Learn to Program
N
GSoft BASIC

By Mike Westerfield

Copyright 1999

Byte Works®, Inc.
8000 Wagon Mound Dr. NW
Albuquerque, NM 87120-2845

Voice (505) 898-8183
FAX (505) 898-4092
E-Mail MikeW50@AOL.COM
Web http://www.hypermall.com/byteworks






Table of Contents

Lesson One— Getting SEarted ........oooeeieiiiiiieee e 7
Before We Get Sarted... ... ...oooiiiiiieeee e 7
HOW t0 Learn tO Program .........coviiiiiiii e 9
WHhEE Y OU NEEA.......coieee e 9

What Y ou Should Already KNOW..........cciiiiiiiiiiiiieieesee e 10
GSoft BASIC, The FREE VErSION! ......cceiiiiiiecieeeesee e 11
Getting Everything REAAY ..........ooouiiieiii e 11
The Three Faces of GSOft BASIC........ccoiiiiiiieeee s 11
Your First Flight... €, Programi........coocoiiiinieeee e 12
Dealing WIth EITOIS ......ooiiiiieee e e 15
A Close Look at HEIIO WOTTA .......coueiieieeeeee e 16
More About RESErVE WOITS..........c.eoiiiiiiiiieieesee e 16
CASE SENSITIVITY ..ottt b et be e ae e e e ene e 17
Where Are The Line NUMDEIS? ..o 18
HOW Programs EXECULE ...........oviiiiiiciiiie e 19
GraphiCS PrOgraMS ......couiiiiiiii ettt ettt b et enne s 20

Lesson TWOo — VariableS and L OOPS ........eoverieenieeriiesieesiee e 25

INtEGEr VariablES ... .ot 25

More About Variable NamES ..o 27
Using DIM To Declare aVariable TYPE ......cooeeieerieiieieee e 29
TREFOR LOOP ..ttt 30
Some Thoughts 0N COMMENES..........eiiiiiiiiie e 31
OPErator PrECEAEBNCE.........coiiiiiieeieitee ettt sar e neeree s 32
The MaxXimUM INEEOEN .......ooiieeeee et 34
REAI NUMDEIS......c e sre e 35

PRINT USING for Dollar AMOUNES.........coiiiiiiiiieeeieesiee e 38
EXPONENES. ... 40
Why So Many Kinds of NUMDEIS? .........coiiiiiiiiiiiee et 41

Lesson Three—Input, Loopsand ConditionS .........coceevereereeneeneeneeseese e 43
FNPUL. .. 43
Our First Game... er, Computer Aided SIMUlation ............cccceveeeieeniienie e 45
TREDO-LOOP..... .ottt sttt et e e sn e e beenaneens 46

The Flexible DO-LOOP SEAtEMENT .......cccooiiiiiiiieiteeee e 49
RaNAOM NUMDES. ... e 50
Why Random Numbers Are Important..........ccooeereereereeieeneesee e 52
TRETF SEBIEMENT ...ttt r e nane s 54

TR ELSE ClAUSE ...ttt et et e e e e et e e e e e e e e e e 56



The World' s Shortest ANIMation COUISE.........ooueeee e e eeee s 57

NESHING [T SEALEMENTS........eiiiieiieie e 60

A Bit Of ITTY HISLOMY ..o e 62
BOOIEAN LOGIC ...ttt 63

L eSSON FOUI — SUDIOULINES.......eiiiieiieec e 67
Subroutines AVOId REPELITION .......cceeieiiieiie e 67
The Structure of 8 SUDIOULINE............coiiiiiiieee e 70
Where to PUt SUDIOULINES ...........oiiiiiieieee e 72
THE END SELEMENT........eiiiieiieiie ittt 72
CommeENting SUDIOULINES ...........ooiiiiiieii et 72
Procedure DESCIIPLION. .......coiiiiieeie ettt 73
PArBIMELENS. ... e e e e e e s e e e e e e s nnrrn e e e e e e aann 73
Shared Variabl€S...........ooiiiiieie e 74
REIUIMN VAIUBS.......coieiie ettt et et e e st e b e e nneee e 74
NS ...ttt e e et r e e e e s e s e e e e e e e e e n e e e e e e e e e e nnrrees 74
Subroutines Let You Create New ComMMandS..........cooveveeriereereeseeseesieeseeesee e 74
Functions are Subroutines that Return aValUe............ccoooeeiiiiiiiiiiiieneee e 77
Value and Variable Parameters........ oo 80
Shared Variabl €S ..........ooeiie e 85

L ©SSON FIVE —SEITNQS. i iiutieiiieeitieesieeeiee ettt sttt st s e et e st s e be e e sseeesnseeenneeesnneeans 89
WHhEE ATE SEITNQGS? ..ttt ettt sbe e en e neesneenane s 89
The TWO WayS TO REAA @ SIIING ......eeiueiiieiieiie ettt 89
MaANTPUIBETING SEINGS ..ottt b et be e neenne e 91
CREIBCLEN'S ...ttt b e e et e sne e neenree s 96
The ASCI CharaClter SEL.........c.ooiuieiieiee et 97
The Extended CharaCter Set....... ..o 98
P-Strings, C-Strings, and Other CoNfUSIONS .........cooiiriienieeniee e 100
COMPATNG SEINGS. ...ttt e e sse e s e e bt e sbeesseesnneeneenneens 101
NUMDENS 8N SEFNGS ..ot s neene e 102
Garbage CoOlECHION.......couieiieeee et 102

L ESSON SIX — AT T AYS. e ntietieeieeete et ettt ettt ettt ettt e ae e et e e bt e sbe e e se e e s e e beesnneanneenee 105
Groups Of NUMDEIS @S ATTAYS......couiiiiiieeie ettt nane s 105
TRE SNEIT SOM......eeeeceee e 109
MUItIAIMENSIONEI ATTAYS ......eeiieeiieeiee ettt sne e 115
Passing ArraySto a SUBIOULINE ...........cooiiiiiiie e 123
Lesson Seven — Types and CONSLANTS........ooiuiiiiiiieeiieieerieesiee e 129
Simple Types and Named TYPES.......ooiiiiieieiiesee e 129

The SIX BUHT-TN TYPES.....coiiiiiieiie ettt 129



Learn to Program in GSoft BASIC

THE TYPE SEAEMENT ......eiiiiiiieee e re e 131
CONIST ettt h ettt b et he e s bt et e eb e e bt e meesbeenbeenbeebeeneesaee e 131
Records Store More than ONe TYPE......ccviiiieiieieeesiee e 132

L eSSON EigNt — FIlES.....oiciee e e 135
AN OVErVIew Of the PrOCESS .........oiiiiiiiie e 135
Opening aFilefor OULPUL............coiieiiieie et 136
WIHING 1O BRI .. 137
ClOSING B ...t 137
WIIING OUN FITSE FITE ... 138
Reading from @ Fil........ooeee e 138
File Names, Directories, Path Names and FOIders.........uuvvviiiiiiiiieiieee e 140

File Names, GS/OS and ProDOS..........uuuiiiiiiiiiiieeeeee et e e snnens 140

Pati NAIMES...... oo e et e e nnee e 141

Partial Path Names and the Default Prefix ... 142

NAMES IN PrOGIamMS......coeieiieiiieite ettt n e ne e 142

ColoNS AN SIASNES.......coueiiiieiee s 143
Finding the ENd Of @ FII€ .......ooeiiieee s 143
Printing With FILES ... 146
BINAIY FIIES....ceeee et 147

Opening and Closing Binary FIlES .........c.cooiiiiiiiieeeeeeeee e 147

WIHEING BINAY FIES ... 148

Reading Binary FilES.........ooiiiiiie e 149

Reading and Writing Practically Any File.........cooo i 150

More About File Types and File FOrmMats...........cooveiieiiiienieneeee e 150
RANTOM ACCESS. ...ttt ettt n e be e aneens 151

Lesson Nine—PoiNterSand LiStS.......ccoouiriiiieriieieeieeeeee e 157
WHEE 1S @ POINTEI ...ttt n e e 157
Pointers are VariableS, TOO! ....ueeeiiiiiiiiii et e e e e e 158
Allocating and Deallocating MEMOIY .........ccviiiiiieiieree e 160

How New and DiSPOSE WOTK........c.coiiiiiiiieiieriesee e 161
T 012 ol IS SRR 163

= 0 TSRS 164

QUELIES ...ttt ettt et e e skt e e e e ab e e e e e anbe e e e e e st e e e e annreeeeennneas 169
RUNNING OUL Of MEIMOIY .....coiiiiiieiie et 171

Lesson Ten —Miscellaneous Useful StUff...........cooiiiiiiiiiinieeeeeeeee 173
The SELECT CASE SEAEMENT........ccoiiiiiieieeiesieesee e 173
ReVISITING thE FOR LOOP ... ceitiiiiieiiesiie ettt 178

ThE GOTO SEaLEIMENT ..o et e e e e e e e e e e e e e e e e ee e e e e e eenns 182



The ONERR GOTO SEalOmMENt . .ceceeeee oottt e e e e e e e e e ae e e e e e e eeaaaeeaeeee 183

VaTant RECOIS. .......ccitieiieeeiieeie ettt ettt b e ne e 185
A Quick Tour of Some Advanced GSoft BASIC Features.........ccccevveeviiveeiveecinnenns 196
Changing the Size of MEMOTY ........cooiiie s 197

LT DIBITES ..t b et 197

The MakeRUNtIME ULHITY ..c..eoiiieeeee e 198
Lesson Eleven — SCanning TeXE.......ooieieieieee e 199
The Course Of the COUISE ........ooiuiiiieee e ene e 199
MaANTPUIBETING TEXE ...ttt 200
Building 8 SimpPle SCANNET.........cooiiiie e 201
SYMDOI TADIES. ... 205
PAISING ..ttt b e r e reennne e 207

L €SSON TWEIVE — RECUISION ...ttt nne e 213
A QUICK LOOK 8t RECUISION .......vieiiiiesiiieeiie ettt see et e e 213
How Procedures Call ThemMSEIVES.........ccooiiiiieiiiiieeee e 213
Recursion isaWay Of THINKING........cccooiirieieeiieieeee e 215

A Practical Application Of RECUISION.........coiiiiiiiieiiesieesie e 218

L €SSON THIrtEEN — SOMTS.. ..ot 225
0] 1] 1 TR URTOSTPPROP 225
TRE SN SOMt......cceeeee e 225
QUICK SOMT ...eeeetee ettt ettt ettt et e st e e sbee e ebe e e snseeeneeesnneeesnseeennsenans 228
HOW FaSt ATE TREY ... 234
QUICK SOt Can Fail!.........eeeiie et 235
SOMING SUMMIBIY ...ttt sttt beesieesnneeneenneen 236
Lesson Fourteen — SearcheS and TreES.. ..o 237
Storing and AccessiNg INFOrMELION..........oiiiiiiiieiie e 237
Sequential SEAICNES...........ooiiii s 237
TREBINAIY SEAICN ... ee s 238
A Cross Reference Program fOor BASIC.......ooviiiiiiiiieieeeeeeee e 239
TREBINANY TIEE ..t sn e 248
Ruffles and FIOUMSNES...........cooo i 256



L esson One — Getting Started

Before We Get Started...

When | went to grade school, my teachers tried to beat some basic skills into my thick
head. Back then, the basic skills included reading, writing, and arithmetic. When it came
to spelling, my mind was already warped, because my teachers had also explained that
these werethethreeR’s.

Lately, in our rapidly changing world, we have added a new basic skill. It just isn’'t
good enough to be able to read and write, plus do some math. In 1965, it wasn’t easy to
get from New Y ork to Chicago without reading signs, writing instructions, counting some
change and reading a clock. Today, you will use acomputer to make the same trip. The
travel agent will log your reservationsin a computer. You may get spending money from
a computer-based automatic teller. A digital watch counts bits to tell you what timeitis.
Computers control the flow of trains and the displays used by air traffic controllers. Y our
check book may even have a calculator. It’s become a computerized world, and people
who can’'t or won't deal with computers are rapidly being left asfar behind as an illiterate
person in the sixties.

Of course, you know all of that. That's why you have decided to learn to program. By
the end of the course, you will know one of today’ s most popular and widely available
programming languages, BASIC. Y ou will know it well enough to write programs of
your own. Whether you want to plot an engineering equation, create a custom cooking
program to adjust ingredients for any number of people, or write a computer game, this
course will get you ready.

If you have been around computers for along time, you may know that there are
many languages you can use to write programs for your computer. It'sfair to ask why
you should learn BASIC.

One of the things you must look for in a computer language is that it must be fairly
common. If alanguage is common, that tells you two important things: A lot of people
think the language is a good one, and no matter what computer you decide to write a
program for, you are likely to find the language you know. Today, there are five
languages that fulfill thisfirst requirement. They are C, Pascal, assembly language and
BASIC.

If you decide to make your living programming a computer, you will eventually learn
most of these languages, and probably afew more. If you are learning to program,
though, you have to pick just one of them to learn first. We can immediately rule out



assembly language. In assembly language, you have to deal with the machine’s interna
structure. It takes many individual instructions to do the simplest thing. Y ou will spend
more time dealing with bits and bytes than learning how to write a well-organized
program

C and Pascal are both good choices. Compared to BASIC, most people find C rather
obtuse. The reason has to do with the type of programming each language was created
for. One of the design goals of the BASIC language was to create a simple language for
scientists and engineers. BASIC has grown beyond thisinitial audience, but it is still one
of the simplest of the popular computer languages to learn and read. It has all of the
facilities needed to implement modern programs. C was designed for professional
programmers who implement programs that might need to do some very tricky things.
Because of its built-in safety checks, the BASIC language often hinders their efforts. C,
on the other hand, does not have these checks. That’s good for the careful professional
programmer, but bad for a beginner, who really needs those checks

Pascal is agreat first language, just like BASIC. Pascal tends to be more verbose, but
that’ s not necessarily a bad thing, because Pascal programs tend to be laid out better asa
result. We'll learn some techniques for laying out BASIC programs to get around this
minor disadvantage.

BASIC has an advantage over both C and Pascal, though. There are two common
way's to create computer languages. One method is called compiling, and the other is
called interpreting. At this point, it's not important to understand the technical difference
between the two, just to realize there are two methods, each with its own advantages and
disadvantages.

Most implementations of BASIC, including GSoft BASIC, are interpreters. That's
good and bad. Interpreted programs run slower than compiled programs, although that’s
not an important consideration for any of the programsin this course, or for many other
programs. But interpreted programming languages are easier to use. Y our program
doesn’t have to be compiled, so it isready to run right away. There are also fewer stepsin
creating a program, which makes your job of learning to use the language alot easier.

I’d like to make one point clear, though. BASIC is not inherently slower than Pascal
or C. A BASIC compiler will create programs that run at about the same speed as
compiled Pascal or C programs. For that matter, you could create an interpreter for Pascal
or C, and in fact, that has been done. Any language can be implemented either way, but
BASIC is generaly implemented as an interpreter, and Pascal and C are generally
implemented as compilers.

Before getting too much further, | also want to point out what this courseis not. This
is not a course about writing Apple ll1Gs desktop programs. | don’'t want to discourage
you from writing desktop programs; quite the contrary. On the other hand, as you will
find out, thereis alot to learn about programming before you are really ready to tackle



Learn to Program in GSoft BASIC

something like a desktop program. By the time you finish this course, you will be ready
to start to learn about desktop programming. If you tried to learn desktop programming
right away, though, you would probably fail. There' s just too much to learn to try and do
it al at once.

How to Learn to Program

Learning to program has alot in common with learning to fly an airplane. When you
learn to fly, most people start with an introductory flight with an instructor. Those that
don’'t often make a bad first landing, and never get a second chance. (An old adage
around flight schools is that any landing you walk away from was a good landing.)
Before, during and after the flight, the instructor will tell you about some of the basics of
flight: How the control surfaces work, what the controls do, and so forth. There will be a
lot you don’t know, and alot of things you are told may not make sense right away. As
you progress, you will spend time reading books and sitting in lectures, but you will also
spend alot of time actually flying the airplane. Y ou wouldn’t expect to spend all of your
time reading books and sitting in lectures, then walk out to the plane and go off for a
cross-country flight with no instructor; you gradually work up to that point. Eventually,
though, you solo. Y ou start to fly long distances, first with an instructor and then alone.
Finally the day comes when you get your license.

