE, STAR

DIM DX AS INTEGER , DY AS INTEGER :! movement direction

! get the walk direction
DX = RANDOMVALUE(3) - 2
DY = RANDOMVALUE(3) - 2

! make sure we don't walk off of the screen, then update
! the position
SELECT CASE S.KIND
 CASE TRIANGLE
 IF DX = - 1 THEN
 IF S.TX1 < 1 THEN
 DX = 0
 END IF
 END IF
 IF DX = 1 THEN
 IF S.TX3 >= 319 THEN
 DX = 0
 END IF
 END IF
 IF DY = - 1 THEN
 IF S.TY2 < 1 THEN
 DY = 0
 END IF
 END IF
 IF DY = 1 THEN
 IF S.TY3 >= 199 THEN
 DY = 0
 END IF
 END IF

 S.TX1 = S.TX1 + DX
 S.TY1 = S.TY1 + DY
 S.TX2 = S.TX2 + DX
 S.TY2 = S.TY2 + DY
 S.TX3 = S.TX3 + DX
 S.TY3 = S.TY3 + DY

 CASE SQUARE
 IF DX = - 1 THEN
 IF S.SX1 < 1 THEN
 DX = 0
 END IF
 END IF
 IF DX = 1 THEN
 IF S.SX2 >= 319 THEN
 DX = 0
 END IF
 END IF

Learn to Program in GSoft BASIC

 IF DY = - 1 THEN
 IF S.SY1 < 1 THEN
 DY = 0
 END IF
 END IF
 IF DY = 1 THEN
 IF S.SY3 >= 199 THEN
 DY = 0
 END IF
 END IF

 S.SX1 = S.SX1 + DX
 S.SY1 = S.SY1 + DY
 S.SX2 = S.SX2 + DX
 S.SY2 = S.SY2 + DY
 S.SX3 = S.SX3 + DX
 S.SY3 = S.SY3 + DY
 S.SX4 = S.SX4 + DX
 S.SY4 = S.SY4 + DY

 CASE STAR
 IF DX = - 1 THEN
 IF S.PX4 < 1 THEN
 DX = 0
 END IF
 END IF
 IF DX = 1 THEN
 IF S.PX5 >= 319 THEN
 DX = 0
 END IF
 END IF
 IF DY = - 1 THEN
 IF S.PY2 < 1 THEN
 DY = 0
 END IF
 END IF
 IF DY = 1 THEN
 IF S.PY1 >= 199 THEN
 DY = 0
 END IF
 END IF

 S.PX1 = S.PX1 + DX
 S.PY1 = S.PY1 + DY
 S.PX2 = S.PX2 + DX
 S.PY2 = S.PY2 + DY
 S.PX3 = S.PX3 + DX
 S.PY3 = S.PY3 + DY
 S.PX4 = S.PX4 + DX
 S.PY4 = S.PY4 + DY
 S.PX5 = S.PX5 + DX
 S.PY5 = S.PY5 + DY
END SELECT
END SUB

Problem 10.3. One common use of variant records takes advantage of the fact that the
variables in the variant part overlap. This fact can be used to examine the values of a
complicated variable type.

One thing that happens over and over in toolbox programming is to extract the least
significant 16 bits from a long, or the most significant 16 bits. You can do this with math
operations if you are very careful, but it is much easier and faster to do it with a variant
record.

Define a variant record with two variant parts. In one part, define a long integer. In
the other part, define two integers, LSW and MSW, in that order. This record puts the
two integers in the same memory as the long integer, so that you can save a long value
and then extract the integer parts.

Write a program that reads long integers from the keyboard, looping until a 0 is
entered. Save this value in the record, then write the two integers.

Experiment with this program a bit. What you should find is that for values up to
32767 the program prints the same value you entered for the least significant integer (the
first one), then a zero for the most significant integer (the second one). As the numbers
get larger, you start to fill in the sign bit, so the first integer is written as a negative
number. Finally, when the numbers exceed 65535, values start to show up in the second
integer.

A Quick Tour of Some Advanced GSoft BASIC
Features

The next three topics cover some features in GSoft BASIC that are either missing in
other implementations of BASIC or are not always implemented the same way. The also
are not needed in this course. As you start to write your own programs outside of this

Learn to Program in GSoft BASIC

course, though, they are all features you may want to use. The purpose of this section is
to make you aware the features exist and show you basically what they are capable of.

Changing the Size of Memory
GSoft BASIC, The FREE Version is limited to 16K of program space and 16K or

variable space. The commercial version defaults to 64K for each area. That’s more than
enough for the programs in this course, and for most other programs, too, but you may
eventually write a program that runs out of memory. The SETMEM statement lets you
change the amount of memory available in either of these two buffers. See the
GSoft BASIC reference manual for details.

Of course, GSoft BASIC, The FREE Version doesn’t support these commands.

Libraries
There are times in any high-level language where you need to drop into assembly

language, either because of speed, space, or very peculiar location requirements for a
particular subroutine. GSoft BASIC handles this using libraries, which are also the same
as Apple IIGS User Tools.

The commercial version of GSoft BASIC comes with two libraries. We’ll use one of
those to see how you can use one from your programs. GSoft BASIC, The FREE Version
doesn’t come with any libraries, but it does support them.

The first step in using a library is to make sure it is installed in GSoft BASIC. The
two that come with GSoft BASIC are installed when you install GSoft BASIC itself. If
you’re installing a library yourself, there are two files you need to copy.

First, there will be a file named UserToolxxx, where xxx is a three-digit number from
001 to 255. This file must be copied to the Tools folder in your System folder. The
System folder is on the disk you boot from. This disk must also be in the computer when
your program runs.

The other file generally has a name like Userxxx.gst, but it can actually have any
name at all. The important point is that this file must have a file type of DVU ($5E) and
an auxiliary file type of $8007. You can put this file several places, including the folder
where GSoftBASIC.Sys16 is located or the folder where your program is located.

With the files in place, there are three steps to using a library. First you must load the
library with the LOADLIBRARY statement. This actually reads the library from disk and
places it in RAM. This is the step where the system folder must be online so the
UserToolxxx file can be read from disk. The LOADLIBRARY statement is followed by
the number of the library to load; this number is the same as the number that makes up
the name of the UserToolxxx file.

The second step is to make calls to the library.

Finally, just before your program exits, it should use the UNLOADLIBRARY
statement to remove the library from memory. Like the LOADLIBRARY statement,
UNLOADLIBRARY is followed by the number of the library.

Here’s a short program that uses the GSoft BASIC time library to read the current
date and time.

LOADLIBRARY 2
PRINT DATESTRING ;" "; TIMESTRING
UNLOADLIBRARY 2

The MakeRuntime Utility
All of the programs you’ve written so far run from GSoft BASIC itself. That’s fine

for a program only you use, or while you’re developing the program, but once your
creation is complete you may want to share it with others that don’t have GSoft BASIC.
That’s where the MakeRuntime utility comes in.

This utility reads the program you create from within GSoft BASIC and creates a
program that can run directly from the Finder, even if GSoft BASIC is not installed on
the computer. It includes all tool interfaces, your program, the interfaces for any libraries,
and enough of GSoft BASIC itself to run your program, cramming all of this into a single
file the Finder can execute. The only thing you have to pass on to the person using the
program is any libraries you have used. For example, if you wanted to give someone the
program from the previous section that prints the date and time, you would also have to
give them the file UserTool002 and tell them to copy it to their tools folder.

I won’t duplicate the documentation in the reference manual that tells you how to use
this utility. The important point is that you know it exists so you can find it when you
write a program you want to share.

Lesson Eleven – Scanning Text

The Course of the Course
This lesson, and the three that follow, mark a changing point in the Learn to Program

course. Instead of springing it on you with no warning, I thought it would be best to stop
and look at what we have done so far and what is left.

The first ten lessons were concerned primarily with teaching you the mechanics of
programming. In those lessons you learned most of the features of GSoft BASIC. While
we used a number of real programs to illustrate the features of the BASIC language, and
frequently discussed principals of good programming practice, programming techniques
were not the primary topic.

It turns out that a few tasks turn up repeatedly in many different kinds of programs.
The next four lessons deal with some of these basic techniques. In the process, you will
get a chance to hone your programming skills.

Because the nature of the material is changing, we will also change our approach a
bit. In the first part of the course the text was laced with complete programs to illustrate
the basic ideas. As the topics have changed, we have gradually moved away from that
technique. Starting with this lesson, we will abandon it almost completely. Instead, we
will talk about the concepts behind a particular algorithm. Complete subroutines will be
shown in many cases. The problems, for the most part, will involve using these ideas to
create complete programs. As always, the solutions are on the disk that comes with the
course, so if you get stuck you can always refer to the complete solution.

There are a number of reasons for changing to this approach. One is that you know
how to create a program, now, but you still need lots of practice to get really good at it.
Another is that we will be able to cover a lot more material this way. Finally, when the
course is over, I want you to know how to read intermediate computer science
books—the kind of books that teach you about data structures, compiler theory,
animation, and so on. Most of these books also give algorithms. If you are used to
learning about programming methods by studying algorithms when you see these books
for the first time, you will get a lot more out of them. I think it is better to learn to read an
algorithm in a setting like this course, when complete programs are at least provided as
part of the solution to a problem. In the algorithm books, you won’t generally find any
complete programs at all.

Manipulating Text
In today’s world of graphically based computers, it might seem that manipulating text

just isn’t important anymore. As it turns out, though, that simply isn’t true. Stop and think
about it for a moment. The editor you use to type in programs manipulates text. The
dialogs you use to enter search strings handle text. The BASIC interpreter that creates
programs starts with a text file. From word processors to spread sheets to adventure
games, text is still a common way to store information in a computer, so programs still
have to manipulate text. That means that, as a programmer, you should know some of the
basic techniques used to deal with text.

Programs that deal with text generally divide the task up into well-defined subtasks.
These are called scanning, parsing, and semantics. An interpreter is a classic example of a
program that manipulates text, so we will start by looking at each of these tasks from the
standpoint of a BASIC interpreter. Later, we will see how many other programs use these
same ideas.

Scanning, also called lexical analysis, is the process of collecting characters from the
text and forming the characters into words. It’s not that hard to do, but the idea is a very
powerful one. As a quick example, let’s look at a simple BASIC program and see how a
scanner would break it up into words.

PRINT "Hello, world."

It is tempting to look at this program as a collection of characters, but if you stop and
think about it for a minute, that isn't the way you read it. Instead of individual letters, you
group the program into words. BASIC does the same thing. The scanner is responsible
for reading the characters and forming words from the characters. These words are called
tokens. The main driver for the interpreter never even looks at the characters. Instead, it
calls a subroutine, which we will call NextToken, that reads characters until a complete
word is formed, then returns a single value that indicates what the word is. The scanner
would break our short sample program down into reserved words and reserved symbols,
like PRINT; constants, like the string written by PRINT; and identifiers, like the names of
any variables. In the case of the identifiers, the scanner also returns a string variable with
the name of the identifier. For constants, it returns the value of the constant.

Scanner’s aren’t limited to interpreters. Virtually any program that deals with words
uses a scanner of some sort. Spelling checkers, text adventure games, and even some
advanced database programs that accept English-like questions are just a few of the
programs that use a scanner.

The next step in the process is called parsing. The parser looks at a sequence of
tokens to see if they fit certain preconceived patters. For example, the BASIC interpreter

Learn to Program in GSoft BASIC

knows that every line must start with a line number or a command, and if it starts with a
line number, the line number must be followed by a command. It has a list of all of the
possible commands, and checks this list as it starts to execute a line from the program.
Compilers, interpreters, grammar checkers and adventure games are all examples of
programs that use parsers.

The last step is called semantic analysis. That’s a fancy way of saying that the
program figures out what the words mean. In the case of an interpreter, semantic analysis
is when the program decides what to do and carries out the task. In an adventure game,
semantic analysis is when the game decides that "I want to go north" means that the
character should be moved from his current location to another location.

Building a Simple Scanner
The first step in writing a scanner is to decide, in very precise terms, what we mean

by a token. In the case of a spelling checker we could define a token as any stream of
characters that starts with a letter and contains only letters. Any other characters, such as
punctuation marks or numbers, can be ignored, since you can’t misspell a number or a
comma. You can misuse them, of course, but not misspell them. A BASIC interpreter
can’t afford to skip commas or numbers, but it can skip comments, spaces, and end of
line marks. In other words, one of the jobs of the scanner is to skip characters that are not
relevant to the main program.

Let’s start with a scanner for a spelling checker. We will skip characters until we get
to an alphabetic character, then collect the characters into a string until we get to a non-
alphabetic character. We'll break this task down into two parts, reading characters from
the file and forming tokens from the characters.

There’s more to reading characters from a file than you might think! There are three
significant issues to deal with.

First you have to decide how to report the fact that there are no more characters in the
file. We’ll use a simple but effective way. If there are no more characters in the file, we’ll
report an empty string for the next character.

The second issue is reporting the end of a line. In programs like a spelling checker we
really don’t care about the end of the line per se. We do have to do something, though, to
handle the situation when one word appears right at the end of a line, and the first
character of the following line starts a new word. For our scanner, we’ll report the end of
the line with a space character.

Finally, we need to read the file efficiently. It may surprise you, but one of the most
serious time bottlenecks in every compiler I have ever written is the routine that gets the
next character from a file. It’s important to make this subroutine work quickly. One of the
easiest things we can do in a BASIC program to speed up this process is to read the file in

chunks rather than one character at a time. A convenient chunk in BASIC is a line, so
we’ll read the file one line at a time. That increases the bookkeeping a bit, but it makes
the program a lot faster.

Here’s one way to implement the NextCh subroutine, as we’ll call it. We’ll pick it
apart below.

!--
!
! NextCh - get the next character from the file
!
! Shared Variables:
! ch - next character from the file
! f - file number
! line$ - current line from the file
! lineindex - index of the character ch in line$
!
! Notes: The end of a line is reported as a space
! character.
!
!--

SUB NEXTCH

SHARED CH, F, LINE$, LINEINDEX

! if we need one, get a new line
IF LINEINDEX > LEN (LINE$) THEN
 IF EOF (F) THEN
 CH = ""
 ELSE
 LINE INPUT #F, LINE$
 LINEINDEX = 0
 END IF
END IF

Learn to Program in GSoft BASIC

! check for an end of file
IF LEN (CH) <> 0 THEN
 LINEINDEX = LINEINDEX + 1
 IF LINEINDEX > LEN (LINE$) THEN
 ! handle an end of line
 CH = " "
 ELSE
 ! report the next character
 CH = MID$ (LINE$, LINEINDEX, 1)
 END IF
END IF
END SUB

The key to understanding how this subroutine works is understanding the variables.
As the subroutine runs, it picks characters out of a line read from the input file. The line
that we’re currently processing is LINE$. LINEINDEX is the index of the last character
we plucked from the line; it will be 0 if we just read a new line. In the normal course of
events, the subroutine increments LINEINDEX and returns the character at that location
in the line.

The first situation that comes up is reaching the end of a line. That’s detected right at
the start of the subroutine. This section of code also has to handle another exception to
the normal flow of events, though, which is reaching the end of the file. If we have
reached the end of the file, we set CH to an empty string. If we’re not there yet the
subroutine reads the next line and sets LINEINDEX to 0.

The last half of the subroutine reports a character. It starts off with a check to see if
we’ve reached the end of the file, in which case it doesn’t need to do anything else. It also
checks to see if we’ve just reached the end of the current line, in which case the
subroutine sets CH to a space. If we make it past that check, we’ve handled all possible
exceptions to the normal flow of events, so we can return the next character in the current
line.

We need to initialize the variables used by NextCh before calling in the first time.
Here’s one way to set them up:

CH = " "
LINE$ = ""
LINEINDEX = 0

What we’ve done with these lines is lie to the subroutine, telling it one line has
already been read from the file. We’ve also set CH to a space so the end of file check in
the second half of the subroutine can’t be triggered. The first call to NextCh will report a

space as the end of this fake line, so part of the initialization is to call NextCh one time to
dump that initial character.

The subroutine NextToken, shown below, breaks the file up into words. While the
compares on the IF statements are rather involved, the subroutine itself is actually quite
simple. It skips characters, calling NextCh until it finds an alphabetic character or the end
of the file. Next it reads characters, appending them to the string TOKEN until a non-
alphabetic character or the end of the file is found.

!--
!
! NextToken - read a word from the file
!
! Shared Variables:
! ch - next character from the file
! token - string in which to return the token
!
!--

SUB NEXTTOKEN

SHARED CH, TOKEN

! initialize the token
TOKEN = ""

! skip to the first character
WHILE (ASC (CH) <> 0) AND (CH < "A" OR (CH > "Z" AND CH <

"a") OR CH > "z")
 CALL NEXTCH
WEND

! read the word
WHILE (ASC (CH) <> 0) AND ((CH >= "A" AND CH <= "Z") OR (CH

>= "a" AND CH <= "z"))
 TOKEN = TOKEN + CH
 CALL NEXTCH
WEND
END SUB

Problem 11.1. Write a program based on NextCh and NextToken that will scan a text
file and write a list of the words in the file, one word per line. As a test, try the program
on the source code for the program itself. Be sure you save the program as a source or

Learn to Program in GSoft BASIC

text file, though, not a tokenized file. In other words, use the SSAVE or TSAVE
command, not the SAVE command, to save the file.

Symbol Tables
One way to write a spelling checker is to collect each word and search for it in a

dictionary. Depending on how the spelling checker works, if you find a word that is not
in the dictionary, you could print it, display it and let the user correct or accept it, or save
it and print a list of words later. This approach works pretty well for interactive spelling
checkers. Not so long ago, though, spelling checkers were generally not built right into
word processors. Instead, they were separate programs. In this kind of spelling checker,
instead of looking up a word as soon as it is found, the words are saved in a linked list. In
this kind of spelling checker, only one copy of each word is saved. After the entire
document has been scanned, each word is looked up in the dictionary. This drastically
cuts the number of times the program needs to look up a word. As a result, the spelling
checker is a lot faster than one that looks up each word when it is read from the source
file.

This list of words has a name: It is called a symbol table. Finding words in a symbol
table is such a common task that an enormous amount of effort has gone into finding very
fast ways to look up a word. We’ll look at some of these later. For now, though, we will
use a simple linked list.

To keep things simple, we generally don’t put a word in a symbol table in the
NextToken subroutine. Instead, the main program repeatedly calls NextToken, then
another subroutine which we will call Insert. Insert creates the symbol table.

In most real programs we put more than just the symbol itself in the symbol table. In
our program we will also keep track of how many times the word appeared in the file.
The Insert procedure shows how this is done. It uses a record called SYMBOLRECORD,
which defines a single entry in the symbol table. This record is defined globally so we
can also use a global variable to point to the first element of the linked list. The record
looks like this:

TYPE SYMBOLRECORD
 NEXTP AS POINTER TO SYMBOLRECORD
 COUNT AS INTEGER
 SYMBOL AS STRING
END TYPE
TYPE SYMBOLPTR AS POINTER TO SYMBOLRECORD

You know enough to write Insert on your own. It’s job is to scan the symbols already
in the symbol table, incrementing the count on the existing symbol if a new word is

already in the table. If the word isn’t in the table, Insert should create a new entry in the
symbol table for the token and initialize the count to 1. My version is shown in the text.

!--
!
! Insert - insert a word in the symbol table
!
! Shared Variables:
! token - symbol to insert
! table - symbol table
!
!--

SUB INSERT

SHARED TOKEN, TABLE

DIM SYM AS SYMBOLPTR:! the symbol we found
DIM SPTR AS SYMBOLPTR:! work pointer

! try to find the symbol in the current symbol table
SYM = NIL
SPTR = TABLE
WHILE SPTR <> NIL AND SYM = NIL
 IF SPTR^.SYMBOL = TOKEN THEN
 ! yes -> mark the symbol
 SYM = SPTR
 END IF
 SPTR = SPTR^.NEXTP
WEND

! if we didn't find the symbol, create a new one
IF SYM = NIL THEN
 ALLOCATE (SYM)
 IF SYM <> NIL THEN
 SYM^.NEXTP = TABLE
 TABLE = SYM
 SYM^.SYMBOL = TOKEN
 END IF
END IF

Learn to Program in GSoft BASIC

! update the symbol count
IF SYM <> NIL THEN
 SYM^.COUNT = SYM^.COUNT + 1
END IF
END SUB

There is one thing about this subroutine that is worth pointing out. What happens if
ALLOCATE can’t get more memory for a new entry in the symbol table? That’s actually
very, very unlikely, but assuming “unlikely” is the same thing as “impossible” is one of
the easiest ways to create an unreliable program. Sometimes even assuming “impossible”
is really impossible can lead to disaster. A classic example is the crash of the first French
Arian� � rocket. Many of the systems in this rocket were from the older version��������������. In that
version, a programmer used an integer value for a speed component, knowing the rocket
could not go fast enough to overflow the number. You guessed it. The Arian� � rocket flew
fast enough to overflow the buffer, causing it to veer off course, forcing its destruction!

Problem 13.2. Using NextCh, NextToken and Insert, create a program that will count
the number of words in a file, and print the number of times each word appears in the file.

Using the techniques covered so far, this program will be very, very slow. Be patient,
though. We’ll deal with the speed issue later.

Parsing
At one time or another you have probably played one of the adventure games that lets

you type text commands. Did you ever wonder how they worked? Some of them can
recognize all of these sentences, and in each case they will move the character to the
north:

Go north.

Run to the north.

I want to move north, now.

North is the direction that I would like to go.

Many of these programs are pretty small, so they can’t be doing anything particularly
difficult. How do they work?

There is one surprisingly simple way to create a program that can recognize and act
on all of these commands. It involves building a verb and subject table. Look carefully at
the sentences. In each of our examples, there is a verb that indicates you want to move,
like go or run. There is also a direction, north. The simple parsers used in the adventure

games scan a sentence looking for a verb and subject the program recognizes. All of the
other words are simply discarded. The parser returns the verb and subject, and the
program takes some action.

Games aren’t the only place this method is used. The same basic idea is used in a
program called Eliza, the first computer psychologist. This simple demonstration
program is surprisingly effective at giving almost human-like responses, yet it is only a
few dozen lines long. An even more direct application of this technology is found in
some database query programs written for people who don’t normally use computers. For
example, you might type

Where can I find information

about Kansas and wheat crops?

The database program scans the line, finding just a few relevant words. The verb is
find. There are two subjects, Kansas and wheat, separated by a Boolean operator, and.
The database program scans its list of articles and books, looking for all of the ones that
have both Kansas and wheat in the list of key words.

Let’s put these ideas to work in a simple parser to move a spot around on the screen.
We are creating a simple robotic control language to move an object around. It would be
natural for a person to use a variety of words to describe a direction, and a variety of
words to describe movement. For movement, our parser will recognize go and move. For
directions, it will recognize left, right, up, down, north, south, east and west. It is the
parser’s job to make things easy for the main program, so it will report only one value for
each direction. We also need a way to quit, so we will add the verb quit to the parser.
Quit does not have a subject; it simply means that we are finished. Stop will also be
recognized as another form of quit. Our parser assumes that the scanner is converting all
characters to uppercase, and that the scanner reads and processes one line at a time, rather
than an entire file. In the GetAction subroutine that does the parsing, pay special attention
to how NONE is used to indicate that nothing has been found yet. This “empty” value
simplifies the program quite a bit.

Learn to Program in GSoft BASIC

!--
!
! GetAction - find out what the player wants to do
!
! Shared Variables:
! ch - next character from the file
! line$ - line containing the characters
! lineindex - index of the character ch in line$
! verb - action to take
! subject - what we do the action to or with
! none, go, quit - verbs
! up, down, left, right - subjects
! token - string in which to return the token
!
!--

SUB GETACTION

SHARED CH, LINE$, LINEINDEX, TOKEN
SHARED SUBJECT, VERB
SHARED NONE, UP, DOWN, LEFT, RIGHT, GO, QUIT

DIM PROMPT AS STRING :! Prompt for the line input

! start with no subject or verb
VERB = NONE
SUBJECT = NONE

! set up a default prompt
PROMPT = "Your command, Sir: "

WHILE VERB = NONE
 ! get a command line
 LINE$ = GETLINE(PROMPT)

 ! set up the scanner
 CH = " "
 LINEINDEX = 0
 CALL NEXTCH

 ! handle the command
 DO
 ! get the next token
 CALL NEXTTOKEN

 SELECT CASE TOKEN

 ! handle a subject
 CASE "NORTH", "UP":SUBJECT = UP
 CASE "SOUTH", "DOWN":SUBJECT = DOWN
 CASE "EAST", "RIGHT":SUBJECT = RIGHT
 CASE "WEST", "LEFT":SUBJECT = LEFT

 ! handle a verb
 CASE "QUIT", "STOP":VERB = QUIT
 CASE "GO", "MOVE":VERB = GO
 END SELECT
 LOOP UNTIL LEN (TOKEN) = 0

 ! make sure the input is complete and consistent
 SELECT CASE VERB
 CASE NONE
 PROMPT = "Please tell me what to do (go or stop)."