It's the same way with programming. In a moment, we' |l get started. We'll start off
with afew simple programs. It is absolutely essential that you type them in and run them.
There will be many problems that you can work on your own. The more problems you
work, the better programmer you will become. Sure, we will spend some time talking
about the ideas behind programming, and there will be some problems that you need to
work through with a pencil and paper. For the most part, though, you will be
programming; either typing in and analyzing programs with the help of this material, or
writing and running your own programs. Gradually, the programs will get longer, and
before long you will be able to write your own programs.

Just in case you missed the point, let me spell it out in very simple terms. If you read
this material, but don’t type in the sample programs or work the problems, you will know
as much about programming as you would know about flying from reading a book. In
short, very little. Programming is a skill. If you don’t practice the skill, you will never
learn it.

What You Need

Now isthe timeto sit down in front of your computer. Before starting, let’s make sure
you have everything you will need. First, you need an Apple I1cs computer. (An emulator
isfine, aslong asit emulates and Apple llGs.) It must have a monitor. It's niceif the




monitor is color, and you'll use color in some graphics programs, but you can make do
with a black and white monitor. The computer must have at least 1.125M of memory. For
the older Apple llGs that came with 256K on the mother board, this means that the
memory card in the special memory slot must be populated with 1M of memory. In the
most common case of an Apple memory card, this means that there should be a memory
chip in each socket on the card. Y ou can check this by taking the top off of your
computer and looking. With the newer Apple llGs, which comes with 1.125M of memory
on the mother board, you don’'t need amemory card at all.

Y ou must have at least one 3.5” disk drive, plus another 3.5” disk drive or a hard
drive. It is possible to use GSoft BASIC with asingle 3.5” disk drive, but it stough. We
won't go over the details of using asingle drive here. If you don’t have a second drive,
contact Byte Works technical support and discuss your options.

Y ou will need a copy of GSoft BASIC. If you decide to use adifferent BASIC, there
will be some thingsin this book that will not work. Y ou would have to figure out why
and make appropriate adjustments. By the time you finish this course, you will know
enough to do that. At first, though, you may not. For that reason, | would suggest that you
stick with GSoft BASIC.

There are some other things that would be nice, but not essential. Most people like to
print their programs and look at the paper copy. | highly recommend a printer if you
intend to try this. A hard disk is also very nice. Hard disks can hold much more than a
floppy disk, so you will not have to switch disks as often. Hard disks are also faster than
floppy disks, which again speeds up the programming process. Finally, an accelerator
card will roughly double the speed of your computer. As| said, all of these are nice. If
you end up spending alot of time programming, | would encourage developing a close
relationship with St. Nicholas in an attempt to collect these items. Y ou can, however, do
everything in this course without them.

What You Should Already Know

Any book about computers has to make some assumptions about what you already
know. Let’s briefly discuss the assumptions I’m making so you' re not surprised about
things | leave out.

| assume you' re areasonably intelligent person who is aready familiar with using
computers. | won't be telling you how to insert floppy disks, how to use an editor to type
programs, or how to copy files. For the most part, you should aready know how to do
those things. Using the text editor is the one area where you may need alittle more help
than usual, simply because the editor we'll use to write programsis alittle different than
editors used to write books and letters. The similarities are more frequent than the
differences, though, and alittle time with the GSoft BASIC reference manual should be
enough for anyone who already knows how to use a word processor.



Learn to Program in GSoft BASIC

GSoft BASIC, The FREE Version!

There are two versions of GSoft BASIC. This book assumes you are using the
commercia version, but aimost everything in this book will actually work on the smaller,
free version. Y ou can download a copy of the free version from
http://www.hypermall.com/byteworks. Y ou can also get a copy on afloppy disk from the
publisher of this book for asmall fee.

If you're not sure which version isfor you, start with the free one. When you get to
the point | this course where it deals with libraries and creating programs that run from
the Finder, which are the two things the commercial version adds that we use in this
course, you can switch to the commercial version of GSoft BASIC or just skip those
sections.

Getting Everything Ready

When | bought my first FORTRAN compiler for the Applell, | had afrightening
experience. | wrote a program that crashed the compiler. The program actually erased
some of the information on the compiler disk, so | could not use that disk anymore. In
those days, many vendors still took the absurd position that computer languages had to be
copy protected. My local dealer either could not or would not help me restore the disk. |
had one other copy (the program came with two copies), but | was afraid to use it.

Fortunately, times have changed. Computer languages are no longer copy protected.
The very first thing you should do when you open your copy of GSoft BASIC isto make
copies of both of the floppy disks that come with the package. Y ou can use the Finder to
do this. If you know how to use some other copy program, and you like it better, go
ahead and use it. Any copy program will work. Label each of the disks you have copied,
and put the originals in a safe place.

If you are using two 3.5” floppy disk drives, you will use a copy of thefirst disk in
the second floppy disk drive and your normal boot disk in the first drive. Y ou might want
to make an extra copy of the first GSoft BASIC disk; you'll use that one both to run
GSoft BASIC and to save your programs.

If you are using ahard drive, you will need to install GSoft BASIC on the hard drive.
You can find instructions in the reference manual that comes with GSoft BASIC.

The Three Faces of GSoft BASIC

It's worth mentioning that there are three ways to create and run a GSoft BASIC
program. This course assumes you are using the simplest, the GSoft BASIC shell. (A
shell isthe name for the program that looks at things you type, like CATALOG or EDIT,
and carries out your instructions.)



There is another version that runs from the ORCA shell. All of the programs you see
here will work fine from that version. If you're already familiar with the ORCA shell,
you have the commercial version of GSoft BASIC, and you prefer the ORCA shell to the
smaller, ssimpler one built into GSoft BASIC, feel free to useit. If you have any trouble
getting started with the ORCA shell version, refer to the reference manual.

The last version of GSoft BASIC works in conjunction with either of the first two.
Whether you are using the GSoft BASIC shell or the ORCA shell, the programs you
create only run from that environment. Of course, you will eventually create a program
you want to give to other people, and they may not have GSoft BASIC. Even if they do,
they will want to run the program like any other program, from Apple’s Finder or some
other program launcher. The third version of GSoft BASIC is a specia one that lets you
create programs that will run from the Finder. We'll cover how to create these programs,
and discuss the advantages and disadvantages, later in this course.

Your First Flight... er, Program

It'stimeto take that first test flight. Strap yourself in. After all, as you have no doubt
heard, computers can crash, so always wear your seat belt. Fortunately, though, a
computer crash caused by programs you write in this course won’'t hurt anything.

Aswe go through this program, there will be alot you don’t understand. Be patient;
in time, you will. The one thing you should keep in mind, though, is that you can’t write a
program that will damage the computer. Even if you do something wrong, the absolute
worst thing that will happen is you will erase a disk—and even that is so unlikely that it
isn't worth worrying about very much. It is, however, worth worrying about enough to
make a copy of the GSoft BASIC disks, which is why you should never run from the
original disks. Y ou should also keep backups of your hard drives. Frankly, it's more
likely that you will loose information on your hard drive from the hard drive wearing out
than from the programs in this course, but it’s always best to keep good backups, just in
case. "

From Apple’s Finder, locate
the file GSoft.Sysl6, either on
your hard disk or on the second
3.5 floppy disk. Double-click on
GSoft.Sysl6 to start the program.
You'll see abanner across the top
of the screen with the program’s
version number, ablank line, and
a} character followed by acursor.
From here, you can type any of
the commands you find in




Learn to Program in GSoft BASIC

Chapter 5 of the GSoft BASIC reference manua. We won't use many of the commands
in this course, but we will cover each of them we use in detail. Some of the commands
we don’'t cover may come in handy, though, so plan to flip through Chapter 5 of the
GSoft BASIC reference manual at some point, just to see what’ s there.

When you write a program, you type the program pretty much the same way you
would type aletter in aword processor. Our first step, then, is to enter the editor so we
can type a program. From the GSoft BASIC shell, type the line

EDI T

and press the return key. It doesn’t really matter whether you use uppercase or lowercase
letters.

The edit command shifts you from the shell to the full screen editor. The editor that
comes with GSoft BASIC is optimized for writing programs, so it's alittle different from
editors like AppleWorks that are intended for writing letters, but there are a'so many
similarities. We'll assume that you have used enough editors that you can type the
program and use cursor keys and the return key to move around the screen. If you need
help, try Command-?, which - pmymmere-
brings up the editor’s help
screen, or refer to Chapter 6
of the GSoft BASIC
reference manual.

Typeinthefollowing
program. The format isn’t
terribly critical, but since
you don’t know what is and
what is not important yet, it
is best to type it exactly as
shown. This program writes
the characters "Hello, i i i ——
world." tothescreen. It'sa  [line: " §'fai: 28 lsed: 0K flode: E0IT
simple program, but we
must start somewhere.

A

Langi BAEfE "~ Fifei SushdsiiTen

PRINT "Hello, world."

The next step isto exit the editor. To be honest, thisis alittle peculiar. We'll discuss
the reasons in aminute. To exit the editor, type Command-Q. The editor will ask you if



you want to save the program. Select yes, and you’ re dropped back into the GSoft BASIC
shell.

At this point, you have created a BASIC program that is stored in the memory of your
computer. GSoft BASIC calls this the program buffer, or sometimes the workspace. If

you type

LI ST

You'll seethe program itself. You can also look at or change the program using the
editor, typing

EDI T

again. In fact, technically there is a program in the program buffer as soon as you start
GSoft BASIC—it just doesn't have any lines. It's legal to run acompletely empty
program, it just doesn’t do anything.

It'sagood ideato get in the habit of saving your program to disk occasionally. Right
now, if you leave GSoft BASIC, you' re program vanishes. That may not be a big deal for
aone-line program, but you’ll want to save your longer ones.

To save the program to disk, type SAVE followed by the name you want to use for
the program. Save this program as Hello, like this:

SAVE Hell o

This command saves your program to the same folder where GSoft.Sys16 is |ocated.
There is nothing to stop you from putting the programs somewhere else, but your life will
be alittle easier if you just leave the programs in the same folder as GSoft.Sys16.
Occasionaly, you will want to copy the programs to a separate archive disk and delete
them from your working folder, especialy if you are using floppy disks. Y ou can actually
do this from GSoft BASIC's shell, but thisis one area where the Finder’ s desktop
interface works better. Personally, | use GSoft BASIC' s file manipulation commandsif |
need to copy or move one or two files, but for large numbers of files, | leave
GSoft BASIC and use the Finder.

With the program safely saved to disk, just in case a catastrophe happens, it’' stime to
spin the prop and seeif it flies. Type

RUN



Learn to Program in GSoft BASIC

This command executes the program in the program buffer. It's the GSoft BASIC
equivalent of double-clicking on a program from the Finder. This program consists of a
simple PRINT statement that writes the text between the quote marks to the screen, so
you'll see

Hel | o, worl d.

on your display. Congratulations, you’ ve just written and executed a computer program!

| mentioned earlier that the way the editor worked was a little peculiar. After all, the
editor saved the program as you left the editor to go back to the GSoft BASIC shell,
right? Well, sort of. Without getting too deep into technical explanations, the editor ended
up saving the program in the workspace, not on the disk. Maybe you heard the disk being
accessed. The editor and GSoft BASIC are actually separate programs. They use the disk
to pass the program back and forth, but the temporary file they use for communication is
erased automatically.

Dealing with Errors

If you're program didn’t quite work, check each step to see what you did wrong. One
of the most common programmer mistakes is to assume that any mistake isthe
computer’ s fault. Sorry, it just ain’t so. If thingsdidn’t work it’'s because, in order of
likelihood:

You didn’t do exactly what you were told.
Y ou don’'t have the correct hardware.

Y ou have abad disk.

Y ou have bad hardware.

E Ol

Just for the record, you should know that absolutely every program we will show you
in this course has been mechanically moved from the word processor to GSoft BASIC (or
vice versa) and executed. They have also been typed in and executed by one or more
guinea pigs we call beta testers, who we use to find errors before the errors can confuse
you. In other words, every single program has been tested at least twice. If you encounter
aproblem, the chances are very, very small that the problem isin the program in the
course material or in GSoft BASIC.

Now, that’s not to say GSoft BASIC is perfect. Y ou may encounter a bug someday.
Still, the overwhelming number of programmers, especially beginning programmers, who
blame a problem on the machine or the programming language have made two mistakes:
Onein the program itself, and the other in assigning the blame to the wrong source! The



fact is, programming can be very humbling, because the mistakes are amost always your
own.

To correct a problem, go back over each step in the text. If there is an error message,
examineit closely to see what it tells you. The GSoft BASIC reference manual has an
appendix that lists al of the errors and some common causes. Check your typing in the
areavery carefully; atyping error is the most common cause of errors at this stage.

A Close Look at Hello World

Now that you have actually run a program, let’s stop and spend some time talking
about what happened. We' Il start by examining the program in detail. Thefirst stepisto
take alook at the words that make up the program

Like sentences in a book, programs are made up of a series of words and punctuation
marks. Some of the words have special meaning, while some are words we pick to name
parts of the program.

WEe Il dissect our first program to look at some of these rules. This program consists
of asingleline. All BASIC programs are organized as zero or more lines. Most of the
time, each line contains a separate, distinct command for the computer to carry out. The
entire collection of linesis called the program.

PRINT "Hello, world."

Theword PRINT is called areserved word. This just means that you can only use the
word PRINT in special waysin aBASIC program. It is also a statement in BASIC; it's
one of the commands the language understands. The characters that we want the program
to write are placed after the word PRINT. BASIC uses the quote character to mark the
start and end of a string constant. This lets you write things like parenthesis, reserved
words, and so forth, without confusing BASIC. Aslong as you keep the string on one
line, you can put absolutely any characters you want in the string, except for the quote
mark itself. Y ou can still write a quote mark, but it takes alittle more work. We'll ook at
how it'sdonein Lesson 5.

More About Reserved Words

In the last section | pointed out that our first program had something called a reserved
word, and that reserved words can only be used in special ways. PRINT is one of the
reserved words in GSoft BASIC. Here's a complete list of the reserved words:



Learn to Program in GSoft BASIC

ABS

AS
BREAK
CHDI R
CLOSE
CSNG

Dl R$
ELSE
ERROR
FUNCTI ON
HCOLOR=
HTAB

I NVERSE
LI BRARY
LOG
MOUSETEXT
NOT
OUTPUT
PGS
READ

Rl GHT$
SETMEM
S| ZEOF
STOP
TAN
TOOL

USI NG
VAEND

ALLOCATE
ASC
BYTE
CHR$
CONST
CURDI R$
DI SPOSE
END

EXP

GET
HEX$

I F

KI LL

LI NE
LONG
NAVE

ON

PEEK
PRAGVA
REM
RVDI R
SGN

SPC
STR$
TCP
TOCOLERROR
VAL

VWH LE

ALLOCATEPROC AND

AT

CALL

CI NT
CONT
DATA

DI SPOSEPRCC
ECF

FN
GOosuUB
HGR

I NPUT
LEFTS$
LOADLI BRARY
LOCP
NEXT
ONERR
PO NTER
PRI NT
RESTORE
RND
SHARED
SPEED=
STRI NG
TEXT
TYPE
VERS| ON

ATN
CASE
CLEAR
CGos
DEF
DO
ERL
FOR
GOro
HOVE
I NT
LEN
LOC
M D$
NI L
OPEN
PCKE
PUT
RESUME
SEEK
SIN
SR
SUB
THEN

APPEND
Bl NARY
CDBL
CLNG
CSRLI N
DM
DOUBLE
ERR
FRE
GSOs
HPLOT

I NTEGER
LET
LOF
MKDI R
NORMAL
OR

POP
RANDOM
RETURN
SELECT
SI NGLE
STEP
TAB

TO

UNLQADLI BRARY UNTI L

VTAB

WAL T

Don't worry; you don’'t need to memorize the list. The important thing to remember is
that there are some words you can only use in specific ways. If you get strange errors
from GSoft BASIC, you can refer back to thistable to seeif the reason is misusing a

reserved word.

Case Sensitivity

BASIC is case insensitive. That means that you can type the reserved words using
lowercase characters, uppercase letters, or any mix of case you prefer. For added speed,
though, GSoft BASIC aways converts everything to uppercase letters. The program is
actually converted from the text you type to a shorter internal format called tokens. When
you list or edit a program, GSoft BASIC converts these tokens back to text. In the
process, it prints everything using uppercase letters and indents to program automatically
to indicate the program’ s structure. Spaces that are not part of a string, like the space in



“Hello, world.”, are removed. Asthe program is converted from tokens to text, new
spaces are inserted between most program symbols.

Where Are The Line Numbers?

In many versions of BASIC, each line must start with a number. Obviously that’s not
true in GSoft BASIC, since we didn’t use one, but why the difference?