 CASE GO
 IF SUBJECT = NONE THEN
 PROMPT = "Please tell me which way to go."
 VERB = NONE
 END IF
 END SELECT
WEND
END SUB

The various values for subjects and verbs, like NONE, DOWN and GO, are declared
as constants in the main program.

This is a simple example of a parser. As the number of subjects and verbs increases,
the number of rules that are used to combine them also goes up. Some subjects will apply
only to certain verbs. In our program, we have an example of a verb, QUIT, that doesn’t
even have a subject. Some programs also allow subjects with no verb. For example, the
adventure game Zork lets you type north, with no verb, to move north. As the
possibilities grow, programmers start to use other techniques besides writing SELECT
CASE statements for each possibility. Arrays can be used for moderate numbers of
subjects and verbs. You index into the array by the subject and verb to find out which
subroutine to call. For even more complex programs, techniques for writing rule-based
programs can be used. In short, this subroutine gives you some basic ideas you can use to
write a program that reads text. If you will be writing large programs using these ideas,

Learn to Program in GSoft BASIC

though, you should spend some time looking at the more advanced techniques before
starting your program.

There is one interesting problem you will have to deal with to build a program that
exercises this parser. It would be natural to draw the robot on the graphics screen, but that
leaves us with no way to ask for text input. Mixing text and graphics is pretty tough to do
without using the Apple IIGS toolbox, which is beyond the scope of this course. One way
to handle this is to draw the robot on the text screen instead of the graphics screen.
Creating the robot is easy enough: we can print an asterisk on the screen, erasing it with a
space. The problem is positioning the robot on the screen.

There are two statements that make positioning text on the screen fairly easy. HTAB
sets the horizontal position where the next character will be printed, and VTAB sets the
vertical position. The top left corner on the text screen is 1, 1, with the values
incrementing as you move right or down.

Another statement you might find handy in this program is HOME. HOME clears the
entire screen and sets the position to 1, 1.

Here’s a short subroutine that shows you how you can use these statements to print a
character at a specific location on the text screen.

!--
!
! DrawRobot - draw the robot
!
! Shared Variables:
! x,y - position of the robot
! ch - character to draw
!
!--

SUB DRAWROBOT(X AS INTEGER , Y AS INTEGER , CH AS STRING)

HTAB X
VTAB Y
PRINT CH;
END SUB

Problem 11.3. Write a program to move a spot in the graphics window. The program
should use a modified form of the NextToken parser that reads characters from a line
instead of a file. NextToken should return tokens with all of the characters converted to
uppercase letters.

With these changes in mind, the business end of the main program should include a
main loop that looks like this:

DO
 ! find out what we are supposed to do
 CALL GETACTION

 ! if it is a movement then move
 IF VERB = GO THEN
 ! erase the old robot
 CALL DRAWROBOT(X, Y, " ")

 ! move the robot
 SELECT CASE SUBJECT
 CASE UP:Y = Y - 1
 CASE DOWN:Y = Y + 1
 CASE LEFT:X = X - 1
 CASE RIGHT:X = X + 1
 END SELECT

 ! draw the robot in the new spot
 CALL DRAWROBOT(X, Y, "*")
 END IF
LOOP UNTIL VERB = QUIT

Be sure you remember to initialize X and Y, and draw the starting position of the
robot, before the program starts.

GetAction will need to read a line from the user. Read that line from the top of the
screen, erasing any old typed input first by writing enough spaces to the screen to clear
out the old line.

This problem leaves more of the design of the program to you than any previous
problem in the course. If you get stuck, keep in mind that there is a solution on the
solutions disk. There are lots of correct ways to write this program. Once you finish,
check out the solution to see another way to write the program, and to see where your
program seems better organized and what tricks you can pick up from the solution.

Lesson Twelve – Recursion

A Quick Look at Recursion
By now you are well acquainted with defining and calling subroutines. An interesting

point about subroutines that we haven’t talked about, and that you may not have noticed,
is that a subroutine can call itself. The ability of a subroutine to call itself opens up a
whole new concept in programming called recursion.

We will start our look at recursion using a simple example. The purpose of this first
section is to tell you about the mechanics of recursion. With the mechanics out of the
way, we will look at recursion as a problem solving technique, solving the classic
problem of the Towers of Hanoi. We will then combine recursion with a simple scanner,
like the ones you wrote in the last lesson, to create a recursive descent expression
evaluator.

How Procedures Call Themselves
Let’s start by looking at a short program. This program multiplies two positive

integers.

PRINT MULT(4, 5)
END

FUNCTION MULT(X AS INTEGER , Y AS INTEGER) AS INTEGER
IF Y = 0 THEN
 MULT = 0
ELSE
 MULT = MULT(X, Y - 1) + X
END IF
END FUNCTION

Let’s face it, that’s a pretty weird looking program. We will start by tracing through
the program to see how it works.

Stepping through the program, the first thing that happens is MULT gets called with
X = 4 and Y = 5. After testing to see if Y is zero, the subroutine executes this statement:

MULT = MULT(X, Y - 1) + X

This statement is fairly strange all by itself. Here we have a function call, MULT(X,
Y - 1), and an assignment to the function. You have seen both of these things by
themselves, but never together on the same statement. What does this mean? Well, the
statement calls MULT again, this time with X = 4, and Y = 4. Assuming for the moment
that this subroutine really will do a multiply properly, the function must return 16. We
then add X, which is 4, getting an answer of 20. This value is assigned to MULT, so it is
the value the subroutine will return. Of course, 4*5 is, in fact, 20, so if the call to MULT
with X = 4 and Y = 4 works, the function will actually return the correct answer.

It is fair to ask how the BASIC knows the difference between calling a function and
assigning a value for the function to return. After all, the name of the identifier is the
same in both cases, and as we have just seen, a function call and an assignment to set the
value returned by the function can occur in the same function. The answer lies in which
side of the assignment operator the function name is used. If the function name occurs on
the left side of the assignment operator, like this:

MULT = <some expression>

BASIC evaluates the expression on the right side and assigns the value to the function.
The function then returns this value to whoever called the function. If the function name
is used as part of an expression, like this:

<someplace to put the value> = MULT(X, Y - 1) + X

BASIC calls the function and uses the value it returns.
Going back to our example, we said that the function would return the correct value if

MULT(4, 4) returned 16. Convince yourself that it does by tracing thorough the program.
As you go through, assume that MULT will return the correct value for MULT(4, 3). You
can continue this process right down to the point where a call is made with Y = 0.

Problem 12.1. The example showed you how to do a multiplication using recursion.
Basically, the program made use of the fact that, when N is any number greater than 0, M
* N gives the same result as M * (N - 1) + M. You can find the exponent of a number the
same way. For example, 2^3 (2 raised to the power 3) is 8, or 2*2*2. This is the same as
(2^2)*2. Change the program so it calculates an exponent, given two integers as input.
Use it to verify that 5^4 is 625. As with the addition example, be sure and step through
the program.

Learn to Program in GSoft BASIC

Recursion is a Way of Thinking
After trying to keep track of all of the values as you traced through a simple recursive

program, I don’t think it will be hard to convince you that you can’t think about recursion
the same way you think about IF statements, WHILE loops, and so forth. You will get so
tangled up in the details of keeping track of all of the values and how many times the
function has been called that you will forget what you are trying to accomplish. You may
start to think that anyone that understands recursion must have a mind that would have
made Einstein envious. I’ve watched a number of beginning programmers who would
agree as they struggled with recursion, trying to analyze all of those values and calls. It
reminds me of the time I opened the course outline for Classical Mechanics in college
and saw, on the front page of the outline, in the middle of the page, boldfaced, the
following quote:

Any problem, no matter how difficult, can be made still more difficult if
looked at it in the right way.

No kidding.
Once you understand that a function can call itself, and that it can have multiple

copies of local variables and still keep track of everything, you should never trace
through a recursive subroutine, trying to follow the values, again. If you do, you are
simply thinking about the problem the wrong way.

Instead, think about a piece of the problem, not the whole thing. Instead of thinking
about the multiply as a series of function calls, look at what happens on any particular
call. For the multiply function, there are two possibilities: either Y is zero, or it is not. As
you know, zero multiplied by any other number is still zero, so we know it is correct for
the function to return zero if Y is zero. If Y is not zero, we apply a simple rule: X * Y is
the same as X * (Y - 1) + X. So, what is X * (Y - 1)? We don’t know. More important,
we don’t care. The rule works all of the time, so we truly don’t have to worry about what
X * (Y - 1) is; a call to a correct multiply routine gives us that answer. With the answer to
X * (Y - 1) in hand, we add X and return the correct answer for X * Y. The crucial point
to remember is that we don’t try to trace through the morass of function calls to see what
X * (Y - 1) will give us: We recognize that if the function returns the correct value for
one terminal case, in our example when Y = 0, and that if it returns the correct answer for
X and Y, assuming that X*(Y-1) is done correctly, that it must return the correct answer
all of the time. Mathematicians call this a proof by induction.

A good way to keep this in mind is to remember that any recursive function must
satisfy two conditions to work. First, it has to have a way to stop. In the case of the
multiply subroutine, we stopped when Y reached zero. Second, each call must move you

closer to the stopping place than you were when the subroutine was called. In our
multiply subroutine, any call that was made with Y greater than 0 reduced Y.

Let’s put these ideas to work to solve a classic puzzle, the Towers of Hanoi. This is a
puzzle that quickly befuddles anyone who tries to solve it iteratively, the way you have
been writing programs up until this lesson. The puzzle starts with six disks, all of a
different size, sitting on one of three pegs, like this:

The object is to move all of the disks from the left-hand peg to the right-hand peg. On
each turn you can move only one disk. The only other restriction is that you can never
cover one disk with a larger disk. Stop and try this before going on. You can cut the six
disks from pieces of paper, and stack them on your desk instead of using pegs. You can
also do a short version of the puzzle with a penny, nickel, dime and quarter.

So, did you solve the puzzle iteratively? Even if you didn’t make any mistakes, it
takes 63 different moves to solve the puzzle. Can you keep that many moves straight in
your head? If so, you have a better mind than mine.

The way to solve the puzzle is to turn it around. Instead of trying to move the top
disk, you have to realize that the real problem is to move the bottom disk! The goal is to
move the top five disks from the first peg to the second, like this:

The next step is to move the bottom disk to the third peg.

Learn to Program in GSoft BASIC

The last step is to move the pile of five disks from the second peg to the third.

Expressing this as a BASIC procedure, we get something like this:

SUB MOVEDISKS(COUNT AS INTEGER , SRC AS INTEGER , DEST AS
INTEGER , SPARE AS INTEGER)

IF COUNT <> 0 THEN
 CALL MOVEDISKS(COUNT - 1, SRC, SPARE, DEST)
 CALL MOVEONEDISK(SRC, DEST)
 CALL MOVEDISKS(COUNT - 1, SPARE, DEST, SRC)
END IF
END SUB

MOVEONEDISK, of course, is a subroutine that takes the top disk from one peg and
places it on another. We could represent the different pegs as three arrays, one for each
peg, with six spots in each array. Each spot could be empty, or it might have one of the
disks. In practice it’s generally easier to have one extra space on each peg that is always
empty; this just simplifies the checks that need to be made as you look for the top disk on
a peg.

The important thing to recognize is that we haven’t worried about how to move five
disks from the first peg to the second. We know that if we can move six disks by first
moving the top five, then moving the bottom disk, and finally moving the top five disks
again, that we can use exactly the same idea to move the five disks. After all, to move
five disks, we start by moving four of them to the spare peg, then we move the bottom
disk, and finally we move the four disks to the correct peg. To move four disks... well,
you get the idea. Eventually, we end up with the trivial problem of moving one disk.

Problem 12.2. Write a program that solves the Towers of Hanoi problem. Draw the
disks in the graphics window as they are moved around by the call to MOVEONEDISK.

Problem 12.3. Recursion can be used to process a linked list in reverse order. To see
this idea in action, write a program that builds a linked list, stuffing the numbers 1 to 10
in the records, like this:

FOR I = 1 TO 10
 ALLOCATE (P)
 IF P <> NIL THEN
 P^.NEXTP = FIRST
 P^.VALUE = I
 FIRST = P
 END IF
NEXT

Next, write a recursive procedure that prints the values in the list. On each call, the
recursive procedure should return if the pointer that is passed to it is NIL. If the pointer is
not NIL, the procedure should call itself, then print the current value, like this:

CALL PRINTLIST(P^.NEXTP)
PRINT P^.VALUE

After you write the program, reverse the last two statements, and run it again. This
time, the program prints the numbers in reverse order. Make sure you understand why,
tracing a few iterations with pencil and paper if you really must.

A Practical Application of Recursion
In the last lesson we looked briefly at scanners and parsers. One of the easiest kind of

parser to implement is called a recursive descent parser. To see how recursion can be
used in a parser, we will solve a problem that had computer scientists stumped for a long
time back in the early days of computing, when they were trying to write the first
compilers. The problem is to solve a mathematically expressed equation.

For example, you know that

(4 + 5) * (1 + 2)

is evaluated by adding the terms in parenthesis first, then doing the multiply. How can we
write a program that can do this? It’s not an idle problem: Over the years I have been
asked to write a number of programs that had to solve an equation like this one. The

Learn to Program in GSoft BASIC

problem doesn’t just crop up in computer languages, either. You need to solve equations
in math programs that graph functions, in spread sheets, and even in some databases.

To see how to solve this problem we will write a simple expression evaluator that can
add, subtract, multiply and divide. It will accept integer numbers and parenthesis. Just as
in algebra and BASIC, add and subtract will have the same precedence, and multiply and
divide will have the same precedence, but multiply and divide have a higher precedence
than add or subtract.

To get a grasp on how the expression evaluator will work, let’s look at this
expression:

4 * 5 + 9 / 2 - 6

To solve this expression by hand we would first scan through, doing all of the
multiply and divide operations, leaving only numbers and the add and subtract
operations.

20 + 4 - 6

This equation can be solved by working from left to right, adding and subtracting
each new value to the old value. Thinking recursively, we can solve this equation by
calling a function to do all of the stuff besides addition and subtraction, then checking to
see if there is an add or subtract operation, and finally looping. In true recursive style, not
to mention structured programming style, we won’t worry about how the subroutine that
does the multiplies and divides works. Instead, we solve the smaller problem. Here is our
solution, a function that calls another function, FACTOR, to read numbers, do
multiplication, and handle parenthesis, does the adds and subtracts that are left over, and
returns the result. Our function assumes that the main program calls NEXTTOKEN one
time to collect the first token from the input line before expression is called; this is a very
common technique in recursive descent parsers.

!--
!
! Expression - evaluate an expression
!
! Shared Variables:
! token - last token read
! tokenValue - value of last integer token
! t_add, t_subtract, t_integer - names of the tokens
!
!--

FUNCTION EXPRESSION AS INTEGER

SHARED TOKEN, TOKENVALUE
SHARED T_ADD, T_SUBTRACT, T_INTEGER

DIM FIRSTVALUE AS INTEGER , SECONDVALUE AS INTEGER :! values
from FACTOR

DIM OPERATION AS INTEGER :! type of the operation

! get the first value
FIRSTVALUE = FACTOR

! handle any operations
WHILE TOKEN = T_ADD OR TOKEN = T_SUBTRACT
 ! skip the operation
 OPERATION = TOKEN
 CALL NEXTTOKEN

 ! get the second value
 SECONDVALUE = FACTOR

 ! do the operation
 IF OPERATION = T_ADD THEN
 FIRSTVALUE = FIRSTVALUE + SECONDVALUE
 ELSE
 FIRSTVALUE = FIRSTVALUE - SECONDVALUE
 END IF
WEND

! return the result
EXPRESSION = FIRSTVALUE
END FUNCTION

Let’s trace through this function with our sample expression,

20 + 4 - 6

to see how it works. When the function is called, the main program has already called
NEXTTOKEN, so the global variable TOKEN already has a value. It is holding an
integer whose value is 20. So far, the function FACTOR doesn’t have to do much. It just
checks to be sure that token is an integer value, returns the value, and reads in the next

Learn to Program in GSoft BASIC

token. When we get to the start of the while loop, then, value is 20. The + character has
been read, and TOKEN has been set to ADD.

At the start of the while loop we save the operation in a variable called, surprisingly
enough, OPERATION and read the next number. If there is an operation, there must be a
number after it. We’ll trust FACTOR to flag an error if the number is missing. We then
call FACTOR to get the next number, skipping the number token in the process, and do
the operation. At the end of the while loop, value is 24, and TOKEN is SUBTRACT. One
more pass through the while loop finishes off the expression, and we return a final value
of 30.

The next step is to handle multiplication and division. That’s no trick, really. They
work the same way addition and subtraction do! In this case, we will call a function
called TERM to handle numbers and parenthesis. Everything else is an echo of the
function that handles addition and subtraction.

!--
!
! Factor - do multiplies and divides
!
! Shared Variables:
! token - last token read
! tokenValue - value of last integer token
! t_multiply, t_divide, t_integer - names of the tokens
!
!--

FUNCTION FACTOR AS INTEGER

SHARED TOKEN, TOKENVALUE
SHARED T_MULTIPLY, T_DIVIDE, T_INTEGER

DIM FIRSTVALUE AS INTEGER , SECONDVALUE AS INTEGER :! values
from TERM

DIM OPERATION AS INTEGER :! type of the operation

! get the first value
FIRSTVALUE = TERM

! handle any operations
WHILE TOKEN = T_MULTIPLY OR TOKEN = T_DIVIDE
 ! skip the operation
 OPERATION = TOKEN
 CALL NEXTTOKEN

 ! get the second value
 SECONDVALUE = TERM

 ! do the operation
 IF OPERATION = T_MULTIPLY THEN
 FIRSTVALUE = FIRSTVALUE * SECONDVALUE
 ELSE
 FIRSTVALUE = FIRSTVALUE / SECONDVALUE
 END IF
WEND

! return the result
FACTOR = FIRSTVALUE
END FUNCTION

Trace through our sample equation

4 * 5 + 9 / 2 - 6

to see how FACTOR works, and how FACTOR and EXPRESSION work together to
make sure the operations are done in the correct order. For this short example keeping
track of the global variables TERM and TOKEN on a piece of paper should work out
well.

The last step is to write the subroutine that handles numbers. There is one other thing
that can appear at this point, though, and that is a parenthesis. TERM handles that
particular problem by calling EXPRESSION to evaluate whatever appears between the
parenthesis! EXPRESSION can then call FACTOR, which will call TERM, and so forth.
This recursive call is what allows our expression handler to handle very complex
equations.

!--
!
! Term - Handle a number or parenthesis
!
! Shared Variables:
! token - last token read
! tokenValue - value of last integer token
! t_integer, t_lparen, t_rparen - names of the tokens
!
!--

Learn to Program in GSoft BASIC

FUNCTION TERM AS INTEGER

SHARED TOKEN, TOKENVALUE
SHARED T_INTEGER, T_LPAREN, T_RPAREN

IF TOKEN = T_INTEGER THEN

 ! handle an integer
 TERM = TOKENVALUE
 CALL NEXTTOKEN
ELSE IF TOKEN = T_LPAREN THEN

 ! skip the (
 CALL NEXTTOKEN

 ! evaluate the expression
 TERM = EXPRESSION

 ! skip the)
 IF TOKEN = T_RPAREN THEN
 CALL NEXTTOKEN
 ELSE
 PRINT "Syntax Error"
 END IF
END IF
END FUNCTION

Take a close look at the error message that is printed if TERM finds an opening
parenthesis but no closing parenthesis. Does it look familiar? If not, you might glance
through the list of error messages at the end of the GSoft BASIC manual. Now you know
where those error messages come from!

Problem 12.4. Write a program to evaluate an expression and write the value. Your
program should handle addition, subtraction, multiplication, division, and parenthesis. All
operations should be on integers.

Your program should start by prompting the user for an expression. It should then call
NEXTTOKEN to fetch the first token from the line, followed by a call to EXPRESSION
to evaluate the expression. The program should loop repeatedly, reading new expressions,
until the line typed by the user is a null string.

While the text did not cover writing the NEXTTOKEN subroutine, all of the concepts
were covered in the last lesson. Try to write NEXTTOKEN on your own; if you get
stuck, refer to the solution.

Lesson Thirteen – Sorts

Sorting
Way back in Lesson 5 you got your first look at a sort. Sorting is a pretty common

topic in programming courses for a number of reasons. First, there are many places in
real programs where you need to sort some information. In some cases, it is pretty
obvious that a sort is needed. For example, you may have sorted a database to put a list of
people in alphabetical order. You may have sorted the same database to put the list in zip
code order to get ready for a mass mailing. In other cases, the fact that something is being
sorted is not so obvious, but sorts are none-the-less used. For example, a card playing
game may sort a hand of cards.

Another reason sorts are a popular topic is because sorting is a topic that people have
spent enough time on to understand fairly well. Computer scientists who deal with the
efficiency of algorithms have studied sorts for a long time. In the process, they have
compiled a rather impressive list of different ways to sort information.

The Shell Sort
The shell sort is one of several basic sorting methods that are easy to implement, easy

to understand, and reasonably efficient for small amounts of information. In the shell sort
you loop over the information to be sorted, swapping entries if they are out of order. If
you make a swap, you also set a flag to remind you that you found entries that were out
of order. In that case, you will need to make another pass over the data to make sure it is
in the right order. You keep doing this until you make a pass over the data without
finding anything that is out of order. If you are a little fuzzy about the details, refer back
to Lesson 5, where this sort was first performed.

Here’s a simple version of the sort that sorts an array of SIZE numbers, where SIZE
is a constant or variable telling how many entries are in the array.

DO
 SWAP = FALSE
 FOR I = 1 TO SIZE - 1
 IF NUMS[I] > NUMS[I + 1] THEN
 TEMP = NUMS[I]
 NUMS[I] = NUMS[I + 1]
 NUMS[I + 1] = NUMS[I]
 SWAP = TRUE
 END IF
 NEXT
LOOP WHILE SWAP

When we start to worry about how efficient a sort is, we usually look at how many
times we have to compare the numbers, since that is the operation we do most often.
Let’s trace through this routine for a short example and find out how efficient it is. We’ll
use a size of 5, with starting numbers of 5, 4, 3, 2 and 1, in that order. You should follow
along with a pencil and paper, writing down the values of variables, executing this
algorithm by hand, and counting the operations on your own.

The first time through the loop we do four compares and four swaps. The numbers in
the array are ordered like this after the first time through the loop:

4 3 2 1 5

We still have to do four compares each time through the loop. After the next loop,
and four more compares, the array looks like this:

3 2 1 4 5

This process continues until the numbers are sorted. We have to do one extra pass
after all of the numbers are sorted, since we keep going until SWAP stays FALSE. Here
are the numbers in the array, along with the total number of compares we have
performed:

2 1 3 4 5 12

1 2 3 4 5 16

1 2 3 4 5 20

While we won’t go through a formal mathematical proof, by trying a few cases you
can probably convince yourself that if you are sorting N things, and the numbers start out

Learn to Program in GSoft BASIC

in reverse order, the number of compares will be N * (N - 1). Starting with the array in
reverse order is the worst possible situation for this sort, so we call this the worst case run
time.

In a sense, it is pretty unfair to judge anything by the worst case. This is especially
true in computer science, since it turns out that in many situations the typical run time for
an algorithm is very different than the worst case run time. In fact, there are many
situations where the algorithm that has the best worst case run time is not the one with the
best typical run time. On the other hand, you do need to know the worst case time, too,
since you may be planning a program that is very time critical. In other words, it pays to
know as much about algorithms and their efficiency as you can take the time to learn.
You may end up picking one method of sorting in one program, and a different method in
another.

You will be able to find the worst case run time in published books for most
algorithms you are likely to need. What if you can’t find out about the algorithm from a
book? Or, what if you find the algorithm, but they don’t tell you the typical run time, only
the worst case run time? Well, you’ve already seen one way to find the worst case run
time, by tracing through the program by hand. You could also do the same thing by
machine, of course. While this doesn’t give you a mathematical proof, counting the
operations does give you a good handle on the run time of an algorithm. You can use the
same idea to find the typical run time. These ideas are expanded on in the problems.

Problem 13.1. Write a program that creates an array of integers in reverse order, like
the array we looked at in the example in this section. Be sure and use a constant for the
size of the array. Sort the array using the algorithm shown, but add a counter than counts
the number of compares. Print this value.