To understand where the line numbers went you have to understand why they were
ever used in thefirst place. In very old implementations of BASIC there are actually two
reasons for using line numbers.

Thefirst use of line numbers has more to do with typing the program than running it.
Early versions of BASIC were written for computers that didn’t have much memory. To
save space—and programming time! —these implementations of BASIC used simple
editors that entered or changed one line at atime, rather than editors like the onein
GSoft BASIC that work more or less like atext editor. The old kind of editor iscalled a
line editor. In aline editor you need some way to tell the editor which line you are going
to change. Older implementations of BASIC use a number at the start of each line to
identify the line. The lines are sorted in numerical order.

The second use of line numbersisto label the line for a statement that jumps to that
line, often a GOTO statement. Y ou won't see statements like GOTO much in this course,
so we don’'t generally need line numbers for this purpose, either.

Like most modern implementations of BASIC, GSoft BASIC just doesn’'t need line
numbers on each line, and rarely needs them at al. Since they aren’t needed, you aren’t
required to type them. Y ou can still use line numbers, and in fact GSoft BASIC actually
has a built-in line editor that works alot like the old Applesoft BASIC line editor. In this
course, though, we'll assume you' re using the modern full screen editor. Wewon't use
line numbers unless the program itself needs them.

Problem 1.1. Rewrite the hello world program so it says hello to you. For example, my
name is Mike, so | rewrote the program to say "Hello, Mike." Save this program as
NAME.
[0 Note  Thedisk that comes with this course has all of the programs

you see in the text and solutions to all of the problems.

Programming is a skill, so you should type the sample

programs yourself and try to solve the problems yourself, but if

you get stuck, check the solutions disk.



Learn to Program in GSoft BASIC

How Programs Execute

With what we know now, we can start to write larger programs. Our first step will be
to modify the hello world program to write five lines instead of one. We'll create a
program that writes alimerick to the screen.

PRI NT "There was a young nan from Lenore"
PRI NT "Wose nouth was as wide as a door."
PRI NT " Wile trying to grin,"

PRI NT " He slipped and fell in,"

PRINT "And |aid inside out on the floor."

Typein the program and save it on your program disk as Limerick. Use the RUN
command to run the program.

Did the program do what you expected? It does bring up an obvious point. Like
sentences in abook, BASIC reads and processes your program in the order it is written.
Thefirst line is executed first, the second is executed second, and so on.

Later you'll learn severa statements that modify the way a program executes,
executing one line or agroup of lines several times, for example, but the essential point
of thisexerciseisstill critical. Whatever a program is running, statements are executed in
aspecific, logical order that can be predicted ahead of time.

Problem 1.2. Write a program that prints your name and address. Print the address on
separate lines, just as you would on an envelope.

Problem 1.3. With alittle work, you can create a readable letter by coloring in squares on
a sheet of graph paper. The smallest number of squares that works well for uppercase
only lettersis seven high by five wide. Thisisthe idea used to form characters on the
computer screen from the small dots called pixels.

Write a program to write your first name to the screen in this form. Use the *
character to fill in the squares. For example, | would ask the computer to write this to the
screen:

* * * % % * * kkk*x*k
**x k% * * * *

* * % * * % *

* * * * % * % %

* * * * % *

* * * * * *

* * * % % * * kkkxk*k



Graphics Programs

There’ salot you can do with text, but the Apple llGs has some stunning graphics,
too. It stime to start using some of that power. One word of caution, though: The
graphics that are built right into the BASIC language itself are rather limited. While some
implementations of BASIC have extensive graphics commands, there is no widely
accepted standard set of graphics commands. For the most part, our examples will use the
powerful graphics commands of QuickDraw 11, the graphics package built into the
ApplellGsitself. Asaresult, the information in this section that deals with graphicsis
particular to the Apple llGs. Other computers may do things a bit differently.

The Apple llGs has alarge number of built-in subroutines to do complicated tasks for
you. These subroutines are called tools. They are grouped by function into groups called
tool sets. The entire collection is what people refer to as the toolbox. The toolbox isa
large and wonderful collection which we won't have time to explore fully, but we will
use some of the tools to do some work for us from time to time. Graphicsis one of those
times. QuickDraw 1l isone of the toolsin the Apple I1Gs toolbox.

The following program is our first venture into graphics.

HGR
SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)

MOVETO (10, 10)
LI NETO (45, 10)
LI NETO (45, 40)
LI NETO (10, 40)
LI NETO (10, 10)

I NPUT ""; A$

Typein this program and save it as Square, then run the program. You will seea
square, about one inch high and once inch wide, on your screen. (Depending on the
monitor you are using and how it is adjusted, the size of the square may vary abit.)

One of the things you’ll notice right away is that the text you normally see on your
screen has vanished. While there are some ways to display both text and graphics at the
same time, for the most part you get one or the other. Thefirst line of the program, HGR,
switches from the text display to a graphics display which can show 320 colored dots



Learn to Program in GSoft BASIC

called pixels on each row. There are 200 rows of pixels on the entire screen. Each of the
pixels can be one of 16 distinct colors.

As soon as the program finishes the display switches back to the text screen. The
reason you're still looking at the graphics screen is that the program is still running! The
last line of the program waits for you to type a string and press return. As soon as you
press the return key, the program will finish and the display will switch back to the text
display. We'll look at the INPUT statement in more detail later in the course; for now,
just use this command whenever you want the program to pause.

All of the remaining lines in the program are actually calls to QuickDraw |1, not
commands that are a part of BASIC. In each case, the line is the name of one of the
commands built into QuickDraw I1. Thisis followed by one or two numbers enclosed in
parenthesis. If there are two numbers, these numbers are separated by acomma. This
basic format is something you' Il see over and over as we explore the Apple l1Gs toolbox,
GSoft BASIC, and later, program pieces called subroutines that you will write yourself.

Thefirst two drawing commands tell QuickDraw 11 how you want to draw lines.
SETPENMODE (0) tells QuickDraw 11 to replace any existing dots with new dots. That
makes sense, so you might wonder why you need to bother. QuickDraw |l can do other
things when it draws, so we need to start by telling it to do the simplest of the
alternatives. SETSOLIDPENPAT (15) tells QuickDraw 11 to draw white lines.

The next five lines draw a square in the graphics window. To understand how they
work, we need to start by examining the coordinate system used by QuickDraw 11. To
QuickDraw, the top left dot on the screenisat 0, 0. Asyou moveto theright, the first
number increases. In other words, 90, 0 is 90 dots to the right of 0, O, but on the same
line. As you move down, the second number increases. The point O, 40 is 40 dots below
0, 0. You can use numbers so large they go off of the screen to the bottom or right, or
even negative numbers that would theoretically show up above or to the left of the screen.
In that case, you can’t see the lines, but QuickDraw 11 will still draw all of thelinethat is
in the window.

The first command to draw the squareis MOVETO. It doesn’t actually draw anything
at al. MOVETO positions the graphics pen over a particular pixel on the screen. The
next line, LINETO, draws aline by coloring al of the pixelsfrom 10, 10 to 45, 10. The
remaining LINETO commands draw the remaining three sides of the square, coming
back around to the original point of 10, 10.

Throughout this section, I’ ve talked about drawing a square, but this programis
drawing a shape that is 35 pixels wide and 30 pixels high. Obviously, something strange
is happening. The reason for the discrepancy is that pixels on the Apple l1Gs graphics
screen are dightly taller than they are wide. The exact amount varies a bit, but on my
screen, these coordinates produce a square.



There' s one other new feature in this program. The program itself carries out three
distinct steps: First, it gets ready to draw. Next it draws a square. Finally, it waits for you
to press the return key before stopping. It's easy to see these three steps in the program
because of the strategic placement of two blank lines to divide the commands into three
groups. The blank lines actually take up a small amount of space in the finished program,
but the space used it pretty negligible. The extra clarity iswell worth the cost of afew
bytes of memory.



Learn to Program in GSoft BASIC

Problem 1.4. There are atotal of sixteen
colorsthat you can use. The
SETSOLIDPENPAT call is used to choose
from these colors. In our example, we used
color 15 to draw the square in white. Y ou can
use any number from 0 to 15. In fact, you can
actually use larger numbers, but that doesn’t
give you more colors—the same 16 colors are
repeated over and over.

Try some of the other colors. Be sure and
try color 0. What happens?

Problem 1.5. An equilateral triangleisa
triangle where each of the three sides are the
same length. Write a new program to draw an
equilateral triangle with 1 inch sides. Make
the bottom flat, with one point on the top.

Problem 1.6. Modify the program in problem
1.5 to draw asix sided star by drawing two

Applellcs Default Graphics Colors

Color Number  Color

0 black

1 dark gray
2 brown

3 purple

4 blue

5 dark green
6 orange

7 red

8 beige

9 yellow

10 green

11 light blue
12 lilac

13 periwinkle blue
14 light gray
15 white

equilateral triangles, one pointed up and one pointed down, and overlapping the triangles.

Make the star green.

Problem 1.7. Write your name in the graphics window by drawing lines. If your name has
letters with curves, use afew short lines to approximate the shape of the letter.







L esson Two — Variablesand L oops

Integer Variables

Y ou have probably heard that computers are very good at dealing with numbers. This
isquitetrue. In thislesson, we will start to use numbers and variables in our programs. If
you aren’t a math whiz, though, don’t panic. We won't be dealing with anything more
complicated than simple arithmetic in this chapter.

Let’s start by typing in this program.

REM This program prints a table of nunbers and squares of the
nunber s

%=1

S%=1%* 1%
PRINT 1% S%
1%= 1%+ 1
S%=1%* 1%
PRINT 1% S%
1%= 1%+ 1
S%=1%* 1%
PRINT 1% S%
1%= 1%+ 1
S=1%* 1%
PRINT 1% S%
1%= 1%+ 1
S=1%* 1%
PRINT 1% S%

[0 Note Sometimesalinein aBASIC program istoo long to fit on one
line in this book. When that happens, the second and
subsequent lines are further to the left than the rest of the
program. When you type the program, put everything on one
linein the editor. In this sample, the line “numbers” is actually
acontinuation of the first line; “numbers’ should appear at the
end of that line.

One of the first things you will see in our program is a comment. Comments are a
special kind of command that doesn’t do anything. The comment starts with the



command name, REM. Everything after this command name, all the way to the end of the
line, isignored. Y ou can aways leave a comment out entirely, and the program will do
exactly the same thing as it did when the comment was there. Why, then, do we bother?

If your memory was as good as the computer’s, and if no one else ever read your
programs, you wouldn’t need comments. Comments are for your benefit, as well asthe
benefit of al those poor lost souls who will have to figure out what you did later. One
good place to put acomment is at the beginning of the program, identifying quickly what
the programisfor. It's not a bad idea to put your name and the date the program was
written there, too. Asyou get used to seeing comments in the examples, you'll find that
comments also help at the start of each logical section of the program—each section of
lines that do one conceptual thing.

There are actually two comment commands in GSoft BASIC. The REM command
you saw in the example program is pretty much universal in BASIC, but it takes three
characters, and some people think it looks a bit ugly. GSoft BASIC lets you use an
exclamation point instead of the characters REM. While using an exclamation point to
start acomment is hardly universal in BASIC, it’s not uncommon in other
implementations, either.

Using an exclamation point, the comment looks like this:

I This programprints a table of nunbers and squares of the nunbers.

It works exactly the same way as the first example.

Computers can work with avast array of number formats, each of which has a special
purpose. The two most common number formats are integers and reals. Integers are
whole numbers, like 4, -100, or 1998. Real numbers include the numbers between the
whole numbers, like 1.25 or 3.14159.

The memory of acomputer is made up of avast series of numbers, but in alanguage
like BASIC, we don't have to deal with them the same primitive way the computer does.
Instead, we can define variables. A variableisjust a place where you can put avalue. We
use two variables in our program; they are called 1% and S%. Within certain limits we
can put any number we like in these variables. It's exactly like putting two names for
numbers on a sheet of paper and continuously erasing the number to replace it with anew
one.

The first thing we need to do islearn to put a number in avariable. We do this with
something called an assignment statement, which is sometimes called a let statement. The
line

%=1



Learn to Program in GSoft BASIC

tells the computer to place the number 1 in the variable 1%. The = character is called the
assignment operator. The very next line puts this value to use.

S%=1%* 1%

Here, we multiply 1% by itself and put the result in the second variable, S%. The *
character is used in computer languages for multiplication because a computer would
confuse X in "1% x 1%" with a variable named X. The result is saved in the location
named S%. Finally, we write the values.

PRINT 1% S%

The PRINT statement deserves alittle more attention, since there are several new
concepts here. We have already used the PRINT statement to write characters to the
screen. In this case, though, we are writing two numbers. Any time we use the PRINT
statement to write two things, the two things are separated by a comma or a semicolon. If
you separate the values with comma characters, BASIC separates the values into nest,
tabbed columns. Semicolons are used when you don’t want extra spaces or columns, asin

PRI NT "That will cost $"; MONEY

Asyou can see, we can also mix strings and numbersin the same PRINT statement.
Therest of the program should make sense at this point. BASIC reads the program
one line a atime, in the same order you do, and does what the line tellsit to do right after

the lineisread. It doesthis until it reaches the end of the program, then stops.

More About Variable Names

If you recall, | said BASIC could use several kinds of numbers, like integers and real
numbers. So which are these? Both 1% and S% are integers, so they are limited to whole
numbers. There are two waysto tell BASIC what kind of number to use. Thefirstisto
follow the name of the variable with a specia character. For integer values, that character
IS %, s0 1% is an integer variable. For real variables, you can usea! character, but
BASIC also creates areal variable if you don’'t use any character at al at the end of the
variable name.

Interestingly enough, that last character counts. It's perfectly legal to have variables
named 1%, | and I! In the same program, and each of these holds a distinct value. The



first variable is an integer, while the last two are real numbers. On the other hand, not
everything that is possible isagood idea. In most cases it’ s best to use distinct names. It
makes the program easier to understand, and as your programs get longer, that will
become very important.

Asfor the names of the variables themselves, they pretty much follow the same rules
you would use for writing words, so long as you don’t pick one of the reserved words
listed in Lesson 1. Each variable name start with an alphabetic character or the
underscore character, . The rest of the name can be any number of alphabetic characters,
underscore characters and digits, while the last character can also be one of the type
characters, like % for integers. The case of the characters does not matter—you can use
the name Sin one place, and sin another, for example. BASIC treats the names as the
same variable, and in fact, it will change all of the lowercase letters to uppercase before
printing them.

What all of those technical rules really amount to is that you can use anything that
looks like aword as the name of avariable. Y ou can aso use numbers as long as a digit
isn’t the first character, perhaps naming a series of related variables COST1, COST2, and
so forth. The underscore character is usually used when you want to stuff two English
words together to form avariable name. Y ou can’t use a space character, so you use the
underscore instead, asin CURRENT _INTEREST_RATE.

Problem 2.1: The Fibonacci seriesis a sequence of numbers obtained by adding the two
previous numbers in the series. The series starts with 0 and 1. Write a program with three
variables named LAST%, CURRENT%, and FIB%. Set LAST% to 0 and CURRENT%
to 1.

Now do the following steps five times:

1. Compute FIB% by adding CURRENT% to LAST% and saving the result in FIB%.
2. Print FIB%.

3. Assign CURRENT% to LAST%.

4. Assign FIB% to CURRENT%.

The result should be the numbers 1, 2, 3, 5 and 8, all on adifferent line.

Fibonacci numbers seem to occur frequently in nature; no oneis quite sure why. The
number of petalsin aflower and the number or |eaflets on a compound leaf are often
Fibonacci numbers.



Learn to Program in GSoft BASIC

Using DIM To Declarea Variable Type

If you remember, | said there were two ways to tell BASIC what type of number you
want to storein avariable. Thefirst isto follow the variable name with a specia
character, like % for integer values. The second way isto use a DIM statement. The DIM
statement is generally used to create arraysin BASIC, and we'll useit for that later in the
course. For now, though, we'll put it to the more mundane use of making a variable hold
the kind of number we want without the need for special characters.

Here' s how we can create a variable named |, but make it an integer variable instead
of asingle-precision floating-point variable, like it would be if we did not use the DIM
statement.

DM 1 AS | NTECER

You can aso use SINGLE instead of INTEGER to declare a single-precision real
variable, or STRING for avariable that holds a string of characters. Later on we'll start
using other kinds of numbers. All have a named type that you can use in the DIM
statement to create variables.