Run this program with arrays that have 2, 3, 4, 5, and 10 values. Do all of the
numbers match the value N*(N + 1)?

Problem 13.2. Finding the typical run time for an algorithm is a lot like finding the
worst case run time, like you did in problem 13.1. If you have some actual samples of
numbers you plan to sort, you can use the samples to find the typical run time. Another
way is to use a simulation, filling the arrays with random values several times, then
averaging the run time for the various sorts.

Try this method to find the typical run time for the shell sort. Modify the program
from problem 13.1 so it uses a random number generator to fill the array with values
between 1 and the size of the array. To keep things simple, allow duplicates. In other
words, you don’t have to check to be sure that the random number generator returns each
possible value once; it is fine if the array has some duplicates. Do this 100 times, and

average the number of compares. Find the values for arrays with 2, 3, 4, 5, and 10
elements.

Quick Sort
There are several ways of sorting information that are a little faster than the shell sort,

but these generally still have a run time that is proportional to N*N, or something pretty
close to N*N, like the N*(N-1) that we found for the shell sort. There are also some sorts
that have a typical run time proportional to N*ln(N)/ln(2). To see what this means, let’s
stop and think about a fairly common sorting problem, sorting a mailing list to zip-code
order. There are a variety of mailing lists that come in a variety of sizes, but it isn’t
uncommon to have 100,000 names in a mailing list. Sorting 100,000 names using the
shell sort has a worst case run time of 100,000*(100,000-1), or 9,999,900,000 compares.
To say the least, doing nearly ten billion compares takes some serious computer time,
especially if you are comparing floating-point numbers, or worse yet, strings. The faster
sorts that work in N*ln(N)/log(2) time, though, would do the same thing using 1,660,964
compares, which is over 6,000 times faster!

The most popular of the fast sorts is a recursive sort called quick sort. Quick sort uses
a divide and conquer technique. On each step, a pivot value is picked. Picking a good
pivot value is something of a fine art, and it is a very important step. In most cases, the
middle value is a good choice for the pivot value. For example, if you are sorting an array
with indices from 1 to 100, you would use the 50th element as the pivot value. The
routine then moves anything smaller than the pivot value to the left of the pivot, and
anything larger than the pivot value to the right of the pivot. The recursive step comes
next: the quick sort procedure calls itself, passing the part of the array to the left of the
pivot, then makes another recursive call to sort the right half of the array.

Understanding how this works is pretty tricky, so let’s get used to it slowly. Type in
the following program and make sure it works. It uses quick sort to sort a small array
with ten values.

REM A sample of quick sort.

CONST SIZE = 10

DIM A(SIZE) AS INTEGER

CALL FILL
CALL SORT(1, (SIZE))
CALL PRINTARRAY
END

Learn to Program in GSoft BASIC

!--
!
! Fill - fill an array
!
! Shared Variables
! A - array to fill
! size - number of elements to fill
!
!--

SUB FILL

SHARED A(), SIZE

DIM I AS INTEGER :! loop variable

FOR I = 1 TO SIZE
 A(I) = SIZE + 1 - I
NEXT
END SUB

!--
!
! PrintArray - print the array
!
! Shared Variables
! A - array to sort
! size - number of elements to fill
!
!--

SUB PRINTARRAY

SHARED A(), SIZE

DIM I AS INTEGER :! loop variable

FOR I = 1 TO SIZE
 PRINT A(I)
NEXT
END SUB

!--
!
! Sort - sort an array
!
! Shared Variables:
! A - array to sort
! size - number of elements to fill
!
! Parameters:
! left, right - range of indices to sort
!
!--

SUB SORT(LEFT AS INTEGER , RIGHT AS INTEGER)

SHARED A(), SIZE

DIM I AS INTEGER , J AS INTEGER :! array indices
DIM PIVOT AS INTEGER :! pivot value
DIM TEMP AS INTEGER :! used to swap values

! quit if there is only 1 element to sort
IF RIGHT > LEFT THEN

 ! find the pivot index
 I = (LEFT - 1) + (RIGHT - LEFT + 1) / 2

 ! put the pivot at the end and save it for compares
 PIVOT = A(I)
 A(I) = A(RIGHT)
 A(RIGHT) = PIVOT

 ! set up the start indices
 I = LEFT
 J = RIGHT - 1

Learn to Program in GSoft BASIC

 ! partition the array
 WHILE I <> J
 WHILE A(I) <= PIVOT AND I <> J
 I = I + 1
 WEND
 WHILE A(J) >= PIVOT AND I <> J
 J = J - 1
 WEND
 TEMP = A(I)
 A(I) = A(J)
 A(J) = TEMP
 WEND

 ! find the pivot insert point
 IF A(I) < PIVOT THEN
 I = I + 1
 END IF

 ! replace the pivot
 TEMP = A(I)
 A(I) = A(RIGHT)
 A(RIGHT) = TEMP

 ! sort to the left of the pivot
 CALL SORT(LEFT, I - 1)

 ! sort to the right of the pivot
 CALL SORT(I + 1, RIGHT)
END IF
END SUB

Type it in, then run the program once to make sure it is typed in correctly.
For our first look at the SORT subroutine, we will not worry too much about how

each statement works. Instead, let’s look closely at what happens on the whole. The
SORT subroutine is really divided into four distinct steps:

1. Find a pivot value.
2. Put everything smaller than the pivot to the left of the pivot value, and everything

larger than the pivot value to the right of the pivot.
3. Sort the values to the left of the pivot.
4. Sort the values to the right of the pivot.

This is a classic example of recursion as we saw it in the last lesson. To understand
quick sort, it is very important to look at what happens on one step, not worrying about
how we "sort everything to the left of the pivot."

The first few lines of the procedure find the pivot value and move it to the right-hand
side of the array, where it is out of the way:

 ! find the pivot index
 I = (LEFT - 1) + (RIGHT - LEFT + 1) / 2

 ! put the pivot at the end and save it for compares
 PIVOT = A(I)
 A(I) = A(RIGHT)
 A(RIGHT) = PIVOT

It may seem strange to go to all of the work to pluck a pivot from the middle of the
array and move it to the right-hand side of the array, but there really is a good reason to
do this. The algorithm to shuffle the values smaller than the pivot to the left, and the
values larger than the pivot to the right, is a lot simpler and faster if we move the pivot
value out of the way. It might seem like a good idea to simply use the right-hand value
for the pivot, then. It turns out that this is a rotten idea. If you pick the right-hand value
for the pivot, and start with a sorted array, quick sort gives the worst performance
possible. In practice, picking the middle element of the array for the pivot works very
well. An alternate scheme that works even better is to examine the leftmost, rightmost
and middle value and pick the middle of the three values. Other schemes for picking a
pivot are covered in books that go into more detail on sorting.

The next step is to partition the array. That’s the term used to describe the process of
shuffling all of the values less of the pivot to the left, and all of the values higher than the
pivot right.

 ! set up the start indices
 I = LEFT
 J = RIGHT - 1

 ! partition the array
 WHILE I <> J
 WHILE A(I) <= PIVOT AND I <> J
 I = I + 1
 WEND

Learn to Program in GSoft BASIC

 WHILE A(J) >= PIVOT AND I <> J
 J = J - 1
 WEND
 TEMP = A(I)
 A(I) = A(J)
 A(J) = TEMP
 WEND

This step uses two array indices, I and J. They start at opposite ends of the array,
working their way towards the middle until they meet (which means we are finished) or
they hit a value that is in the wrong spot. If a value is found that is out of place, it is
swapped with another value that is out of place on the other end of the array.

Once the array is partitioned, the pivot value itself is floated to the proper spot in the
array.

 ! find the pivot insert point
 IF A(I) < PIVOT THEN
 I = I + 1
 END IF

 ! replace the pivot
 TEMP = A(I)
 A(I) = A(RIGHT)
 A(RIGHT) = TEMP

With these steps complete, SORT has finished the first cycle through the array and is
ready to sort the two partitions. At the point the array actually looks like this:

2 3 4 5 1 6 8 9 10 7

The partition value of 6 has been floated to it’s proper spot. Every value smaller than 6
appears to it’s left, and everything larger than 6 appears to the right.

The last step is to call SORT recursively two times, once for the portion of the array
to the left of 6, and once for the portion of the array to the right of 6. Each of these calls
will perform this same process to sort the smaller piece of the array until SORT is called
with the indexes the same. One element can’t be out of order, so that’s when SORT
finally return without calling itself.

Let’s face it: Quick sort is quite a bit more complicated than the shell sort. Why is it
faster? After all, if you count the compares in the while loop that partitions the array, we
still end up with about N compares. The trick, though, is that quick sort doesn’t have to

go through its main loop as many times as the shell sort does. In this example, we’ve
divided the problem in half. Thinking about that in terms of the shell sort, where the
worst case sort time is n*(n-1), you can see what an advantage this is. If we are sorting
100 values with the shell sort, the worst case run time is 100*(100-1), or 9900. If we sort
2 arrays, each with 50 elements, though, the run time is proportional to 2*(50*(50-1)), or
4900. You can see that the savings would mount up pretty quickly, since quick sort
would divide the 50 element arrays in half, too.

Problem 13.3. How many times does the SORT subroutine get called in the example
shown in this section? (Hint: put a counter in the SORT subroutine and run the program.)

Problem 13.4. Find the typical run time for quick sort for arrays that have 2, 3, 4, 5
and 10 elements. Use the same method that you used in problem 13.2. Count the
compares of values in the array, but don’t count the compares of array indices. There are
three places in the subroutine where you will need to increment the counter: inside each
of the short WHILE loops, and right after you exit the large WHILE loop.

How do these values compare to the ones you found in problem 13.2?

How Fast Are They?
All of this mathematical gobbledegook about theoretical efficiency may be making

your head spin. It can also be taken too far. There are a surprising number of people
running around with a degree in computer science who will tell you that quick sort is
always faster than a shell sort. Even in theory, this simply isn’t true. There are some rare
cases where the shell sort will outperform the quick sort if the values in the array happen
to be placed just right.

On average, though, quick sort seems like it should work better than the shell sort. It
turns out that this isn’t quite true. The shell sort has one advantage over quick sort: It is
simpler. Recursive subroutine calls take some time; far more time than looping through a
WHILE loop. There are also a lot of compares and tests in the quick sort subroutine that
aren’t needed in the shell sort. It turns out that the shell sort is actually faster than quick
sort for small arrays. In fact, on my machine, the solution to problem 13.2 ran faster than
the solution to problem 13.4, even though it did more compares. Some sophisticated
sorting subroutines take advantage of this fact by using quick sort to sort the array until it
is divided into small chunks, then using the shell sort, or one of its close relatives, to sort
the small pieces.

This is where practice meets theory. A computer scientist who really understands his
topic knows all of this, of course. The theoretical run times are very important, but it is
also important to keep the overhead in mind. Unfortunately, while a computer scientist

Learn to Program in GSoft BASIC

can use mathematical proofs to find the theoretical run time for an algorithm, there is no
easy way to predict the actual run time. That depends on a lot of variables, like how
efficient subroutine calls are (they are more efficient compared to loops on an
Apple IIGS, for example, than on an IBM 370 mainframe, which does not have a stack),
what kind of information you are comparing (integer compares are much faster than
string compares), and how long it takes to swap elements of the array (for arrays of
records, the swap may take longer than the compare!).

While the theoretical efficiency is a great number to know, there’s nothing like
actually timing a real program on real data to decide between two competing algorithms.

Quick Sort Can Fail!
One little point has been ignored up to now. Quick sort is very fast, especially for

large arrays. Quick sort is a little tougher to implement, but you can modify the SORT
subroutine from this lesson fairly easily. The big problem with quick sort is that it doesn’t
always work.

This may come as quite a shock to you. After all, you stepped through the SORT
subroutine fairly carefully. You saw how it worked. How could it fail?

The answer is that there is nothing wrong with the basic idea behind quick sort. Quick
sort will always work unless it runs out of memory. You see, every time you make a
subroutine call, your program uses a small amount of memory from the variable buffer.
The variable buffer is limited in size. By default, programs written in GSoft BASIC have
an 64K variable buffer. You can increase this size, but there is always a limit—and the
larger the data you’re sorting, the less space is left over for subroutine calls.

In version 1.1 of GSoft BASIC, each call to the SORT procedure uses 477 bytes of
space from the variable buffer. If you call a subroutine several times from a loop, the
procedure uses the same memory each time you call it, but if a subroutine calls itself
recursively, each recursive call uses a new chunk of memory. For a variety of reasons,
there is no good way to tell in advance exactly how much stack space will be used by a
subroutine. Adding a new local variable or switching to a different version of
GSoft BASIC will change the memory used. With the default stack size of 64K, and the
SORT subroutine we have used in this lesson, it is easy to see that the Sort procedure
cannot safely recur more than 137 levels deep. In practice, the value is a little smaller.

If SORT happens to hit a worst-case situation, it will recur as deep as the size of the
array. In the best case, Sort will recur ln(N)/ln(2) levels deep, where N is the size of the
array. This happens when Sort splits the array exactly in half on each call.

All of this points out that you really have to understand not only the advantages of a
particular algorithm, but its disadvantages as well. Any algorithm has to be viewed with a
critical eye. Quick sort is a lot faster than the shell sort for large arrays, but the shell sort

never fails. And for small array, like the 10 element arrays used in our examples, the shell
sort is actually faster than quick sort because it is a less complicated algorithm and ends
up executing fewer statements in order to make a swap.

Fortunately, there is a solution to this mess. You can use the FRE(0) function to
determine how much free memory is left in the variables buffer. If the amount drops
below some predetermined limit, say 2000 bytes, you can use a shell sort to sort the piece
of the array that you are working on, rather than recurring deeper. You can also time the
two sorts for small arrays to find out how large an array needs to be before quick sort is
faster, and trigger a shell sort if the array is smaller than that limit.

Problem 13.5. Modify Sort so it uses a shell sort if the number of array elements to
sort is smaller than SHELLSIZE, a constant in your SORT procedure. Also, add a
constant called MEMLIMIT and compare the free memory left in the variables buffer to
this value when you enter SORT. If the free memory drops below this value, switch to a
shell sort. Try your sort on an array with 50 elements.

If you are curious, run the program several times with different values for
SHELLSIZE to determine the proper value for sorting integers. If you’re really curious,
you could do the same thing for an array of DOUBLE values.

Sorting Summary
Sorting has given you your first real taste of writing efficient programs. You can start

to see some of the trade-offs that you will have to make when you write programs, as
well as some of the techniques you can use to see the impact of these trade-offs.

You probably know that this lesson has only scratched the surface of sorting.
Complete books—long ones, at that—have been written on the topic of sorting. The
methods covered in this lesson will work in almost any programming situation you are
likely to come across, but if you are ever writing a program that is doing a lot of sorting,
it would pay to dig into some books to learn about some of the other sorting methods.

Lesson Fourteen – Searches and Trees

Storing and Accessing Information
The title for this lesson is "Searches and Trees," but a more down-to-earth description

would be "better ways to store and find information." Why is this important? Why spend
the very last lesson of an introductory programming course on this topic, when there are
so many more topics I could have picked?

To answer that, let’s step back from the trees a bit and look at the forest. Computers
are used for a lot of things, but desktop computers are used most often to display
information, make calculations, or store and retrieve information. That’s a pretty broad
statement, but I think it is true. Spread sheets and engineering calculations are obviously
applications where we make calculations. Spread sheets, data bases and spelling checkers
are examples of applications where one goal is to store or retrieve information. Word
processors, page layout programs, paint programs, and some database programs display
information. What about an adventure game, though? Most adventure games are really
databases inside, concerned with storing and retrieving information about the adventure
world. A chess program is calculation intensive. The list goes on and on.

You already know a few basic ways to store and access information. You have used
arrays when you knew how much information would be stored in advance, or when you
could put a reasonable limit on the amount of information that would be stored. You have
used linked lists when the fixed size of an array created problems. You have even used
files when the information had to be written to disk.

This lesson concentrates on two basic themes. If the information is stored in an array,
linked list, or disk file, how can you find it quickly? And, what are some better ways to
store the information so you can find it even quicker?

Sequential Searches
If you have an array, linked list, or file, the simplest way to find a particular piece of

information is to start at the beginning and scan through the data structure until you find
the entry you want. This is called a sequential search, and it is nothing new to you. You
used a sequential search in Lesson 11 to look for a particular name in a linked list of
strings. Of course, you can use a sequential search to look for something in a file or array,
too. To look for a numeric value in an array of records, a sequential search would look
like this:

I = 1
FOUND = FALSE
DO
 IF A(I).AGE = 40 THEN
 FOUND = TRUE
 ELSE
 I = I + 1
 END IF
LOOP UNTIL FOUND OR I = MAXINDEX

On average you will have to look through half of the information to find the record
you want. If the record doesn’t exist—if, for example, you are looking for someone who
is 40, but there are no 40 year olds in your data base—you will always scan the entire list.
A sequential search, then, has a typical run time of O(N/2) if the item you are looking for
is found, and a worst case run time of O(N), where N is the number of things to look at.
(The capital O means “on the order of.”)

The Binary Search
The sequential search is a very common kind of search to implement, and it is often

the best kind of search to use. In some cases, though, you know more about the
information you are searching. For example, one common thing that you might know is
that the information is sorted in some kind of order. If you are looking for a man named
Smith, for example, you may have ordered your data base so that all of the people are
listed in alphabetical order. If you are looking for hospital patients using a Social Security
Number, you may be searching a database that is sorted by Social Security Numbers.

When you are searching a list of items that is sorted, and you know in advance how
many things are in the array, there is a much better way of finding the information than
scanning the array sequentially. The "better way" is called a binary search. The binary
search is basically a divide and conquer method, just like quick sort. Binary searches are
usually not implemented with recursion, though.

The idea behind a binary search is to start by checking the middle value, rather than
the first value. To see how this works, let’s assume we are looking for the number 44 in
an array of 100 things. The array is very simple: each value is the same as its index, so
A(44) is 44. We’ll start by looking at the middle value, A(50). The value is 50, which is
too large. Since the array is sorted, we know that the value we are looking for must be in
the portion of the array from A(1) to A(49), assuming it exists at all. We split the array in
half again, and so forth. The table below shows our progress.

Learn to Program in GSoft BASIC

index value result
50 50 too big
25 25 too small
37 37 too small
43 43 too small
46 46 too big
44 44 match

This divide and conquer search is extremely powerful. Its worst case run time is
O(ln(N)/ln(2)). For our sample of 100 items, a few seconds with a calculator gives the
value of 6.64, which tells us that the search will always succeed after no more than 7
compares. That’s a big improvement over the sequential sort, with a typical run time for
the same array of 50—the binary search is 7 times faster. The larger the array, the bigger
the difference, too. For an array with 100,000 values, the sequential search will look at an
average of 50,000 values. The binary search will only need to look at 17 values! For an
array with 100,000 elements, the binary search is nearly 3,000 times faster.

While there are many twists on the sequential search and binary search, these two
basic ideas are at the core of many searches in real programs. Whenever the information
you need to search is in no particular order, or is in a linked list, the sequential search is a
good choice. If the information is sorted, the binary search is the best choice. Most other
searching methods depend on organizing the information better to start with.

Problem 14.1. Develop a binary search algorithm, and test in on a simple array. The
search should be implemented as a function that returns the index into the array if the
value you pass it is found, and zero if it is not. Use an array of 100 integers, with each
array element containing an even number. For example, A(1) would be 2, A(2) is 4, and
so forth. Test your search by looking for all of the even numbers from 2 to 200. Make
sure the search works when values are not found by passing it 0, 202, and 101.

A Cross Reference Program for BASIC
A binary search is an extremely efficient way of looking for a particular piece of

information, but it does have one drawback. While it works well for arrays, it is
impossible to implement an efficient binary search for a linked list, simply because you
can’t hop into the middle of the linked list.

The two most common ways of searching records in dynamically allocated memory
are called binary trees and hash tables. Both of these methods use a different way of
organizing information to make the search faster. We’re going to use a BASIC cross
reference program to look at binary trees. A cross-reference program is a program that

looks at the source code to a program and lists all of the places where a particular
identifier are used. The purpose of this lesson isn’t really to make you write a BASIC
cross reference program, so this section gives you one to start with. This BASIC cross
reference program uses a linked list for the symbol table.

This program uses the same scanning techniques that we discussed back in Lesson 11,
although a few new features have been added to handle comments and to keep track of
line numbers. Once a token is found, the program searches for the token in a symbol table
that is a simple linked list. If the token does not exist, the search routine creates a new
entry in the symbol table. Finally, the program places the line number where the token
was found in a linked list in the symbol table. While both the symbol table itself and the
line numbers are simple linked lists, this is the first time you have seen a linked list where
each element of the linked list point to yet another linked list. There are no new concepts
involved in creating linked lists this way, but the details are interesting enough to make it
worth looking at the program carefully.

If you have time, you might want to try writing this program on your own before
typing in the version you see here.

REM XREF
REM
REM This program generates a cross reference of a BASIC
REM program, showing where any symbol is used.

! line number list
TYPE LINERECORD
 NEXTP AS POINTER TO LINERECORD
 NUMBER AS INTEGER
END TYPE
TYPE LINEPTR AS POINTER TO LINERECORD

! symbol table entry
TYPE SYMBOLRECORD
 NEXTP AS POINTER TO SYMBOLRECORD
 SYMBOL AS STRING
 LINES AS LINEPTR
END TYPE
TYPE SYMBOLPTR AS POINTER TO SYMBOLRECORD

CONST F = 1:! file number

Learn to Program in GSoft BASIC

DIM CH AS STRING :! current character
DIM FNAME AS STRING :! file name
DIM LINE$ AS STRING :! current line
DIM LINEINDEX AS INTEGER :! index into line$
DIM LINENUMBER AS INTEGER :! current line number
DIM SYMBOLS AS SYMBOLPTR:! symbol table
DIM TOKEN AS STRING :! current token
DIM TOKENLINE AS INTEGER :! line number at start of token

! nothing in the symbol table
SYMBOLS = NIL

! first line
LINENUMBER = 0

! get the file name
FNAME = GETFILENAME
IF LEN (FNAME) <> 0 THEN

 ! initialize the scanner
 OPEN FNAME FOR INPUT AS #F
 CH = " "
 LINE$ = ""
 LINEINDEX = 0
 CALL NEXTCH

 ! find all of the symbols
 DO
 CALL NEXTTOKEN
 IF LEN (TOKEN) <> 0 THEN
 CALL INSERT
 END IF
 LOOP UNTIL LEN (TOKEN) = 0

 ! print the symbols
 CALL PRINTSYMBOLS

 ! dispose of the symbol table
 CALL DISPOSESYMBOLS

 ! close the file
 CLOSE #F
END IF
END

!--
!
! DisposeSymbols - dispose of the symbol table
!
! Shared Variables:
! symbols - pointer to the first entry in the symbol table
!
!--

SUB DISPOSESYMBOLS

SHARED SYMBOLS

DIM LPTR AS LINEPTR:! work line pointer
DIM SPTR AS SYMBOLPTR:! work symbol pointer

WHILE SYMBOLS <> NIL
 ! remove the symbol from the symbol table
 SPTR = SYMBOLS
 SYMBOLS = SPTR^.NEXTP

 ! dispose of the lines
 WHILE SPTR^.LINES <> NIL
 ! remove the line from the line list
 LPTR = SPTR^.LINES
 SPTR^.LINES = LPTR^.NEXTP

 ! dispose of the line record
 DISPOSE (LPTR)
 WEND

 ! dispose of the symbol record
 DISPOSE (SPTR)
WEND
END SUB

!--
!
! GetFileName - get the name of the file to cross-reference
!
!--

Learn to Program in GSoft BASIC

FUNCTION GETFILENAME AS STRING

DIM NAME$ AS STRING :! file name

INPUT "File to cross-reference: ";NAME$
GETFILENAME = NAME$
END FUNCTION

!--
!
! Insert - insert a symbol use in the symbol table
!
! Shared Variables:
! tokenLine - line number at the start of the token
! token - symbol to insert
! symbols - pointer to the first entry in the symbol table
!
!--

SUB INSERT

SHARED TOKENLINE, TOKEN, SYMBOLS

DIM LPTR AS LINEPTR:! current line number pointer
DIM SPTR AS SYMBOLPTR:! current symbol pointer
DIM WPTR AS SYMBOLPTR:! work symbol pointer

! try to find the symbol
SPTR = NIL
WPTR = SYMBOLS
WHILE WPTR <> NIL
 IF TOKEN = WPTR^.SYMBOL THEN
 SPTR = WPTR
 WPTR = NIL
 ELSE
 WPTR = WPTR^.NEXTP
 END IF
WEND