There are two schools of thought on whether to use the special characters or DIM
statements to declare variables. The special characters make it pretty obvious what kind
of value goesin the variable, and it also lets you start using variables without the hassle
of creating aDIM statement to declare the variable first. That’s one of the many things
that makes it easier to write a short program in BASIC than in, say, C or Pascal. On the
other hand, declaring all of the variables at the top of the program is anice way to start a
large program or subroutine. It gives you a chance to document what the variable isfor
with acomment, like this one:

DIM S AS I NTEGER :! Square of the nunber

So which is better? Well, it depends. Personally, | use type characters for short
programs and for programs that | write once to do a specialized task, then throw away. |
use DIM statements and careful comments on longer programs. I’ d suggest trying both
methods to see which you like. You’'ll see both in this course.

If you look closely, | slipped in one other new ideain this example. The : character is
used to put two statements on the same line. We need it here because the DIM statement
and the comment statement can’t fit on the same line without it. Y ou can actually use the
: character to separate amost any two BASIC statements, but in most cases that makes
the program harder to read. Thisis about the only situation where you'll seethe:
statement separator used in this course.



The FOR Loop

So far all of our programs have executed one statement at atime, starting with the
first and proceeding to the last. In our last sample and problem this started to get alittle
tedious, as we repeated the same thing over and over, incrementing a number by one each
time. Computers are real good at doing tedious things, but most people are not. The FOR
loop isthefirst in a series of statements we will look at that help remove some of the
tediousness of writing a program.

Type in the sample program below and run it. Take a crack at figuring out what it is
doing on your own before you read further.

REM Draw a fan shape in the graphics w ndow
DIM | AS I NTEGER :! |oop/index variable

I Set up the graphics screen
HGR

SETPENMODE ( 0)

SETSOLI DPENPAT ( 2)

I Draw the fan
FORI =1 TO 25

MOVETO (160, 70)

LI NETO (I * 12 - 10, 10)
NEXT

I Wait for a return
I NPUT ""; A$

Most of the thingsin this program should be familiar by now, athough some of them
are being used in new ways. The only thing that isreally new isthe FOR statement itself.
In BASIC, we use a FOR loop whenever we need to do something a specific number of
times. This could be calculating ten values, or drawing twenty-five vanes of afan, as our
program does.

The FOR loop starts with the reserved word FOR, followed by an assignment. In our
case, we are starting our FOR loop with | set to 1. The two statements right after the FOR
loop get executed once with | set to 1. What happens is exactly the same asif we
substitute 1 for | in the statements, like this:

MOVETO (160, 70)
LINETO (1 * 12 - 10, 10)



Learn to Program in GSoft BASIC

It doesn’t stop there, though. When NEXT is executed, the loop starts over with the
next value. | is set to two, and the statements are executed again. This continues until | is
twenty-five. After executing the statements one last time with | set to twenty-five, the
program moves on to the line after the FOR loop.

Problem 2.2: Our first sample in this chapter created atable of numbers and squares. It
did thisin afairly clumsy way, by using separate statements to step from 1 to 5. Rewrite
this sample using a FOR loop.

Problem 2.3: In the last chapter, we drew a square by drawing its sides with constant
integers. We could aso draw arectangle using variables, like this:

TOP = 10

BOTTOM = 70

LEFT = 10

R GHT = 100

MOVETO (LEFT, TOP)

LI NETO (RI GHT, TOP)

LI NETO (RI GHT, BOTTOM
LI NETO (LEFT, BOTTOM
LI NETO (LEFT, TOP)

Use a FOR loop to draw five rectangles, one inside the other. Set TOP, BOTTOM,
LEFT and RIGHT before the FOR loop starts. Inside the FOR loop, draw the rectangle,
then add six to top and left, and subtract six from bottom and right.

Use DIM statements with appropriate comments to declare TOP, BOTTOM, LEFT
and RIGHT asintegers.

Some Thoughts on Comments

Y ou may notice more and more comments slipping into our programs. As the
programs get longer and more complicated, you will see the trend continue.

The primary use of commentsisto describe in plain English what the program is
doing. Looking back at the Fan program, the FOR loop is |abeled with a comment that
says the loop draws the fan. These are agreat help. Y ou can read the statements by now,
and you know what each one does. No one hasto tell you what MOVETO(50, 70) does,
for example. On the other hand, it is certainly not obvious to me that these lines of code
draw afan shape. The comment tells me that, and suddenly the purpose behind the



statementsis clear. You' ve aso started to see comments used to describe how avariable
isused in aprogram.

The way you comment differs from one language to the next. In assembly language
and some high-level languages | like to put comments like these at the right side of the
page, lined up in a column. This lets me read the comments quickly, without reading the
program. This doesn’'t generally work well in BASIC because the language reformats
your programs for you, taking out extra spaces you insert and putting in spaces where it
wants them. This messes up comments that are formatted in columns to the right of the
code. In BASIC and some other high-level languages, | prefer putting comments on a
separate line just above the code the comment describes. The extra blank line adds alittle
emphasis, breaking the program up into logical chunks, more or less like paragraphs are
used to break sentences into logical chunksin prose.

There is one tremendous pitfall in commenting, though, and that’s when the
comments don’t match the program. Let’s assume that the comments in a program
describe something that should work, but the program itself doesn’t do exactly what the
program describes—perhaps the comment says the code draws afan, when in redlity it
draws an array of parallel lines. When you go to debug the program, the natural tendency
isto read the comments, not the code. Thistendency is so strong that it generally takes
less time to debug a program with no comments at all than it does to debug a program
with incorrect comments! Thisisasurprising result, but it’s backed up by research.

There are two points to keep in mind as you think about this paradox of commenting.
Thefirst is that the comments are amemory jog, and not always an accurate portrayal of
what the program does. As Ronald Reagan might have put it if he had been a programmer
instead of an actor, “Trust, but verify.”

The second important point is that when you change the code, you need to change the
comments, too. That seems so painfully obvious that you probably don't think it's a real
problem. Trust me, it is, especially when you are rapidly changing a program to fix bugs
or make adjustments to improve speed, or to change the way the program looks on the
computer screen. Don't get lazy and put off changing the comments until you finish
debugging the code—always change the comments as an integral part of changing the
program itself.

Operator Precedence

By now you are getting used to the idea that computers step through a programin a
fairly orderly way. Statements are executed top to bottom, left to right, the same way you
read. Try the following program, but see if you can figure out what will be printed before
you run the program.



Learn to Program in GSoft BASIC

REM A | ook at operator precedence
PRINT 1 + 2 * 3

There are two perfectly reasonable ways to compute a value from the expression
1+2*3

Thefirst isto work |eft-to-right:

+2* 3
*

2
3

o Wk

The second isto follow the rules you may remember from algebra class, and do the
multiply first.

+2* 3
+ 6

N R R

Asyou can see from running the program, BASIC uses the same rules as algebra
teachers. BASIC was, after all, originally designed by and for physicists, who tend to take
alot of math courses. Not all languages follow these rules; APL, for example, does work
left to right. The way alanguage determines what order to do operationsin is called
operator precedence. We might aswell call it the operator pecking order; it means the
same thing. Computer types like to sound official, though, so we better stick to
precedence.

The table below shows al of the operatorsin BASIC. All of the operators on the
same line have the same precedence. The ones at the top are done first. If two operators
with the same precedence appear together, they are evaluated left-to-right.

You will learn to use most of these operators as the course continues. For now, the
important thing is to remember that this table exists. Y ou will need to refer back to it
many times.



Operator Precedencein BASIC

@

+ NOT

AN

* /

+

= < > <= >=
<>

AND

OR

If you look closely at the table, you'll see one peculiarity. The + and - operators
appear twice. That’s because there are technically two different operations they can be
used for. The - operator in a statement like

X =-X

iscaled aunary operator because it operates on one thing. Thisisthe top - operation.
Thereisalso aunary + operation, although it doesn’t really do anything. The second form
of + and - isthe kind you normally think of for addition and subtraction. It's the
operation you are using in statements like

X=X+1

Thisversion of the operation is called a binary operator.

In our original expression, if you really wanted to compute the value 9, you could
have used parentheses. BASIC does all operationsinside of parentheses as a group, and
uses the result in the rest of the expression.

(1L +2) *3
3* 3
9

The Maximum | nteger

Growing up with alast name like Westerfield, | quickly learned that computers have
[imits. It seemed like al of the people who programmed had names like Wirth, or Ritchie,
or Steele. All of those silly forms that asked me to put each letter into a separate block



Learn to Program in GSoft BASIC

had ten blocks. It upset me: my nameisn’'t Westerfiel, it was Westerfield. The protests of
aseven year old are seldom heeded, though.

Computers have become alot more friendly since then, perhapsin part due to the
fellow protests of people like Joe Jabinoslowski. But they still have fixed limits on just
about everything. The limit may be very large, but it is there. Integers are no exception.
Every implementation of BASIC imposes some upper limit on integers—some largest
number that can be stored in an integer variable. On most microcomputer implementation
of BASIC, thisvalue is 32767. As with the upper limit, there is alower limit, too. The
lower limit isusually -32768.

These two numbers probably seem like rather odd choices for the upper and lower
limit for integer values, but thereis a good reason for why these are the limits. It hasto
do with the way numbers are stored in a computer. We really don’t need to delve into that
at the moment, though. The important thing is that you know that there is a maximum and
minimum.

If you try to stuff a number bigger than 32767 or smaller than -32768 into an integer,
different implementations of BASIC handle the problem in different ways. Most, like
GSoft BASIC, stop the program with some sort of error message.

While integers that range from -32768 to 32767 are big enough for most uses, there
are cases when you need alarger value. Many implementations of BASIC have a special
kind of integer that can hold large and smaller numbers. These longer integers are called
long integers. Y ou can create along integer by appending & to the name of the variable,
or by declaring the variableasa LONG in aDIM statement.

REM Try out a long integer
DM 1 AS LONG
I 500

I Io* 1
PRI NT |

Long integers can hold numbers as small as -2147483648 and as large as
2147483647.

Real Numbers

As everyone knows, programmers drive Porches. At least, many of the folks | meet
seem to have that impression. | have never met a programmer that drove a Porche myself.
Still, you may be aspiring to high goals, so let’s see how long you will be paying off your
dream car. We will assume that you want a new car, but not necessarily afancy one.



We'll spend $40,000 on our car. We'll assume that you know a banker real well, and can
get your car loan at 7% APR, which works out to a monthly interest rate of about 0.58%.
That would make the initial interest payment for the first month

40000 * 0. 0058
$232. 00

Let’ s assume you are generous and want to pay $500 a month. The program below
finds out how many months you will be paying.

REM Wiy | don't own a Porche

COST = 40000.0:! initial cost of car
APR = 7.0:! annual percentage rate
PAYMENT = 500.0:! nonthly payment

DI M MONTH AS | NTEGER :! nunber of nonths that have gone by
DI M PRI NCI PAL AS SINGLE :! anpunt left to pay

I no paynents nade, yet
MONTH = 0O

I we start owing this nuch
PRI NCI PAL = COST

I keep going until we're out of debt
VWH LE PRI NCI PAL > 0.0

I count the nonths as they go by
MONTH = MONTH + 1

| add interest to what we owe
PRI NCl PAL = PRINCI PAL + PRINCI PAL * APR / 100.0 / 12.0

I make the paynent
PRI NCI PAL = PRI NCl PAL - PAYMENT

I print how we're doing
PRI NT MONTH, PRI NCI PAL
VEND



Learn to Program in GSoft BASIC

The negative number after the last payment shows that you didn’t quite have to pay
$500.00 the last month to pay off the loan. The number of months this takes shows why |
own aToyota. An old one.

This program builds on your previous knowledge, but it also introduces a wealth of
new ideas.

Thefirst isacompletely new way to loop over agroup of statements. The WHILE
loop executes al of the statements between the WHILE and the WEND that ends the
loop for as long as some condition istrue. In our while loop,

VWHI LE PRI NCI PAL > 0.0

the condition is that PRINCIPAL must be greater than zero. The > character isa
comparison operator. It compares the number to the |eft of the operator to the number to
the right of the operator. If the left-hand number is bigger than the right-hand number, the
result istrue. If the left-hand number is smaller than or equal to the right-hand number,
the result isfalse. The loop continues to execute the statements as long as the condition is
true. In our program, the program continues until the car is paid off, at which time the
principal islessthan zero or equal to zero.

There are atotal of six comparison operators. The table below lists the operators and
what they test for.

operator test for...

A<B A lessthan B

A>B A greater than B

A<=B A less than or equal to B
A>=B A greater than or equal to B
A=B A equa toB

A<>B A not equal to B

FOR loops and while loops have much in common. Both are used to execute a group
of statements more than one time. In the case of the FOR loop, though, we must know
how many times the loop will be executed before we start. In the case of the while loop,
we can loop until some condition is satisfied, without knowing in advance how many
times through the loop it will take to satisfy the condition.



PRINT USING for Dollar Amounts

One of the problems with real numbersis that they may be alittle more exact than we
want. In the Porche example, some of the dollar amounts show fractions of cents. What
we' d redlly like to see in most situations is the amount rounded to the nearest cent.

BASIC usesavariation on the PRINT statement to handle situations where we want
more control over the way numbers are printed. It's called the PRINT USING statement
because you print the amounts using aformat string. The PRINT USING statement prints
the format string, but asit does, it looks for special sequences of characters called format
models. A format model tells BASIC how to print avalue. A value that comes after the
format string is printed for each format model.

In our case, we might want to print something like

After 100 nonths, the amount owed is $3933. 06.

Y ou accomplish this with the statement

PRI NT USING "After # nonths, the anmpunt owed is $S###. ##.";
MONTH, PRI NCI PAL

There are an enormous number of ways to create format models, but all of the format
models used for numbers are based on a series of # characters. Each # character reserves
one character in the final output for the number. A decimal point appearing in the format
specifier shows how to handle fractional digits. In our example, the two # characters
appearing to the right of the decimal place tell BASIC to print exactly two digitsto the
right of the decimal point. The value is rounded to two digits if there are more than two
digitsavailable.

Integers and real numbers behave alittle differently if thereisn’t enough room to
print the entire value. Our program shows how integer values work quite well. We only
left one space for the number of months elapsed. When the value hits 10, and later 100,
the program prints the entire value anyway.

Real numbers are handled a bit differently. Instead of adding charactersto handle a
larger number, the # characters themselves are printed. This seems mighty strange. Why
not just expand the number of characters for real numbers, too? Actually, the reason has
to do with the possible size for real numbers as compared to integer numbers. Even a
long integer is, a most, 10 characters, so printing the entire number doesn’t cause any
real problems. Real numbers can be considerably bigger, though. One kind of real
number that you' |l get acquainted with later could use over 300 characters to print a



Learn to Program in GSoft BASIC

number! Expanding afield automatically to handle 300 characters when you expected
just afew can be very annoying.

If you allow more room than is needed the extra spaceis still used. Blank characters
areinserted to fill in the space. Y ou can see how thisworks if you change the Porche
sample to use this new PRINT USING statement. If you don’t want to type the entire
program, run Porche2 from the samples disk.

There are several specia characters you can use in aformat model, and our example
makes use of one of them. BASIC programs need to print dollar amounts on aregular
basis, so the $ character gets special handling. When you replace the first two #
characters with $ characters the PRINT USING statement prints the $ character
immediately to the left of the first number. Any extra spaces needed to fill out the format
model appear to the left of the $ character.

Likel said, there are an enormous number of variations on format models. We'll
cover afew more as they come up in this course. For a complete run-down, see the
reference manual that comes with GSoft BASIC.

Problem 2.4: Modify the sample program to find out how big the payments need to be to
pay off the car in four years.

Hint: Start with a payment of $900, then increase or decrease the payment to get to a
solution. Y ou are playing a guess-the-payment game. If you pay off the loan in less than
48 months, or if you need to pay alot less than the payment on the 48th month, you need
to decrease the payment size. If it takes longer than 48 months, make the payment larger.
Y ou should only go to the nearest cent. The amount will not work out exactly.

Problem 2.5: Let’s assume that you are working with the planning board of the local city
government. You live in apleasant city, but due to the local geography, the city can’t
expand indefinitely. Y ou don’t want the city to become too crowded, either. The current
population size is 30,000 people. Everyone seems to agree that if the city gets any bigger
than 50,000 people, it will be overcrowded.

One councilman has proposed new legislation to prevent the city from growing at
more than 10% per year. At thisrate, how long will it be before the city hits the limit of
50,000 people? Use a program very much like the sample program, but with a growing
population instead of a shrinking principal to find out. Do you fedl thisis acceptable?

Thisis not an idle problem. While the numbers were different, thisis exactly the
situation faced severa years ago by the city of Boulder, Colorado. The answer they found
caused some changes in the thinking of the city planners, and affected the outcome of
some zoning legislation.



Problem 2.6: Inflation has been running at about 4% for the past few years. On average,
then, something that costs $1.00 at the beginning of the year will cost $1.04 by the end of
the year. Assuming a gallon of gas costs $1.00 today, what will it cost in ten yearsiif
inflation continues at 4%?

A few years ago inflation was running at about 12%. Try thisinflation figure. Isthis
rate a problem?

Exponents

Integers were limited to a specific size. Real numbers have limits, too, but the limits
are of adightly different nature. Thisis because real numbers use exponents to represent
very large and very small numbers.

Exponents are the computers way of dealing with something called scientific
notation. An exponent is a power of ten that follows the real number. For example,

2.5E2

means 2.5 times 10 raised to the power of 2. Y ou can also think of the power asthe
number of zeros to add to the 1. Ten to the power two is 100, for example. One-hundred
times 2.51s 250, so 2.5E2 is 250.

Exponents can also be zero. An exponent of zero means a 1 with no zeros, or just 1.
Multiplying by one gives the original number, so 2.5EQ isjust 2.5.

Finally, exponents can be negative. A negative exponent means to divide by ten to the
indicated power, so 2.5E-3 meansto divide 2.5 by 1000, giving 0.0025.

A quick way to work with exponentsis to move the decimal point to the right for
positive exponents, or to the left for negative exponents.

Real numbers can get quite large and quite small, but thereisalimit to the size. In
GSoft BASIC real numbers can have exponents in the range 1E-38 to 1E38. Thereisaso
alimit to the number of digitsthat can be handled. It's alot like a calculator with aten-
digit display. If you need numbers with more than ten digits of accuracy, you have to get
adifferent calculator. GSoft BASIC real numbers have seven digits of accuracy.

Like many implementations of BASIC, GSoft BASIC aso supports another type
called DOUBLE. Double values are handled just like real values, but they can have
bigger exponents and are more accurate. In GSoft BASIC double values can have
exponents that range from 1E-308 to 1E308, and can display seventeen digits accurately.

The following example shows how to use real numbers to represent very large
numbers.



Learn to Program in GSoft BASIC

REM There are about 6 billion people in the world. Assum ng
REM a growth rate of 1.8% per year, how nmany people will there
REM be in 100 years?

DI M PEOPLE AS SINGLE :! nunber of people
DI M YEAR AS I NTEGER :! current year

PEOPLE = 6E9
FOR YEAR = 1 TO 10
PEOPLE = PEOPLE * 1.018
NEXT
PRINT "At 1.8% growth, there will be ";PEOPLE;" people in 10
years."

These numbers are about right for 1998. Pretty scary, isn't it?

Problem 2.7: Some germs can reproduce every twenty minutes. They reproduce by
fission, where one germ splitsin half to make two new germs. Assuming nothing stopped
their growth, how many germs would there be after one day, starting with a single germ?

Why So Many Kinds of Numbers?

So far you' ve seen three kinds of numbers, and doubl e-precision floating-point
numbers have been mentioned but not used. There's even afifth kind, called a byte.

It'sfair to ask why there are so many kinds, and, more important, when each kind
should be used.

There are three competing issues that force us to use so many kinds of numbers. The
first is space. An integer uses two bytes of storage; along integer and single-precision
floating-point number both use four bytes of storage, and a double-precision floating-
point number use eight bytes of storage. A byteisaunit of storage that, on most
computers, is made up of eight on or off switches whose values are represented by a0 or
1; each of these is called a bit. The important point for us BASIC programmers, though,
isthat we can store two integers in the same space it takes to store one long integer or
single-precision floating-point value, and of course a double-precision floating-point
value takes up four times the space of one integer. Size becomes important when your
programs use large databases that are made up of thousands or millions of numbers. Size
is also important when you' re waiting for a program to scan large disk files, or when
you're trying to cram alarge file onto adisk or send it over a network.

The second issueis speed. Multiplying two long integer values generally takes about
four times as long as multiplying two integer values; the same is true when you compare



double-precision values to single-precision values. And a math operation on single-
precision floating-point values takes longer than the same operation on long integers,
even though they are the same size. In many programs, speed isn't that big of an
issue—but in some it is, and when speed is important, it's important to use the fastest
operations available. Like size, speed concerns dictate that we use integers where
possible, selecting long integers next. From a size standpoint, long integers and single-
precision floating-point values come up as a draw, but from a speed standpoint we choose
long integers. And of course, double-precision floating-point values are the slowest and
take the most room, so we want to avoid them whenever possible.

But it isn’t always practical to use integers. After all, when you’re calculating
population growth, car payments, or the area of acircle, you need to use values that
might not be an integer. Many scientific and statistical calculations ssmply need more
precision—or a greater range of exponent—than single-precision floating-point values
can deliver. There are even afew odd-ball algorithmsin the field of numerical anaysis
that work best when you use two different sizes of floating-point numbers at various
points in the calculations.

So, in anutshell, the reason there are so many kinds of numbersis that you, as the
programmer, are balancing contradictory goals. Y ou need to write programs that are fast
and use as little space as possible, but you also need to use numbers that give you an
accuracy and range of values that will handle the situation.

To sum up the rules, pick numbers this way:

1. If you can, useinteger variables. They are the smallest, and calculations with
integer values are always the fastest.

2. If you will be dealing with values that are too large or to small for an integer
variable, switch to long integers.

3. If you need values that are not whole numbers, or if the values are too large or to
small for along integer, use single-precision floating-point numbers.

4. If you need more digits of precision or alarger range of exponents than single-
precision floating-point can deliver, switch to double-precision floating-point.

There are specialized tools for dealing with situations where even double-precision
floating-point numbers can't cut it. We won’'t deal with them in this course, but if you
want to branch out, ook for articles dealing with so-called infinite precision math
packages.



L esson Three— Input, Loops and
Conditions

| nput

So far, all of your programs have only done one thing. No matter how many times
you ran the program, unless you changed the program itself, it aways did the same thing.
The reason, of course, is that the programs could never ask you for any information. It's
time to start controlling our programs a bit more through the use of input.

Your first program was a pretty simple one; it used the PRINT statement to write a
string to the screen. Y ou have aready learned to write integers and real numbers using
PRINT. BASIC usesthe INPUT statement in much the same way to read numbers and
strings.

Actuadly, you've already used the INPUT statement in alimited way. When a
graphics program finishes, the display switches back to the text screen, which doesn’t
give you achance to look at the completed drawing. We' ve been using the statement

I NPUT ""; A$

to force the program to wait for you to press the return key, giving you a chance to
examine the graphics screen before the program finishes.

Y ou can experiment with the INPUT statement to quickly get an idea how it works.
From the GSoft BASIC command line, type

I NPUT A

and press the return key. A question mark shows up on the screen, telling you that BASIC
iswaiting for some kind of input. Type a number and press return, then try the command

PRI NT A

Asyou can see, the number you typed is entered into the program.

For a short, quick program, thisis perfect. Here's a simple command that places a
prompt on the screen so you know it’ s ready for you to type, lets you enter a number, and
stores the result in avariable. It works with integers, long integers, and both single-
precision and double-precision floating-point numbers. It even works with strings,



something you probably guessed from the INPUT statement we used to pause at the end
of graphics programs.

There are alot of situations where this simple approach is appropriate, but as your
programs get longer, this simplicity doesn’'t always work. The first situation that pops up
is using something other than a question mark as a prompt. If you wrote the program, will
useit afew times, and throw it away, the question mark isfine, but if other people will
use your program or if you'll useit later, it'sagood ideato enter something more
informative. INPUT allows you to change the prompt by following the command name
with astring and a semicolon. The string is used as the prompt. If you use an empty
string, like we did in the graphics programs, no prompt is printed at all.

Try this program to see how prompts work.

| NPUT " Pl ease type your nane: "; NAVES$
PRINT "Hello, "; NAME$

Thereis one last feature of the INPUT statement that is pretty handy for short
programs, but tends to get in the way in longer ones. Y ou can read severa values with a
single INPUT statement, and the person using the program can reply with more than one
value on the same line. In each case, the variables or values are separated by commas.

Here' s aprogram that reads two pairs of numbers, draws a line between the points,
and waits for afinal press of the return key before quitting. It puts all of these ideas to
use.

I NPUT "First coordinate (enter x, y): ";X1, Y1
| NPUT " Second coordinate (enter x, y): ";X2, Y2
HCR

MOVETO (X1, Y1)
LI NETO (X2, Y2)
I NPUT "": A$

One of the peculiar things about the INPUT statement is that you don’t have to enter
the values exactly when the program expects them. Normally, you’ d expect to see
something like this as you type your responses:

First coordinate (enter x, y): 1,1
Second coordinate (enter x, y): 100, 100

That certainly works. But now try entering all of the numbers on the same line, like this:



Learn to Program in GSoft BASIC

First coordinate (enter x, y): 1,1, 100,100
Second coordinate (enter X, y):

Strangely enough, that works, too. If you add afifth value, the last INPUT statement
picksit up, so your program doesn’t pause at all!

Y ou can also do just the opposite. If you enter a number, then press the return key, the
program accepts the first value, then waits for another—but without showing a prompt.

Our First Game... er, Computer Aided Simulation

WEéll, let’ s have some fun. Now that we can hold a ssimple conversation with the
computer we can write our first simple computer game.

REM Cuess a nunber

REM

REM Thi s game randomy selects a nunber from1 to 100, then
REM | ets a player guess the nunber.

DI M VALUE AS I NTEGER :! The value the player will guess.
DIM 1 AS INTEGER :! The player's guess.

I Introduce the gane

PRINT "In this gane, you will try to guess a nunber from 1"
PRINT "to 100. | will tell you if your guess is too high"
PRINT "or too low "

PRI NT

I Pick a nunber from1 to 100.
VALUE = 1 + RND (1) * 100

I Guard against overflows to 101.
I F VALUE = 101 THEN

VALUE = 100
END I F

I Let the player guess the nunber.
DO

I Get the player's guess.
I NPUT "Your guess: ";|I

I If the nunber is too high, say so.



IF 1 > VALUE THEN
PRINT I;" is to high."
END | F

I If the nunber is too |ow, say so.
IF 1 < VALUE THEN
PRINT ;" is to low"
END | F
LOOP WH LE | <> VALUE

I If we get here, the nunber was correct.
PRINT I;" is correct!"

There are alot of new conceptsin this program, and we will spend alot of time
examining it in detail, but first typeit in and runit.

The DO-LOOP

One of the new thingsin our program isapair of new statements called the DO-
LOOP statements. Thisis the third looping statement you have learned in BASIC. The
first two, of course, are the FOR loop and the WHILE loop. The DO-L OOP statements
are also the last looping statement in BASIC! Y ou're getting there...

Like the WHILE loop, the DO-LOOP statements |oop until some condition is
satisfied. Unlike the WHILE loop, the condition appears at the end of the loop. (There are
some exceptions, we' |l discuss those a bit later.) This means that the statements in the
DO-LOORP statements are always executed at least one time, while the statementsin the
WHILE loop can be skipped atogether. Thisis an important difference, and the key to
why there are two loops instead of just one. To understand this difference, let’slook at
WHILE loops and DO-L OOP statements from some of our programs and compare the
two.

In the last lesson, we wrote a program that showed how many payments were needed
to buy acar. It contains this loop:

I keep going until we're out of debt
VWHI LE PRI NCI PAL > 0.0

I count the nmonths as they go by
MONTH = MONTH + 1

| add interest to what we owe
PRI NCl PAL = PRINCI PAL + PRINCI PAL * APR / 100.0 / 12.0



Learn to Program in GSoft BASIC

I make the paynent
PRI NCI PAL = PRI NCI PAL - PAYMENT

I print how we're doing
PRI NT MONTH, PRI NCI PAL
VEND

In this case, we needed to loop until the amount we needed to pay off was zero. It
would be possible, athough in this case not very likely, for the principal to be zero before
the loop was ever executed. Thisisthe key test for a WHILE loop: you must ask yourself
if it ispossible for the condition that stops the loop to be true before you start. In other
words, you want to know if it is possible that you may not want to execute the statements
intheloop at all. If that is the case, aWHILE loop should be used.

The DO-LOOP statements look very similar. The only real differenceisthat the
condition is evaluated at the end of the loop, not the beginning.

I Let the player guess the nunber.
DO

I Get the player's guess.
I NPUT "Your guess: ";

I If the nunber is too high, say so.
IF 1 > VALUE THEN

PRINT I;" is to high."
END | F

I If the nunber is too |ow, say so.
IF 1 < VALUE THEN
PRINT ;" is to low"
END | F
LOOP WH LE | <> VALUE

The DO-LOOP statements are generally used in cases where the condition doesn’t
make sense until after the statements in the body of the loop have been executed at least
one time. For example, it would seem to make sense to use a WHILE loop that looks like
thisto do the same job:

I Let the player guess the nunber.
VWH LE | <> VALUE



I Get the player's guess.
I NPUT "Your guess: ";

I If the nunber is too high, say so.
IF 1 > VALUE THEN

PRINT I;" is to high."
END | F

I If the nunber is too |ow, say so.
IF 1 < VALUE THEN
PRINT ;" is to low"
END | F
VEEND

Thereisaflaw in this code, though. The value of | has not been set when the
condition istested the first time. In this particular case, you might feel safe. After all, you
might know that the value of aBASIC variable is aways initialized to zero, and zero
isn't one of the possible values for VALUE. Depending on this sort of informationis a
really bad idea, though. First, you may end up moving this program to another
implementation of BASIC someday, and that implementation may not initialize values to
zero. Most versions of BASIC follow thisrule, but thereis no BASIC standard that forces
everyoneto initialize the value of variables. More important, you may pluck this loop out
of the original program and insert it into a new one, or add new features to the existing
program so that | does have a value other than zero when the loop starts. This sort of
change happens more often that you'’ d think. And when it does, you' re | eft scratching
your head, wondering why a part of the program that used to work suddenly startsto fail.

Thereisaway to rescue the WHILE loop, though. Y ou can start off by initializing |
to a number different from value, like this:

I Let the player guess the nunber.
I = VALUE - 1
VWH LE | <> VALUE

I Get the player's guess.
I NPUT "Your guess: ";

I If the nunber is too high, say so.
IF 1 > VALUE THEN

PRINT I;" is to high."
END I F

I If the nunber is too |low, say so.



Learn to Program in GSoft BASIC

IF 1 < VALUE THEN
PRINT I;" is to low "
END | F
VEND

Thiswill work; the test will alwaysfail the first time, so the person guessing the
number always gets at least one chance to guess the number. It’s perfectly safe, too: It
won't fail if you change the program later and set | to some value, or if you run the
program on aversion of BASIC that doesn't initialize variables to 0. On the other hand,
the DO-L OOP statements work, to, but they don’t require that you set the initial value
before you start into the loop.

The acid test for when to use the DO-L OOP statements, then, is whether or not the
test that ends the loop makes sense before the statements in the loop have been executed
one time. In our example program, the test uses the value of I, which isread in inside the
loop. The test doesn’t make sense until the number has been read at least one time, so we
use the DO-LOOP statements.

The Flexible DO-LOOP Statement

The DO-LOOP statements are actually more flexible than I’ ve let on. Y ou can
actually put the condition at the top or bottom of the loop. As an example, here’s our
WHILE loop that calculated car payments, reworked to use DO-L OOP statements.

I keep going until we're out of debt
DO VWH LE PRINCI PAL > 0.0

I count the nmonths as they go by
MONTH = MONTH + 1

| add interest to what we owe
PRI NCl PAL = PRINCI PAL + PRINCI PAL * APR / 100.0 / 12.0

I make the paynent
PRI NCI PAL = PRI NCl PAL - PAYMENT

I print how we're doing
PRI NT MONTH, PRI NCI PAL
LooP



Y ou can also put a condition at both the top and bottom of the loop, or, for that
matter, not use any condition at all. If thereis no condition at all the loop continues until
something else forces the program to stop.

If the condition appears at the top of the loop the DO-LOOP statement doesn’t really
offer anything that the WHILE loop can’t handle, so wewon'’t use it that way. Situations
where it makes sense to use a condition at both the top and bottom of the loop, or no
condition at al, just don’'t come up that often. In this course, we'll only use the DO-

L OOP statements with a test at the end of the loop.