! if the symbol isn't in the table then create a new entry
IF SPTR = NIL THEN
 ALLOCATE (SPTR)
 IF SPTR <> NIL THEN
 SPTR^.NEXTP = SYMBOLS
 SYMBOLS = SPTR
 SPTR^.SYMBOL = TOKEN
 SPTR^.LINES = NIL
 END IF
END IF

! enter the line number
IF SPTR <> NIL THEN
 ALLOCATE (LPTR)
 IF LPTR <> NIL THEN
 LPTR^.NEXTP = SPTR^.LINES
 SPTR^.LINES = LPTR
 LPTR^.NUMBER = TOKENLINE
 END IF
END IF
END SUB

!--
!
! NextCh - get the next character from the file
!
! Shared Variables:
! ch - next character from the file
! f - file number
! line$ - current line from the file
! lineindex - index of the character ch in line$
! linenumber - current line number
!
! Notes: The end of a line is reported as a space
! character. All characters are converted to uppercase.
!
!--

SUB NEXTCH

SHARED CH, F, LINE$, LINEINDEX, LINENUMBER

Learn to Program in GSoft BASIC

! if we need one, get a new line
IF LINEINDEX > LEN (LINE$) THEN
 IF EOF (F) THEN
 CH = ""
 ELSE
 LINE INPUT #F, LINE$
 LINEINDEX = 0
 LINENUMBER = LINENUMBER + 1
 END IF
END IF

! check for an end of file
IF LEN (CH) <> 0 THEN
 LINEINDEX = LINEINDEX + 1
 IF LINEINDEX > LEN (LINE$) THEN
 ! handle an end of line
 CH = " "
 ELSE
 ! report the next character
 CH = MID$ (LINE$, LINEINDEX, 1)
 IF CH >= "a" AND CH <= "z" THEN
 CH = CHR$ (ASC (CH) - 32)
 END IF
 END IF
END IF
END SUB

!--
!
! NextToken - read a word from the file
!
! Shared Variables:
! ch - next character from the file
! token - string in which to return the token
!
!--

SUB NEXTTOKEN

SHARED CH, TOKEN, TOKENLINE, LINENUMBER

! initialize the token
TOKEN = ""

! find the next token
DO
 ! record the line number for the token
 TOKENLINE = LINENUMBER

 IF CH = "!" THEN

 ! handle a comment
 WHILE ASC (CH) <> 0 AND TOKENLINE = LINENUMBER
 CALL NEXTCH
 WEND
 ELSE IF CH >= "0" AND CH <= "9" THEN

 ! handle a number
 WHILE CH >= "0" AND CH <= "9"
 CALL NEXTCH
 WEND
 IF CH = "E" OR CH = "D" THEN
 CALL NEXTCH
 IF CH = "-" OR CH = "+" THEN
 CALL NEXTCH
 END IF
 WHILE CH >= "0" AND CH <= "9"
 CALL NEXTCH
 WEND
 END IF

 ELSE IF ASC (CH) = 34 THEN

 ! handle a string constant
 CALL NEXTCH
 WHILE ASC (CH) <> 34 AND TOKENLINE = LINENUMBER
 CALL NEXTCH
 WEND
 IF ASC (CH) = 34 THEN
 CALL NEXTCH
 END IF

 ELSE IF (CH >= "A" AND CH <= "Z") OR (CH = "_") THEN

Learn to Program in GSoft BASIC

 ! handle a token
 WHILE (CH >= "A" AND CH <= "Z") OR (CH >= "0" AND CH <=

"9") OR (CH = "_")
 TOKEN = TOKEN + CH
 CALL NEXTCH
 WEND
 ELSE IF ASC (CH) <> 0 THEN

 ! handle any other character
 CALL NEXTCH
 END IF
LOOP UNTIL ASC (CH) = 0 OR LEN (TOKEN) <> 0
END SUB

!--
!
! PrintNumber - recursively print the line numbers
!
! Parameters:
! nPtr - pointer to the remainder of the line number list
!
!--

SUB PRINTNUMBER(NPTR AS LINEPTR)

IF NPTR <> NIL THEN
 CALL PRINTNUMBER(NPTR^.NEXTP)
 PRINT NPTR^.NUMBER;" ";
END IF
END SUB

!--
!
! PrintSymbols - print the symbols and line numbers
!
! Shared Variables:
! symbols - pointer to the first entry in the symbol table
!
!--

SUB PRINTSYMBOLS

SHARED SYMBOLS

DIM SPTR AS SYMBOLPTR:! current symbol pointer

SPTR = SYMBOLS
WHILE SPTR <> NIL
 PRINT SPTR^.SYMBOL, ;
 CALL PRINTNUMBER(SPTR^.LINES)
 PRINT
 SPTR = SPTR^.NEXTP
WEND
END SUB

There are two ways to save a BASIC program. The SAVE command saves the
program as a tokenized file, which replaces BASIC’s reserved words with shorter
numeric values. This program is designed to process text files, so be sure you try it on
programs saves with the SSAVE or TSAVE command. If you want to try to improve the
program so it can handle either format, refer to Appendix F of the GSoft BASIC
reference manual for details about the tokenized file format used by GSoft BASIC.

Even for text files, though, there are a couple of problems with the BASIC cross
reference program you just tried. The program is a lot slower than it could be if we read
the file into memory in one chunk using GS/OS disk operating system calls, but the
purpose of this lesson isn’t learning GS/OS, so we’ll put up with that problem. The most
subtle problem is that it is a lot slower than it could be, simply because it takes so darn
long to deal with a sequential linked list. This is the main problem we will try to solve in
the next section. The most obvious problem, though, is that the symbols are printed in the
reverse order of when they are first seen in the program. It would be a lot more
convenient if they were printed in alphabetical order. We will take care of this problem as
a side effect of getting rid of the linked list. The last problem is that any sequence of
alphanumeric characters is treated as a symbol. Your program reports all of the places
where you used the reserved word end, for example. That one you will solve yourself a
bit later, as one of the problems.

The Binary Tree
The major problem with a linked list is the same as the major problem with a

sequential search: The program has to scan through an average of half of the list to find a
particular entry. If the entry doesn’t exist, the program scans through the entire list. A
binary tree is another way of handling dynamically allocated records that essentially does
the same thing for linked lists that the binary search did for searches. At each level, the
tree divides the search in half.

Learn to Program in GSoft BASIC

The way this works is to include two pointers to another record in each record, rather
than one. In a linked list, each record has a pointer we have called NEXTP that points to
the next record in the list. In a binary tree, each record has two pointers, which we will
call LEFT and RIGHT. If we look at a particular record, and the one we want is "smaller"
that the one we are looking at, we follow the left link. If the one we want is "larger" than
the one we are looking at, we follow the right link.

We’ll use a few short programs to see how this works. The first task is to learn to add
a new item to a binary tree. This is a little harder than it was for a linked list, but the same
basic ideas are involved. The program below reads strings from the keyboard and adds
them to a binary tree.

REM Create a binary tree from keyboard strings

! tree entry
TYPE TREERECORD
 LEFT AS POINTER TO TREERECORD
 RIGHT AS POINTER TO TREERECORD
 STR AS STRING
END TYPE
TYPE TREEPTR AS POINTER TO TREERECORD

DIM TREE AS TREEPTR:! top of the tree
DIM TPTR AS TREEPTR:! work pointer
DIM STR AS STRING :! work string

! nothing in the tree
TREE = NIL

! build the tree of strings
DO
 ! get a string
 LINE INPUT "String: ";STR

 IF LEN (STR) <> 0 THEN
 ! create a new record
 ALLOCATE (TPTR)
 IF TPTR <> NIL THEN
 TPTR^.LEFT = NIL
 TPTR^.RIGHT = NIL
 TPTR^.STR = STR

 ! add it to the tree
 CALL ADD(TREE, TPTR)
 END IF
 END IF
LOOP UNTIL LEN (STR) = 0

! dispose of the tree of string
IF TREE <> NIL THEN
 CALL DISPOSETREE(TREE)
END IF
END

!--
!
! Add - add a record to the tree
!
! Parameters:
! tree - next node in the tree
! rec - record to add to the tree
!
!--

SUB ADD(TREE AS TREEPTR, REC AS TREEPTR)

IF TREE = NIL THEN
 TREE = REC
ELSE IF REC^.STR < TREE^.STR THEN
 CALL ADD(TREE^.LEFT, REC)
ELSE IF REC^.STR > TREE^.STR THEN
 CALL ADD(TREE^.RIGHT, REC)
ELSE
 DISPOSE (TREE)
END IF
END SUB

Learn to Program in GSoft BASIC

!--
!
! DisposeTree - dispose of the tree
!
! Parameters:
! tree - node to dispose of
!
!--

SUB DISPOSETREE(TREE AS TREEPTR)

IF TREE^.RIGHT <> NIL THEN
 CALL DISPOSETREE(TREE^.RIGHT)
END IF
IF TREE^.LEFT <> NIL THEN
 CALL DISPOSETREE(TREE^.LEFT)
END IF
DISPOSE (TREE)
END SUB

One of the first things you might notice as you look at this program is that we are
using a recursive subroutine again. Just as with any situation where recursion is useful,
we can look at the tree as a piecemeal problem. Let’s look at an example to see how this
will work. As an example, let’s place four states in the tree. We’ll use Maine, Oregon,
Texas and Colorado for our states. Maine is simple: we create a new record, set LEFT
and RIGHT to NILL, record the string, and call ADD. The subroutine ADD sees that
TREE is NIL, and records TREE there. The effect on the global variables is to assign
TPTR to TREE, so tree now points to the first record in our list, Maine. Symbolically, we
write the tree like this:

Maine

Well, there isn’t much there, yet, so our meager tree doesn’t look very impressive.
Adding Oregon shapes things up a bit, though. This time when we call ADD, the
subroutine sees that PTR is not NIL, and checks to see if Oregon is less than Maine. It
isn’t, so it moves on to the next check to be sure that Oregon is greater than Maine. It is,
but let’s stop for a moment and consider what would happen if it wasn’t. The only way a
name could fail both checks is if it matched the name in TREE^.STR exactly. The series
of checks, then, prevents duplicates. You can have duplicates in a binary tree, but your
search has to take it into account if you do. We don’t need them.

At this point, ADD calls itself, passing TREE^.RIGHT as the new top of the tree.
TREE^.RIGHT is NIL, so REC is added as the so-called "right child" of Maine. It makes
as much sense to call Oregon a branch of Maine, but for historical reasons, we refer to
Oregon as the right child of Maine, and Maine as the parent of Oregon. Our tree looks
like this, now:

 Maine
 \
 \
 Oregon

Notice how recursion handled the problem of tracing the tree fairly neatly. Once we
decided that the top node existed, and which way to go, we called ADD again, treating
TREE^.RIGHT as a brand-new tree, which in a sense it is. If you recall, when recursion
was first introduced, I said that the way to think about recursion was to think about one
part of the problem at a time. We used that method to solve the Tower of Hanoi problem,
where we conceptually moved an entire pile of disks, rather than thinking about the
problem as moving individual disks. The same idea cropped up when we used recursion
for quick sort, where the subroutine split the problem in half and called itself to solve
each half. Here we see the same idea again: ADD decides which half of the tree is the
important part, then calls itself, processing the appropriate half of the tree as a new tree.

The next state to add is Texas, which makes two recursive calls, getting tacked onto
the tree as the right child of Oregon. Follow through the code, writing the steps down on
paper if necessary, to see how this is done.

 Maine
 \
 \
 Oregon
 \
 \
 Texas

The last state is Colorado. Since Colorado is less than Maine, it is added as the left
child of Maine. Our final tree looks like this:

Learn to Program in GSoft BASIC

 Maine
 / \
 / \
 Colorado Oregon
 \
 \
 Texas

By now, you may have noticed one of the problems with binary trees. To keep the
search time to a minimum, you want the tree to be balanced. What that means is that,
when you start at the top, the top element of the tree is also the middle element, so that
the compare splits the tree in half. In this example, if we had started with Colorado,
adding the states in alphabetical order, we would have ended up with a pretty poor excuse
for a tree:

 Colorado
 \
 \
 Maine
 \
 \
 Oregon
 \
 \
 Texas

You can add a new record to the tree and shuffle the tree around at the same time to
make sure it stays balanced. We won’t cover how, since it involves some fairly advanced
pointer manipulation. In practical situations it often isn’t necessary to create a perfectly
balanced tree. If records are added to the tree in a fairly random manner the savings of
using a tree instead of a linked list are still enormous. Whether the extra effort involved
in balancing the tree is worth the time depends on how often the tree will be searched and
how random the records are. In our application, they are fairly random.