Of course, it'sfair to ask the opposite question. If the DO-LOOP statements can do
everything the WHILE-WEND statements can do, why use WHILE-WEND? For that
matter, why isit evenin BASIC?

I’ll speculate abit here. Neither DO-L OOP statements nor WHILE loops were in the
original version of BASIC. They weren't common in BASIC until the structured
programming craze hit in the mid 1980's. While | don’t know thisfor afact, it appearsto
me that WHILE-WEND loops were introduced by one set of people, and the DO-LOOP
statements by another. Eventually, both statements started appearing in BASIC so all of
the old programs would run.

The truth is that you don’t need WHILE-WEND loops. | think it makes the program
easier to follow if you always use WHILE loops when the condition is tested at the top,
and always use DO-L OOP statements when the condition is tested at the bottom, so that’s
what you'll see me doing in the example programs. That doesn’t mean you have to do the
same thing. Both ways work; just pick one and stick with it.

Random Numbers

One of the new concepts used in our sample program is the random number. Y ou
have probably heard that computers are very precise, and that is certainly true. In our
number guessing game, though, the last thing we want is for the computer to be precise.
This game just won’'t be much fun if we know beforehand what number the computer
will pick. The program uses something called a random number generator to get around
this problem.

A random number generator is basically away for the computer to generate a
number, or series of numbers, that seem to be random. Since the computer can only do
very specific things, the numbers aren’t really random, but they are very hard to predict,
and that is good enough for alot of programs. Since the numbers really aren’t random,
they are technically called pseudo-random numbers. That’'s areal mouthful, though, so
we will continue to call them random numbers.

WEe Il write asimpler program to learn more about random numbers.



Learn to Program in GSoft BASIC

REM A cl oser | ook at pseudo-random nunbers

FORI =1 TO 10
PRI NT RND (1)
NEXT

Type this program in and run it. It will print ten pseudo-random numbers. Run it several
times, and you' Il notice that the numbers are different each time.

One thing that stands out isthat all of the numbers are between 0 and 1. Technically,
it's possible for the random number generator to return 0O, too, but it’s very unlikely. It's
not possible for RND to return the value 1. That explains why our program can use the
lines

I Pick a nunber from1 to 100.
VALUE = 1 + RND (1) * 100

I Guard against overflows to 101.
I F VALUE = 101 THEN

VALUE = 100
END I F

to pick avalue from 1 to 100. If RND returns zero, adding 1 givesavalue of 1. If it
returns 0.9999999, multiplying by 100 and adding 1 gives 100.99999. Unfortunately, this
can cause a number overflow—the number can't be stored exactly, so the computer
rounds up, giving avalue of 101. That's why the IF statement is used to check for the
overflow situation, pushing the value back to 100 if the overflow occurs.

Now make a slight change to the program by adding a new line just before the FOR
loop, likethis:

REM A cl oser | ook at pseudo-random nunbers

| = R\ND ( - 1)
FOR| =1 TO 10

PRI NT RND (1)
NEXT

When you run this program, you still get a sequence of ten random numbers. Now run the

program a second time and compare the numbers. As you can see, they are the same.
This gives you a solid clue about how random numbers are generated. The fact that

you get the same numbers each time you run this program shows that the numbers aren’t



really random at all. In fact, each random number is generated by starting with the last
number. A complex series of mathematical operationsis performed to generate a new
number that has no readily apparent relation to the previous number.

In our modified program the first call to RND used a parameter of -1, which told
RND to start a new sequence of random numbers using -1 as the starting value. Thisis
called seeding the random number generator; the number is called the seed. All of the
random numbers grow from this seed. If you use -2 for thisfirst call you still get aseries
of random numbers, and they are still the same every time the program runs, but the
numbers will be different than the numbers you got using -1 as a seed. In fact, every
negative number will perform this same way, generating a consistent series of random
numbers, but each negative number generates a series that is different from every other
negative number.

We used 1 for the argument to the RND function in the main loop of the program. All
positive numbers perform in exactly the same way. They tell RND to generate arandom
number. It doesn’t matter which positive number you use; the mere fact that it is greater
than zero tells RND that you want arandom number.

Thereisone last parameter you can use for RND. In afew odd situations, you may
want to use the same random number twice. Y ou could do this by saving the random
number in avariable and using the value from the variable, but you can accomplish the
same thing using O for the parameter to RND. When the parameter is 0, RND returns the
same value it returned the last time it was called.

It might seem strange to create a predictable series of numbers, but thisis very handy
when you are testing a program. Y ou can remove the line that seeds the random number
generator once the program is finished.

By now, you may realize that the random number generator needs some sort of seed
to get the random number sequence started. So how does the first program create a
unique series of numbers each timeit runs? In GSoft BASIC, if you call RND with a
positive argument the first timeit is called in a program, the random number generator is
automatically seeded from the computer’s clock. This frees you from the hassle of
finding that first random number to start the sequence. Keep in mind that this serviceisn't
universal in BASIC. Y ou may have to come up with a seed some other way if you use
another version of BASIC.

Why Random Numbers Are Important

We will use random numbers in many of our example programs. Random numbers
help us to write programs that don’t do exactly the same thing each time we use them;
that’ s something we will need over and over again. Here are some places where random
numbers are commonly used:



Learn to Program in GSoft BASIC

1. Random numbers are used in games like Chess. Games work by scoring moves,
the move with the best score is the one the computer makes. If two moves have
the same score, random numbers can be used to choose between them so the
computer doesn’'t play exactly the same way each time. In agame like chess or
checkers, there are also many good ways to make the first few moves;, these are
called opening books. Random number generators are used to pick an opening
from the opening book.

2. Many dungeon and dragon style computer games work based on probabilities. For
example, a character with a particular set of characteristics might have a
probability of 0.4 of killing a giant ant with a broadsword. The ant, conversely,
might have a 0.2 chance of damaging the player. A random number generator can
be used to generate a number between 1 and 100, as our number-guessing game
did. The player killsthe ant if the number isless than 40. Next, another number is
chosen, and the ant hurts the player if the number islessthan 21.

3. Computers are often used to do serious simulations. Computer simulations are
used to study traffic patterns, wars, and the spread of diseases. As an example,
let’s assume that you are trying to protect Y ellow Stone Nationa Park from forest
fires. You could choose to “let it burn,” letting nature take its course. Y ou could
choose to fight al fires aggressively, but that would lead to a gradual build-up of
weeds and wood to burn. Y ou might choose to cut fire lanes through the forest.
All of these possibilities can be examined using computer simulations.

4. Random number generators are used in card games to shuffle cards. The random
number generator is used to pick which card will be taken from the deck next,
taking one card from the remaining cards that have not been dealt.

Problem 3.1. Write a program to throw two six-sided dice twenty times. Use the same
ideas used in the number-guessing game. Write the number of spots showing on each of
the dice to the screen. Each line should show the value for both dice, like this:

1 4
5 2
5 6



Write your program so the number of dice and the number of sides are stored in
variables, and used throughout the program. This makes the program easy to modify if,
for example, you need to roll one 20 sided die instead of two 6 sided dice.

This makesthe PRINT statements allittle tricky. Y ou can use a print statement like

PRI NT X, ;

to print avalue, skip to the next column, and not print a carriage return at the end of the
line. This allows you to print two numbers on the same line at different placesin the
program.

Problem 3.2. Y ou can draw a dot in the graphics window by doing first aMOVETO,
then aLINETO the same spot. For example,

MOVETO (10, 10)
LI NETO (10, 10)

draws a dot a 10,10.

Write a program that gradually blackens the rectangle with aleft edge of 10, atop of
10, aright edge of 100, and a bottom of 70. Do this using a FOR loop that loops from 1 to
MAX, where MAX is set at the top of your program to avalue of 5551.

Pick two random numbers inside the FOR loop. The first should be in the range 10 to
100; assign this value to an integer variable called x. The second should be in the range
10 to 70; assign this one to the variable y. Draw a dot at this point usingaMOVETO-
LINETO sequence.

Theresult isa program that gradually fills the area with white snow.

There are 5551 dots in the areayou are filling, but when the program finishes, not all
dots are white. Why?

Problem 3.3. Change the program from problem 3.2 to create multicolored snow by
picking the color of the dot randomly. The color should be in the range O to 15.

The | F Statement

Computer programs can make decisions. Y ou have already written some programs
that use this capability in the form of loops that keep going until some condition is
satisfied. In some cases, though, we may only need to do something once, or we may not
need to do it a all. That's where the IF statement comesiin.



Learn to Program in GSoft BASIC

The IF statement evaluates the same kind of condition that you have already used in
the WHILE loop and DO-L OOP statements. The condition is followed by the reserved
word THEN; thisjust tells BASIC that you are finished with the condition. Absolutely
nothing, even a comment, can appear after the THEN. The |F statement starts a block of
statements, just like WHILE-WEND and DO-LOOP. In the case of the |IF statement, the
block endswith END IF.

If the condition in the IF statement is true, the block of statements between the IF and
END-IF statements are executed. If not, the statements are skipped. In away, the IF
statement is like a DO-L OOP statement that doesn’t loop.

Let’stry asimple example to see how all of thisworks. In this example, we will use
the | F statement to write a program that can count change.

REM Count change.

DI M CHANGE AS | NTECER :! The nunber of cents to count.
DI M AMOUNT AS | NTECER :! The number of a particul ar coin.

I Get the nunber of cents to count.
I NPUT "How many cents in the change? "; CHANGE

I Wite a header.
PRI NT "Your change consists of:"

I Count out the dollars.
| F CHANGE >= 100 THEN

AMOUNT = CHANGE / 100

PRI NT AMOUNT; " dol | ars"

CHANGE = CHANGE - AMOUNT * 100
END | F

I Count out the quarters.
I F CHANGE >= 25 THEN
AMOUNT = CHANGE / 25
PRI NT AMOUNT; " quarters"
CHANGE = CHANGE - AMOUNT * 25
END I F

I Count out the dines.
| F CHANGE >= 10 THEN
AMOUNT = CHANGE / 10
PRI NT AMOUNT; " di nmes"
CHANGE = CHANGE - AMOUNT * 10
END | F



I Count out the nickels.
| F CHANGE >= 5 THEN
AMOUNT = CHANGE / 5
PRI NT AMOUNT; " ni ckel s"
CHANGE = CHANGE - AMOUNT * 5
END | F

I Count out the cents.
| F CHANGE <> 0 THEN

PRI NT CHANGE; " cents"
END | F

In this program, each | F statement is used to see if the number of centsleft islarge
enough to give the customer at least one coin of agiven size. For example, the first IF
statement checks to see how many dollars are in the change. In each block we need to do
two things, count the number of coins to give in change and adjust the amount |eft to
give.

The exact order of the calculationsis actually quite important. The divide operation
returns a single-precision floating-point value. For example, if CHANGE is 70 when the
number of quartersis calculated, CHANGE / 25is2.8. When thisvalueis stored in
AMOUNT, which isan INTEGER, the digits to the right of the decimal point are
dropped. It’s important to realize that the number is not rounded to 3, which is the integer
closest to 2.8, but truncated to 2. Storing the single-precision floating-point value in the
INTEGER variable AMOUNT has done exactly what we wanted, converting the number
to the whole number of coins.

Once we know the number of coins, we can subtract the number of cents we've just
counted out by multiplying this whole number of coins by the number of centsin the
coin. Following along with the same numbers, the line

CHANGE = CHANGE - AMOUNT * 25
multiplies the number of quarters, 2 in this case, by 25 to calculate the total amount we

just counted out in quarters. This amount is subtracted from CHANGE to give the
amount left to count, which is 20 cents.

The ELSE Clause

There are many times when you need to do one thing or another, depending on some
condition. In that case, you could use two different |F statements, one after the other, but
you can a'so use an EL SE statement. As asimple example, let’s say you are printing the



Learn to Program in GSoft BASIC

number of triesit took to guess the number in our number guessing game. It’s sort of
tacky to print out "1 tries," or worse still, "2 try." With an IF-THEN-EL SE statement,
you can print something a bit prettier:

IF TRIES = 1 THEN

PRI NT "You guessed the number in 1 try!"
ELSE

PRINT "It took "; TRIES;" tries to guess the nunber."
END | F

If the condition evaluated by the IF statement is true, the lines between it and the EL SE
statement are executed and the lines between the EL SE statement and END |F statement
are skipped. If the condition is false, the lines between the IF statement and the ELSE
statement are skipped, and the lines between the EL SE statement and END | F statement
are executed. Thisisthe model for any either-or kind of situation, where you want to do
one thing or another, but not both.

Problem 3.4. Modify the program from Lesson 2 that showed payments for
purchasing acar. Allow the user of the program to enter the cost of the car, the interest
rate and the number of payments as real numbers. Use an |F statement to see if the
payment is larger than the amount of interest that will accumulate in one month. If not,
print an appropriate error message. If the payment is large enough, execute the program
asit worked before.

The World’s Shortest Animation Course

There' s one last topic to deal with before we leave the | F statement. We're going to
have some fun with it, though, by introducing the topic of computer animation. This
section will give you the short version of a course in computer animation. Surprisingly, it
covers al of the essential points. Everything beyond what you seein this section is art
and technology, not concepts. Admittedly, there’s alot of art and technology out there
concerning computer animation, but in the end al of the techniques end up using the
same basic principles of moving objects on the screen.

You're almost certainly familiar with the fact that movies, television, and computer
animation all work by drawing a series of still pictures at arapid rate. If the rate is fast
enough, your brain interprets the series of still frames as motion. The rate that’s used in
moviesis 24 frames per second; for television and most computer screensit’s 30 frames a
second.



Y ou can create a very simple animation by ssimply drawing and erasing a shape in
successive positions as it moves across the screen. Here' s a sample that moves a square
across the graphics screen. It uses a new command, SETPENSIZE, to change the size of
the dot from the 1 pixel by 1 pixel size you've seenin al of your graphics programs so
far to alarger 4 pixel square box.

REM Draw a ball sliding across the screen from O, 0 to 180,
180

DIM X AS INTEGER , Y AS INTEGER :! Coordinates for the ball
DIM 1 AS INTEGER :! | oop counter

I Set up for graphics
HGR

SETPENMODE ( 0)
SETPENSI ZE (4, 4)

nitialize the ball position.

(|
X =0
Y=0
I Animate the ball.
FOR1 =1 TO 180

| Erase the old ball.
SETSOLI DPENPAT ( 0)
MOVETO (X, )

LI NETO (X, V)

I Conpute the new ball position.
X=X+1
Y=Y+1

I Draw the ball at the new position.
SETSOLI DPENPAT (15)
MOVETO (X, )
LI NETO (X, Y)
NEXT
I NPUT ""; A$

When you try this program you' [| see alot of problems. The box it erased about as
often asit’sdrawn, which gives alot of flicker. The box might even seem to vanish for a
moment if the timing isjust right on your computer. That’s because you have two



Learn to Program in GSoft BASIC

conflicting actions taking place. At any given time, the video circuitry in your computer
is busy drawing some portion of the screen. At the same time your program is busy
drawing and erasing the image. If those two activities aren’t timed perfectly you can end
up erasing the image just before the video circuitry draws that part of the screen, then
redrawing it just after it finishes.

Thereisasimpletrick that minimized this problem and, at the same time, lets you
draw complex images on a background. It uses a new drawing mode called exclusive OR.
Instead of painting a pixel of aparticular color on the screen like al of our other
programs, this mode actually reverses the color of the pixel. If you are drawing awhite
sguare on a black background the effect isidentical to what you’ ve already done, but the
cool part shows up when you draw the same shape in the same place. Sinceit’s reversing
the pixels, not painting them, reversing them a second time erases the object! That,
combined with asimple trick of drawing the shape in the new position before erasing it in
the old position, improves the image dramatically.

The SETPENMODE command with a parameter of 2 lets you draw in exclusive OR
mode; the value of O that we've used in al of our programs so far is called copy. Here'sa
variation on our animation program that puts these ideas to work.

REM Draw a ball sliding across the screen from O, 0 to 180,
180

DIM X AS INTEGER , Y AS INTEGER :! Coordi nates for the ball
DIM 1 AS INTEGER :! | oop counters

I Set up for graphics
HGR

SETPENMODE ( 2)
SETPENSI ZE (4, 4)
SETSOLI DPENPAT (15)

I Initialize the ball position.
X=0

Y=0
I Draw the ball in the starting position.

MOVETO (X, )
LI NETO (X, Y)

I Animate the ball.
FOR1 =1 TO 180



I Draw the ball at the new position.
MOVETO (X + 1, Y + 1)
LINETO (X + 1, Y + 1)

| Erase the old ball.
MOVETO (X, YY)
LI NETO (X, V)

I Update the ball position.
X X+ 1
Y Y +1

NEXT

I NPUT ""; A$

There s till alittle flicker. Two things will reduce it further.

First, as your program gets larger and more complicated, it will spend more time
calculating various things like relative positions of objects and whether an object has hit
another. Aslong as you do all of this calculation while the object is visible, you increase
the chance that the object will be visible when the video hardware draws the portion of
the screenitison.

This still leaves alittle flicker, but for many applications it is good enough. The last
finesse is more complicated. The very best animation on the Apple |1Gs takes the vertical
blanking signal into account. Thisis a notice from the computer that the screen is about
to be drawn. Asthe video hardware draws the screen, the animation software follows
along behind, drawing objects in an area where the video hardware isn’t busy drawing the
screen. While theideais ssmple, implementing it is extremely complicated. It is amost
always donein very carefully written assembly language programs.

Nesting If Statements

There are some situations where it makes sense to check for more than just one
possibility. For example, let’s assume that you want to print out a message like “that was
your 3rd try.” Y ou can print the number of tries, followed by “rd,” but that only works
for some numbers. Y ou would want to print

1st
2nd
3rd
4t h
5th



Learn to Program in GSoft BASIC

and so on. One way to go about it isto print “that was your,” followed by a series of IF
statements, followed by printing “try.” The IF statements can be used to decide the suffix
for the number of tries. Rather than using a series of separate |F statements, though, you
can actually attach another condition right after an EL SE and keep going, as this example
shows.

PRI NT "That was your "
IF TRY = 1 THEN
PRI NT "1st";
ELSE | F TRY = 2 THEN
PRI NT "2nd"
ELSE | F TRY = 3 THEN
PRI NT "3rd"
ELSE
PRI NT TRY;"th";
END | F
PRINT " try!"

Thefirst part worksjust like all of the other IF statements you' ve seen. If TRY is 1,
the condition on the IF statement istrue. In that case, the program prints “ 1st” and skips
all of the other possibilities. If TRY isnot 1, the next condition is checked. This process
continues, checking one condition after another, until one of the EL SE IF conditionsis
true. As soon as a matching condition is found, the program executes the statement right
after that EL SE IF clause and skips the remaining code. If none of the conditions are true,
the program executes the lines between the EL SE and END | F statements.

The ELSE clauseis optional. If you leave it out, and none of the conditionsin the IF
or any of the ELSE |F statements are true, all of the other statements are skipped. The
EL SE statement should come at the end of the sequence, though, so al of the ELSE IF
tests are evaluated.

Problem 3.5. In this problem, you will write a bouncing ball program. Y ou will move
asmall spot across the graphics screen. When the spot gets to the edge of the screen, it
will bounce off.

Start with the animation program from the last section. Before the animation starts,
ask the user for a starting x, astaring y, the number of iterations (put thisin avariable
called ITER), and an x speed and y speed (put these in XSPEED and Y SPEED). Check to
seeif the x and y values are in the graphics window using I F statements. If not, adjust
them to be in the window. (The graphics window runs from 0 to 319 horizontally, and O
to 199 vertically.) Loop over your code to move the ball ITER times.

On each loop, you will need to do the following:



1. Add the XSPEED to X. This movesthe ball over.

2. If X is off the screen to the left (Iess that zero), set it to zero and set XSPEED to -
XSPEED.

3. If X isoff the screen to the right (greater that 319), set it to 319 and set XSPEED to
-XSPEED.

4. Add the YSPEED to Y. This moves the ball up or down.

5. 1f Y is off the screen to the top (less that zero), set it to zero and set Y SPEED to -
Y SPEED.

6. If Y isoff the screen to the bottom (greater that 199), set it to 199 and set Y SPEED
to -Y SPEED.

Be sure to do as much of the calculation as possible while the ball isvisible, then
quickly draw the ball in the new position and erase the old one.

The practice of writing our the steps for a program in akind of semi-English formis
very useful for designing programs. The roughed-out version of the codeis called
pseudo-code. It won’t run on any computer (at least, none that are available today!), but it
helps when you are working on the logic of a program.

A Bit of Iffy History

Like the DO-LOOP statement and the WHILE loop, the sort of IF statement you' ve
learned in thislesson is new to BASIC. It's called a block structured IF statement, and
was added to the language at about the same time as the structured loop statements.

While wewon’t useit in this course, the older form of the IF statement is still a part
of BASIC and you'll seeit in alot of books that contain BASIC programs, especially
older books. Since you're sureto run across it, we'll take alook at the older form in this
section.

The original IF statement was designed as a conditional jump. At that time, every line
of aBASIC program had to start with aline number. The line number had to be unique,
and the lines were arranged in order by the line numbers. The main way to jump from one
place to another was not through the use of structured statements like the loops you' ve
learned, but by using the GOTO statement. The GOTO statement is followed by aline
number; control jumps immediately to the specified line. For example, the program

101 =1
20 GOrO 40
301 =1 +1

40 PRI NT |



Learn to Program in GSoft BASIC

prints the value 1, not 2, because the GOTO statement jumps past line 30.

The old form of the IF statement works pretty much the same way. Y ou can put aline
number right after THEN, and the program will jump to the specified line if the condition
istrue, skipping to the next lineif the condition isfalse. Thereisno END IF with this
form of the IF statement. Here's avery simple example.

10 REM Print all Fibonacci nunbers |ess than 20.
20 | 0

30 J
40 K
50
60
70
80

I I n
A +
(&)

T
m A
=

—_ o -

+ J < 20 THEN 40

There are several variations on this theme. Instead of just THEN, you can use THEN
GOTO. You can aso replace THEN with GOTO. Regardless of the variation you pick,
the statement does the same thing.

The old form of the |F statement is not limited to jumping, though. Y ou can put any
statement you like after THEN, and you can even put more than one statement, separated
by colons. If the condition istrue, al of these statements are executed. If the condition is
not true, they are all skipped, and execution picks up with the line right after the IF
statement.

Modern implementations of BASIC need to be able to handle both the older forms of
the IF statement and the modern block structured form we use in this course. That means
they need away to tell the old form, which is contained on a single line, from the new
form, which spans multiple lines. The key is whether anything appears after THEN. If
anything at all appears after THEN, GSoft BASIC assumes you are using the old form of
the |F statement. If thereis nothing at all after THEN, GSoft BASIC assumesthe IF
statement is the first line of amodern block structured statement. With that in mind, you
can see why, earlier in the lesson, there was a warning not to put anything at all after
THEN.

Boolean Logic

Most of the IF statements you're likely to use will have afairly simple condition, like

IF TRY = 1 THEN



or

IF ANGLE < 2 * PI THEN

Eventually, though, you’ll want to make more complicated comparisons. To do that
you'll need three new operations designed for conditional tests and a good understanding
of how BASIC actually deals with conditions. These operations are called Boolean
operators.

Let’s start with alook at how BASIC actually handles conditions. Most of the time
you don't really need to know this information, but it is critical if you print a Boolean
condition to see whether it is TRUE or FALSE, and it’s also occasionally useful for a
programming trick.

When you do a comparison like TRY = 2, BASIC actualy returns a number. If TRY
actually is 2, BASIC returnsthe value 1; if TRY isanything else, BASIC returns 0. The
| F statement actually takes a number for the condition. If the number is O, the IF
statement acts as if the condition were FALSE. If the number is anything except O, the IF
statement acts asif the condition is TRUE.

There' s nothing magic about a comparison. Since BASIC handles comparisons and
other Boolean operations using numbers, you can use a comparison anywhere you would
use any other mathematical expression. The distinction is entirely in the way we think
about Boolean operations, not anything internal to BASIC. Putting this to work, we can
look at a Boolean value by printing it, like this:

PRINT 4 < 3

It's aso possible to store Boolean values in anumeric variable. In fact, the tool
interfaces GSoft BASIC |loads automatically include atype called BOOLEAN and two
constants, TRUE and FAL SE. Y ou can use these constants and the BOOLEAN typein all
of your GSoft BASIC programs.

While comparisons are the most common Boolean operation, you'll encounter more
complex expressions later in the course. Thefirst of the Boolean operationsis AND,
which tests to see if two conditions are met instead of one. Here' s an example that prints
the values within a specific range.

FORI =1 TO 10

IE (1 >3) AND (I < 8) THEN
PRI NT |

END | F

NEXT



Learn to Program in GSoft BASIC

The AND operation istrue if both of the conditions to either side are true, and false if
either one of the conditionsisfalse. In other words, it means the same thing in BASIC
that it does in English when you use it as a condition. If you' re not sure how AND works,
type in this short program and watch it in action.

The second operation is OR. Like AND, it means the same thing in BASIC asit does
in an English statement about conditions. If either condition istrue, OR returns true; if
both conditions are false, OR returns false. Here' s a sample you can use to explore how
thisworks.

FORI =1 TO 10
IF (1 <3) OR(l >8) THEN
PRI NT |

END | F

NEXT

The last Boolean operation isNOT. Just as you' d expect, it reverses the meaning of a
Boolean value. Here' s a simple example you might use in the main part of a program that
waits for the user to do something, then acts on whatever the user did. Thisisthe way
most desktop programs are organized, although you can organize any program that waits
for user events this way.

DONE = FALSE

VWHI LE NOT DONE
CALL DOEVENT
CALL | DLEPROCESS

VEND






L esson Four — Subroutines

Subroutines Avoid Repetition

In the first few lessons of this course all of the programs we are writing are fairly
short. Many useful programs are short, but as you start to make your programs more
sophisticated, the programs will get longer and longer. A ssmple game on the Apple 11GS,
for example, is generally 1,000 to 3,000 lines long; most of the programs we have written
so far are 20 to 60 lines long. As the size of your programs increase you will need some
new concepts and tools to write the programs. One of the most important of these isthe
subroutine.

For our first look at subroutines, we will start with a program that draws three
rectangles on the graphics screen, filling each with adifferent color.

REM Draw three col ored rectangles with white outlines.
DIM| AS I NTEGER :! Loop variable

I Set up for graphics.
HGR
SETPENMODE ( 0)

I Draw a white rectangle.
SETSOLI DPENPAT (15)
FOR 1 = 10 TO 120
MOVETO (10, 1)
LI NETO (250, 1)
NEXT

I Draw a red rectangl e.
SETSOLI DPENPAT (7)
FOR 1 = 61 TO 99
MOVETO (220, 1)
LI NETO (270, 1)
NEXT



I Qutline the red rectangle in wite.
SETSCOLI DPENPAT ( 15)

MOVETO (220, 60)

LI NETO (220, 100)

LI NETO (270, 100)

LI NETO (270, 60)

LI NETO (220, 60)

I Draw a bl ue rectangl e.
SETSOLI DPENPAT ( 4)
FOR | = 81 TO 159
MOVETO (50, 1)
LI NETO (300, 1)
NEXT

I Qutline the blue rectangle in white.
SETSOLI DPENPAT (15)

MOVETO (50, 80)

LI NETO (50, 160)

LI NETO (300, 160)

LI NETO (300, 80)

LI NETO (50, 80)

I Wait for the user to press return.
I NPUT ""; A$

If you look at this program closely you will seethat thereis very little difference
between the parts that draw the red and blue rectangles. In fact, if we put the coordinates
of therectanglesin variables called LEFT, RIGHT, TOP and BOTTOM, and put the
color in avariable called COLOR, we could use exactly the same lines of code to draw
the red and blue rectangles. The code would look like this:

I Draw a rectangle.

SETSOLI DPENPAT ( COLOR)

FOR| = TOP + 1 TO BOTTOM - 1
MOVETO (LEFT, 1)
LI NETO (RI GHT, 1)

NEXT



Learn to Program in GSoft BASIC

I Qutline the rectangle in white.
SETSCOLI DPENPAT ( 15)

MOVETO (LEFT, TOP)

LI NETO (LEFT, BOTTOM

LI NETO (RI GHT, BOTTOM

LI NETO (RI GHT, TOP)

LI NETO (LEFT, TOP)

While we don’t really need to redraw the outline of the square for the white square,
the same code could even be used to draw the white square. A few extralines get
executed when the outline is drawn (the outline is white, and so is the color that isfilled
in), but the same code could be used. One of the most common uses for a subroutineis
just this situation. When your program needs to do essentially the same thing in severa
different places, you can write a subroutine to do the thing, and call it from more than one
place. Let’stry thisin aprogram and then look at what is happening in detail.

REM Draw three col ored rectangles with white outlines.

I Set up for graphics.
HCR
SETPENMODE ( 0)

I Draw white, red and bl ue rectangl es.
CALL RECTANGLE(10, 250, 10, 120, 15)
CALL RECTANGLE(220, 270, 60, 100, 7)
CALL RECTANGLE(50, 300, 80, 160, 4)

I Wait for the user to press return.
I NPUT ""; A$
END

Rectangle - Draw a rectangle and outline it in white.

Par anmet er s:
left, right, top, bottom- edges of the rectangle
color - color of the inside of the rectangle

SUB RECTANGLE(LEFT AS INTEGER , RIGHT AS |INTEGER , TOP AS
| NTEGER , BOTTOM AS | NTEGER , COLOR AS | NTEGER )



DIM 1 AS INTEGER :! Loop variable

I Draw t he rectangl e.

SETSOLI DPENPAT ( COLOR)

FOR| = TOP + 1 TO BOTTOM - 1
MOVETO (LEFT, 1)
LI NETO (RI GHT, 1)

NEXT

I Qutline the rectangle in white.
SETSOLI DPENPAT ( 15)

MOVETO (LEFT, TOP)

LI NETO (LEFT, BOTTOM

LI NETO (Rl GHT, BOTTOM

LI NETO (RI GHT, TOP)

LI NETO (LEFT, TOP)

END SUB

The Structure of a Subroutine

The subroutine itself starts with the reserved word SUB. Right after the reserved word
SUB is the name of the subroutine; oursis called RECTANGLE. You usethisnamein
the rest of your program whenever you want to call the subroutine. “ Calling” a subroutine
iswhat programmers say when they mean that you want to execute the statements in the
subroutine.

The stuff in parenthesis right after the subroutine name is the parameter list. In our
subroutine the parameter list looks like this:

(LEFT AS INTEGER , RIGHT AS INTEGER , TOP AS INTEGER , BOTTOM
AS | NTECER , COLOR AS | NTEGER )

It is no accident that thislooks suspicioudly like a DIM statement. In fact, of you
remove the parenthesis and put DIM before the list you would have a perfectly legal DIM
statement. What the parameter list actually does is define these variables within the
subroutine. Any statement within the subroutine can use these variables. Y ou can change
them using an assignment statement, or use them in an expression, as we do in our
program. A very important point to keep in mind, though, isthat the variables actually go
away after you leave the subroutine.



Learn to Program in GSoft BASIC

The SUB statement forms a sort of mode! that tells us how to call the subroutine, as
you can see by comparing the SUB statement with a CALL statement from our sample
program.

SUB RECTANGLE(LEFT AS INTEGER , RIGHT AS |INTEGER , TOP AS
| NTEGER , BOTTOM AS | NTEGER , COLCOR AS | NTEGER )

CALL RECTANGLE( 10, 250, 10,
120, 15)

Y ou see the SUB statement on the top line. The lineislong enough that it’s split
across two linesin this book, but if you look at the program, you can seethat it really is
just one long line. The second line shows a call to the subroutine with spaces inserted to
line up the matching fields. When a BASIC program starts to execute it is quickly
scanned for SUB and FUNCTION statements, so when the CALL statement is executed,
GSoft BASIC aready knows that a subroutine named RECTANGLE is defined in the
program, and that it expects 5 integer parameters. It expects them to appear after the
procedure name, enclosed in parenthesis, and separated by commas. If you forget one of
these parameters, put in too many, or use a parameter that can’'t be converted to an
integer, the program will stop with an error.

When the subroutineis called BASIC starts by assigning the values you put in the
parameter list of the CALL statement to the variables you defined in the parameter list of
the SUB statement. In effect, for the call we are using as an example, BASIC does the
following five assignments before the first statement of the subroutine is executed:

I In effect, this is what BASIC does.
LEFT = 10

Rl GHT = 250

TOP = 10

BOTTOM = 60

COOR =0

When the subroutine starts, then, the variables from the parameter list already have an
initial value.

After the parameters are set up the statements in the subroutine, like the statementsin
the program itself, are executed one after the other. This process continues until the END
SUB statement is reached. At that point, control returns to the place where the CALL
statement was issued, and execution picks up with the line right after the CALL
statement.