Searching a binary tree is pretty trivial once you know how to create one. After all,
adding a new record to the tree searches the tree as a side effect! Here’s a function, based
on the ADD procedure, that will search the tree, returning a pointer to the correct record,
or NIL if the record does not exist.

!--
!
! Search - search the tree
!
! Parameters:
! tree - node to search
! str - string to look for
!
!--

FUNCTION SEARCH(TREE AS TREEPTR, STR AS STRING) AS TREEPTR

IF TREE = NIL THEN
 SEARCH = NIL
ELSE IF TREE^.STR > STR THEN
 SEARCH = SEARCH(TREE^.LEFT, STR)
ELSE IF TREE^.STR < STR THEN
 SEARCH = SEARCH(TREE^.RIGHT, STR)
ELSE
 SEARCH = TREE
END IF
END FUNCTION

This is one of those subroutines that you might struggle for a long time to come up
with on your own, but is so simple that once you see it, it is easy to understand and
remember. Trace through the subroutine, looking for Oregon and Indiana if you aren’t
sure how it works.

Finally, we come to a subject that impacts directly on our cross-reference program.
Using a method called recursive tree traversal we can write a very simple subroutine that
will trace through the tree, doing something in order. In our case, we want to print the
symbols found in the BASIC program. Here’s a simple PRINTTREE subroutine that
prints the states in our example program; the subroutine in the BASIC cross reference
program will have exactly the same structure.

!--
!
! PrintTree - print the tree
!
! Parameters:
! tree - tree to print
!
!--

Learn to Program in GSoft BASIC

SUB PRINTTREE(TREE AS TREEPTR)

IF TREE <> NIL THEN
 CALL PRINTTREE(TREE^.LEFT)
 PRINT TREE^.STR
 CALL PRINTTREE(TREE^.RIGHT)
END IF
END SUB

Notice how, once again, recursion simplifies the problem. At any particular place in
the tree, we need to print all of the names that come before the one we are working on
first, so we call PRINTTREE to do that. Next, we need to print the record we are working
on. Finally, we print all of the names that come after the one we just printed. The initial
check to make sure TREE is not NIL keeps us from stepping off of the "end" of the tree.

Problem 14.2. Add the print subroutine to the binary tree sample program. Try the
program with a variety of names.

Problem 14.3. Change the XREF program so it builds a binary tree for the symbol
table instead of a linked list. The easy way to do this is to use the INSERT subroutine to
insert each symbol in the program into the symbol table. Because of the way the INSERT
subroutine is written, if the symbol already exists, a new symbol is not created. You then
call the SEARCH subroutine to find the correct entry in the symbol table (which must
exist, since you just created one if there wasn’t one already), and enter the appropriate
line number.

A more challenging, and more efficient way to implement the program is to combine
the Search and Insert subroutines, creating a function that returns a pointer to the correct
entry in the symbol table, creating one if one did not already exist. This is the method the
solution uses.

In either case, printing the symbol table is a simple matter of modifying the
PRINTTREE subroutine from the text.

Problem 14.4. Add a new check to the XREF program that checks to see if the
symbol just found is a reserved word in BASIC. You can find a list of the reserved words
in Lesson 1.

An easy way to handle reserved words is to add a new flag to each symbol table entry
that tells if the entry is a reserved word. If you find a reserved word, you skip adding the

line number to the line number list. When printing the symbol table, you again skip
reserved words.

Creating the reserved word list in the first place is a little tedious. You will need a
subroutine that calls INSERT for each of the reserved words. There is an optimum order
to add the reserved words. See if you can figure it out by thinking about the way trees are
created, referring to the example where the names of four states were entered into a tree.

Ruffles and Flourishes
Well, a few weeks ago, you couldn’t spell recursive tree traversal, and now you know

what it is. Not bad. Let me be the first to congratulate you on joining the ranks of real
programmers, who do it with bytes and nibbles.

Of course, as I have pointed out so many times that you may be sick of hearing it,
programming is a skill. Like all skills, the more you practice, the easier it gets. There are
also a lot more things to learn about programming. Where you go from here depends on
your own interests.

BASIC doesn’t have a universally accepted standard, but it’s generally pretty easy to
read books written for any version of BASIC and translate the programs into
GSoft BASIC. The exception is books that deal with desktop programming. While the
BASIC language won’t change enough to make the books impossible to use, the
Apple IIGS toolbox is different enough from the way the desktop is implemented on other
computers that you won’t find much of use from, say a Visual BASIC book.

That leaves an enormous number of good books out there, though. I’d recommend
visiting your bookstore, Amazon.com, and especially your local library. While BASIC
has seen a resurgence in popularity in the past few years, it’s no where near as popular as
it was in the early 1980’s, when BASIC dominated the microcomputer market. Your
library may have a good selection of books from that era on a wide range of topics.

Don’t discount other books just because they are written for another language, either.
One book I think every programmer should own is

Algorithms
Robert Sedgewick
Addison-Wesley Publishing Company

This is a wonderful encyclopedia of fundamental subroutines that you will use over
and over when you program, no matter what computer or language you pick. It was the
source for the version of quick sort used in this course, for example.

Learn to Program in GSoft BASIC

Algorithms+Data Structures = Programs
Niklaus Wirth
Prentice-Hall

This classic book is a great introduction to intermediate techniques in computer
science. It only has five chapters: Fundamental Data Structures, Sorting, Recursive
Algorithms, Dynamic Information Structures and Language Structures and Compilers.
These chapters give you a basic understanding of data structures that can improve your
programming skills enormously. It’s written for Pascal, but you should be able to read it
and make use of it from GSoft BASIC, too.

If you would like to learn to program the toolbox, writing desktop programs with pull
down menus and so forth, you need to study a different set of books. A companion course
called Toolbox Programming in GSoft BASIC is underway as I write this one. It’s
designed as a first book for toolbox programming, and comes with it’s own abridged
toolbox reference manual, so you don’t need any other books to get started. For technical
references for the toolbox and other parts of the Apple IIGS operating system, see the
Byte Works web site, currently hosted at http://www.hypermall.com/byteworks.

Whatever you decide to do from here, I hope you enjoyed the course, and learned a
few things along the way. Once again, congratulations on completing the course!

Learn to Program in GSoft BASIC

Index

! statement, 18

A

addition, 25, 26
ALLOCATE statement, 146
animation, 49–51, 52
arrays, 93–114

declaring, 93
miltidimensional, 103
of records, 119
passing to subroutines, 110
problems with, 143
range of indecies, 93

ASC function, 84
ASCII character set, 84
assembly language, 178
assignment statement, 18

B

backups, 5
binary operator, 26
binary search, 220–21
binary trees, 229–36
Boolean logic, 55–56
Boolean values, 99
BYTE type, 115

C

CALL statement. See subroutines
CASE ELSE statement, 160
case sensitivity, 11
character set, 77, 84–87
CHR$ function, 84
CLOSE statement, 124, 133

comments, 17, 23, 62
comparing strings, 88
comparisons, 26, 29, 55
compiler, 2
CONST statement, 117
constants, 117
c-string, 87, 88
cursor position, 192

D

DIM statement, 20, 93
pointers, 144

DISPOSE statement, 146
division, 47
DO-LOOP statement, 38–42
DOUBLE type, 32, 116
double-precision real numbers, 32
drawing

COPY mode, 50
exclusive OR mode, 50

dynamic memory, 143

E

EDIT command, 7
ELSE statement. See IF statement
END FUNCTION statement. See

subroutines
END IF statement. See IF statement
END statement, 62
END SUB statement. See subroutines
END TYPE statement. See TYPE

statement
EOF function, 129
ERR function, 167
error handling, 166–68

ERROR statement, 167
errors, 9
evaluating expressions, 200
exclusive OR drawing mode, 50
exponents. See real numbers
extended character set, 86

F

false, 55, 99, 118
files, 121–41

binary files, 133
closing, 123
end of file, 129
file names, 122, 126–29
file number, 122
file types, 136
opening, 122, 133
opening for input, 124
path names, 127–28
random access, 137–41
writing with PRINT, 123

Finder, 179
FOR statement, 22–23, 161–64

NEXT, 23, 164
STEP size, 83, 162

format model, 29
format string, 29
FRE function, 90, 217
FUNCTION statement. See subroutines

G

GET statement, 135
GOTO statement, 12, 53, 165–66
graphics, 13–16, 35. See also animation

colors, 16
drawing a dot, 45

GS/OS, 126
GS/OS strings, 88

GSoft BASIC, The FREE Version!, 5,
178

H

handling run-time errors, 166–68
HFS disks, 126
HGR statement, 14
HOME statement, 192
HTAB command, 192

I

IF statement, 46–49
ELSE clause, 48
ELSE IF clause, 51
old forms, 53

INPUT statement, 14, 35, 77, 89
INTEGER type, 21, 115
integers, 18, 21, 26, 30, 33

long. See long integers
interpreter, 2

L

LEFT$ function, 79
LEN function, 79
LET statement. See assignment

statement
lexical analysis, 182
libraries, 178
LINE INPUT statement, 78, 89
line numbers, 12
LINETO tool call, 15
linked lists, 148–56, 199
LIST command, 8
LOADLIBRARY statement, 179
long integers, 27, 33
LONG type, 27, 115
LOOP statement. See DO-LOOP

statement

Learn to Program in GSoft BASIC

M

MakeRuntime utility, 179
memory

changing size, 178
memory leak, 152
MID$ function, 81
MOVETO tool call, 15
multiplication, 19, 25

N

negative numbers, 26
NIL constant, 150
null terminated string, 87

O

ONERR GOTO statement, 166–68
OPEN statement, 122, 124, 133, 137,

138
operator precidence, 24
ORCA shell, 6

P

parenthesis, 26
parsers, 182, 189–93, 200–205
pixel, 14
pointers, 143–56

declaring, 144
prerequisits, 4
PRINT statement, 7, 10, 19

in files, 123
PRINT USING statement, 29
printing, 132
ProDOS, 126
ProDOS disks, 126
p-string, 87
PUT statement, 134

Q

queues, 155–56
quick sort, 210–15, 216–17
QuickDraw II, 14

R

random numbers, 42–46
real numbers, 18, 21, 27, 30, 33

exponents, 31
REAL type, 21
records, 118–20

variant, 168–77
recursion, 195–205
REM statement, 17
reserved words, 10, 11
RESUME statement, 167
RIGHT$ function, 79
RUN command, 8

S

SAVE command, 8
scanning text, 182, 183–86
scientific notation. See real numbers
searches, 219–21

binary search, 220–21
sequential search, 219

SELECT CASE statement, 157–61
semantic analysis, 183
sequential search, 219
SETMEM statement, 178
SETPENMODE tool call, 15
SETSOLIDPENPAT tool call, 15, 16
SHARED command. See subroutines
shell sort, 207–9
SINGLE type, 116
SIZEOF function, 138
sorting, 207–18

quick sort, 210–15, 216–17

shell sort, 97, 207–9
stacks, 150–54
stand-alone programs, 179
statement separator, 21
STR$ function, 89
STRING type, 21
strings, 77–91

adding, 79
ASCII character set, 84
character set, 77
comparing, 88
concatenation, 79
constant, 7
c-string, 87, 88
extended character set, 86
garbage collection, 89
GS/OS strings, 88
null terminated string, 87
p-string, 87
size limit, 88
text blocks, 88

SUB statement. See subroutines
subroutines, 57–75

CALL statement, 60
END SUB statement, 61
FUNCTION statement, 66
parameter list, 60
parameters, 69–74
passing arrays, 110
SHARED command, 74
SUB statement, 60
value parameters, 70
variable parameters, 69

subtraction, 26
symbol tables, 168–77

T

text blocks, 88
tokens, 182, 183, 186
true, 55, 99, 118
truncation, 47
type characters, 19
TYPE statement, 117

records, 118–20
types

BYTE, 115
DOUBLE, 116
INTEGER, 115
LONG, 115
SINGLE, 116
UNIV, 115

U

unary operations, 26
UNIV type, 115
UNLOADLIBRARY statement, 179
User Tools, 178

V

VAL function, 89
variable names, 19
variant records, 168–77
VTAB command, 192

W

WEND statement, 28
WHILE statement, 28, 41