In the RECTANGLE procedure you will find the variable | defined for usein aFOR
loop. Like the parameters, the variables defined within the subroutine vanish after the
subroutine finishes executing. The only thing you can access from the program is the
subroutine itself—the variables and parameters don’'t even exist until after the CALL
statement starts, and vanish before control returns to the CALL statement.

Where to Put Subroutines

When you run a program, GSoft BASIC starts by quickly scanning the program to
locate all of the subroutines, then begins execution with the first line in the program.
Since execution starts at the first line of the program, subroutines always appear at the
end, after all of the linesin the program itself.

The order in which the subroutines appear doesn’t really matter. | personaly place
them in alphabetical order to make it easier to find a particular subroutine, but that’s just
ahabit I’ve formed over the years. About the only meaningful restriction is that each
subroutine must be separate from all of the others—one subroutine’s END SUB
statement must appear before the SUB statement for the next one. The only lines that
should appear between subroutines are comments or blank lines. And, of course, each
subroutine' s name must be different from the name of any other subroutine in your
program.

The END Statement

Asyou know by now, right after the last line of a BASIC program executes the
program stops. Now that your are using subroutines, though, you need to end the program
adifferent way. The reason for thisis that the SUB statement can be called, but not
executed—so you need to force the program to stop before it starts executing the
subroutines at the end of the program.

The END statement stops the program. Y ou can use it anywhere, but you should
always put an END statement right before the first subroutine.

Commenting Subroutines

A program with one subroutine isn’t likely to be too confusing, but as our programs
use more and more subroutines, there are some commenting conventions that will help
make the programs easier to read.

In every programming language | use | always put a block of comments at the start of
every subroutine. The exact format may vary from language to language to take
advantage of specific features in the language, but thereis no variation in the basic
content. In each new computer language | learn, | quickly come up with a style that



Learn to Program in GSoft BASIC

works for that language and stick with it for al of my programs, making it much easier to
move a subroutine from one program to a new program.

| use avery rigid format with up to five sections to comment a subroutine. If thereis
nothing to put in a section it's simply left out, which iswhy you only saw two sectionsin
the RECTANGLE subroutine. Actually, two of the five sections deal with features you
haven't seen yet. We'll get to them later in thislesson, but you' re about to start writing
subroutines of your own. Commenting your subroutines properly is an important habit to
develop. It will save your hours and hours as your programs get longer. Because
commenting is so important, we're going to look at the issues now so you can think about
commenting from the very first subroutine you write.

Before looking at the sections in the block of comments, though, take alook at how
the entire block of commentsis set aside with aline of dashes. This gives an
unmistakable visual cue, making it very easy to spot a block of comments as you scan the
text in aprogram. The subroutine itself follows right after the block of comments. Once
you' ve created your first subroutine, a quick copy and paste sets up these lines for all of
the other subroutines you ever write—and | promise the effort will be worth it as your
programs creep from dozens of lines to thousands.

Procedure Description
I Rectangle - Draw a rectangle and outline it in white.

The first thing in the block of comments tells what the procedure does. | generally try
to keep this down to asingle line, and never more than two lines. | put the name of the
subroutine first, even though it appears right after the block of comments, because it’s
easier to find the comments when you'’ re scanning text in the editor than it isto find the
SUB statement, and with the name right at the top of the block of comments, | don’t have
to scan down the screen to find the subroutine name. It’s alittle thing, but it saves alot of
time.

There are afew cases where a single line doesn’'t adequately describe what a
subroutine does. This doesn’t happen as often as you might think, but it does happen.
When asituation like this pops up, | still put a one line description next to the subroutine
name, then | skip aline and give adetailed description. In effect, thefirst lineis atitle
line, and the next lines expand on the title.

Parameters

I Paraneters:
! left, right, top, bottom- edges of the rectangle
! color - color of the inside of the rectangle



Next is a parameter declaration section that describes the meaning of each parameter
that appears in the SUB statement. Again, thereis usually no need for more than aline, or
perhaps two.

Shared Variables

Shared variables are variables from the main program that are used inside a
subroutine. The section looks like the list of parameters, but it's labeled Shared variables
rather than Parameters. You'll seethiskind of comment later, when we start discussing
shared variablesin detail.

Return Values

Thereis a kind of subroutine called afunction that returns a value. We'll see those
later in this lesson. It simportant to describe exactly what the function returns.

Notes

If the subroutine is based on some outside reference material, does something
unexpected, or if thereisanything I’d like to remind myself of if | ever need to come
back and change the subroutine or move it to another program, | put the information in a
notes section. The notes section |ooks something like this:

' Notes:
! 1. For a description of the insertion sort, see
! "Algorithns + Data Structures = Prograns," p. 85.

As with the other formatting and commenting conventions mentioned in this course,
there are many correct ways to comment and format a subroutine that are different from
the one | have shown you. The important point isn’t which one you use; the important
point isto find one you like that supplies the same information and use it consistently.

SubroutinesLet You Create New Commands

We have seen that a subroutine can be used to take a series of similar, repetitious
commands and place them in a single subroutine, making our program shorter and easier
to understand. Subroutines can also be used to create new commands, which helps
organize the program, making it easier to read. The RECTANGLE subroutine we have



Learn to Program in GSoft BASIC

already created is one example. Once you know what the RECTANGLE subroutine does,
itisalot easier to read the lines

I Draw white, red and bl ue rectangl es.
CALL RECTANGLE(10, 250, 10, 120, 15)
CALL RECTANGLE(220, 270, 60, 100, 7)
CALL RECTANGLE(50, 300, 80, 160, 4)

than it was to read the original program. The idea of using subroutinesto neatly package
our program isavery powerful one. It takes some getting used to, but once mastered, the
technique will help you write programs faster and find errorsin programs easier.

There is another advantage, too. Most people tend to write afew general types of
programs. For example, an engineer might write several programs to deal with
complicated matrix manipulation, but never deal with graphicsto any great degree.
Another person might use his computer to write adventure games. Any time you start
writing programs that fall into broad groups like this, you will find that there are sections
of your program that get repeated over and over again. By packaging these ideas into
subroutines, you can quickly move the proper sections of code from one program to
another.

Asan example, let’slook at a small section of code that seems to appear at the
beginning of nearly all of our graphics programs.

I Set up for graphics.
HCR

SETPENMODE ( 0)

SETSCOLI DPENPAT (15)

We can package these three lines into a subroutine called INITGRAPHICS like this:

I InitGaphics - Set up for graphics

SUB | NI TGRAPHI CS
HGR

SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)
END SUB



With this new procedure, our program becomes even easier to read:

I Set up for graphics.
CALL | NI TGRAPHI CS

I Draw white, red and bl ue rectangl es.
CALL RECTANGLE(10, 250, 10, 120, 15)
CALL RECTANGLE(220, 270, 60, 100, 7)
CALL RECTANGLE(50, 300, 80, 160, 4)

I Wit for the user to press return.
I NPUT ""; A$
END

It may not be obvious yet, but there is still one more advantage to packaging even
these three simple commands into a subroutine. At some point, you may decide that you
want to set up the graphics screen a bit differently. For example, you may want to paint
the entire screen white so the drawings appear on a white background rather than a black
one. With the graphicsinitialization in aneat little package, it will be easy to redo the
package and quickly update all of your programs. Y ou will also learn faster waysto color
in arectangle. If all of your programs use the RECTANGLE subroutine, you can easily
update the subroutine, quickly bringing all of your programs up to date. If the code to
draw rectangles is scattered throughout your programs, though, it would be a daunting
task to change them all, simply because it would be hard to find all of the places that need
to be changed.

Problem 4.1. One use of the RECTANGLE procedure is to draw game boards. For
example, aboard for a Reversi game would consist of eight rows and eight columns of
green squares with white outlines. A chess or checker board can be drawn as eight rows
and eight columns of alternating black and white squares.

Use the Rectangle procedure to draw a checker board in the graphics window. Make
each square 20 pixels wide and 20 pixels high, with the top left square at 5,5. Use colors
of 5 and 12, which gives agray and green board instead of the boring traditional black
and white board.

Hint: Use one FOR loop nested within another to loop over the rows and columns,
likethis:



Learn to Program in GSoft BASIC

FOR ROW= 1 TO 8
FOR COLUW = 1 TO 8
<draw a square>
NEXT
NEXT

Thisway, you can locate the top of each square as (ROW - 1) * 20 + 5. The bottom of
each square will be at ROW * 20 + 35. The same idea can be used to find the left and
right edge of each square.

Functions are Subroutinesthat Return a Value

In the last lesson we used a pseudo-random number generator in severa programs to
create simulations. One common theme in these simulations was to restrict the range of
the random number and force the single-precision result returned by the RND function
into an INTEGER value. For example, in our number guessing game, we selected
numbers from 1 to 100. To roll dice, on the other hand, we used the same ideato select a
random number from 1 to 6. With what we have learned about subroutines it would seem
that thiswould be an ideal candidate for packaging. There is a problem, though. The
whole point of the random number code is to produce a number. We need away to get a
value back from the subroutine. When we need a value back, BASIC gives us a new
flavor of the subroutine called afunction. A function isjust a subroutine that can return a
single value.

Here's a program that demonstrates this idea by packaging our random number
generator.

REM This programrolls two dice 20 times.

DIM SIDES AS I NTEGER :! # of sides on the dice
DI M NUVDI CE AS I NTEGER :! # of dice to throw
DM 1 AS INTEGER , J AS INTEGER :! |oop/index variables
DIM VALUE AS I NTEGER :! value rolled on a die

I Set up the nunber of dice and nunber of sides.
SIDES = 6
NUMDI CE = 2



FOR1 =1 TO 20
FOR J = 1 TO NUMDI CE
PRI NT RANDOWALUE( SI DES) ,
NEXT
PRI NT
NEXT
END

RandonVal ue - Return a random nunber in the range 1 to nax

Par anmet er s:
max - maxi mum al |l owed val ue for the random nunber

Ret urns: Random nunber in the range 1..nax

FUNCTI ON RANDOWALUE( MAX AS | NTEGER ) AS | NTEGER
DI M VALUE AS | NTEGER :! Random value to return

VALUE = 1 + R\D (1) * MAX

| F VALUE = MAX + 1 THEN
VALUE = MAX

END | F

RANDOWVALUE = VALUE

END FUNCTI ON

There are really only two differencesin the way you write a subroutine and function.
The first shows up in the function header, which starts with the reserved word
FUNCTION, rather than the reserved word SUB. The function returnsavalue. It is
possible for this value to be an integer, areal number, or any other type we' ve covered so
far in this course. Functions cannot return arrays or records, two types we'll cover later,
but there are easy ways around that issue.

Naturally, you have to tell the compiler what type of value the function returns. Y ou
do thisjust like you would for a variable, by following the name of the function (and the
parameter list, if thereisone) with AS and the type. In the case of our RANDOMVALUE
function, thetypeisINTEGER.

At some point you need to specify what value the function should return. Thisisthe
second difference between a function and a subroutine. Somewhere in the function, you



Learn to Program in GSoft BASIC

need to assign a value to the name of the function itself. Y ou can do thisin more than one
place, if you like, using IF statements to determine which assignment decides the value of
the function. Y ou can aso assign a value to the function more than once, perhaps starting
it off with an initial value that may or may not get changed later. Y ou must assign avalue
to the function at least one time, however. If you don’t, the value returned by the function
IS zero or an empty string, but you really shouldn’t count on this fact.
Y ou can use afunction anywhere you could use a value within the BASIC language.

In our program, we use the function in the statement

PRI NT RANDOWALUE( SI DES)

When the program gets to this statement it calls the function. The function cal culates
avalue and returnsit. The valueis printed, just as the number 4 would be in the statement

PRI NT 4,

Problem 4.2. Y ou can use a function anywhere you can use avaluein BASIC. In
particular, you can use the RANDOMV ALUE function to decide how many times to loop
through a FOR loop, like this:

FOR | = 1 TO RANDOWALUE( 20)

Y ou can also use afunction to set the value of a parameter for another subroutine or
function call.

Use these ideas to create a program that will draw a random number of rectangles, not
to exceed 30, in the graphics window. The rectangles should have aleft and right value
between 1 and 319, and atop and bottom value between 1 and 199. Use an | F statement
and atemporary variable to make sure the left sideis less than or equal to theright side,
and that the top isless than or equal to the bottom, like this:

| F LEFT > RI GHT THEN
TEMP = LEFT
LEFT = RI GHT
Rl GHT = TEMP

END I F



Finally, the color of the rectangle should be chosen at random, and should be in the
range 0 to 15. Y ou can get avalue from 0 to 3 from the RANDOMVALUE function like
this:

RANDOMWVALUE( 16) - 1

The call to RANDOMVALUE to get the color of the rectangle should appear in the
parameter list of the call to Rectangle.

Value and Variable Parameters

There are some places where we want to package some code that changes more than
one value. A good example of thisisthe ball bouncing program from the last problem in
Lesson 3. It would be nice to package the code that updates the position of the ball into a
function and return the new position of the ball. There is a problem, though. A function
can only return one value, but we need to update both an X and Y coordinate.

It turns out that there are two ways to pass a parameter in BASIC. If you passa
variable as the parameter, and not an expression, and if the variable is the same type as
the subroutine is expecting for a parameter, any changes made in the subroutine are also
made in the main program. Parameters passed this way are called variable parameters. If
the parameter you pass is an expression of any kind at al, even something as simple as
converting an INTEGER to a SINGLE, any changes made in the subroutine have no
effect at all on the variable in the main program.

Let’slook at some examples to see how thisworks. The first example passes a
variable parameter.

DM 1 AS | NTECER

| =1
CALL TEST(1)
PRI NT |

END

SUB TEST (J AS | NTECER)
J=J+1
END SUB

Since the passed parameter | is the same type as the parameter variable J, and since there
IS no expression involved, | is passed as a variable parameter. This means that changing J
in the subroutine changes the value in the main program, too, so the program prints 2.



Learn to Program in GSoft BASIC

With avery ssmple change, we turn the parameter into a value parameter.

| =1
CALL TEST(1)
PRI NT |

END

SUB TEST (J AS | NTECER)
J=J+1
END SUB

The only change was to drop the DIM statement that declared | asan INTEGER. Asa
result, | is defined with the default type of SINGLE, the type for a single-precision
floating-point variable. This program prints 1, because the change to Jin the subroutine
does not change the value of | in the main program.

This brings up adirty little problem in the BASIC programming language. Every
language has features that sometimes cause problems; thisis one of them for BASIC. The
problem isthat it’s easy to change a parameter inside a subroutine, then have the
subroutine change the value of avariable in the main program by accident. Thisisn't an
obvious bug. You may end up scratching your head for quite awhile before you finally
discover the problem. There is one defensive programming technique | would
recommend in all BASIC subroutines that are not supposed to change the value of a
parameter, and that is to use a separate variable internally if you need to change a
parameter value. In our simplistic example, the change would ook like this:

DM 1 AS | NTECER

| =1
CALL TEST(1)
PRI NT |

END

SUB TEST (J AS | NTEGER)
DI M K AS | NTECER

K=1
K=K+ 1
END SUB

In this example, | is not changed in the main program, even though it is passed as a
variable parameter. Another way to protect a value from the part of the program making



the call isto turn the parameter into an expression. The traditional way to do thisin
BASIC isto put parenthesis around the parameter, like this:

DM 1 AS | NTECER

| =1
CALL TEST((1))
PRI NT |

END

SUB TEST (J AS | NTECER)
J=J+1
END SUB

Once again, this simple change is enough to change the parameter from avariable
parameter into a value parameter, and the program prints 1. In general, though, the extra
typing isabit of apain, and you' Il quickly stop using the parenthesis unless you know
they are needed. That’swhy | prefer writing the subroutine so it won'’t change the value
of aparameter unless that’s the point of the subroutine.

And finally, here’ s just such an example. Thisis my solution to Problem 3.4 rewritten
using subroutines.

REM Draw a bal |l bouncing across the screen.

DIM X AS INTEGER , Y AS INTEGER :! Coordinates for the bal

DI M XSPEED AS | NTEGER , YSPEED AS | NTEGER :! Speed of the ball
DIMITER AS I NTEGER :! Number of iterations

DIM 1 AS INTEGER :! | oop counter

I Get the ball's initial position, speed, and the nunber
I of aninmated framnes.

I NPUT "Starting X position: ";X

INPUT "Starting Y position: ";Y

I NPUT "X Speed : " XSPEED
I NPUT "Y Speed . " YSPEED
I NPUT " Nunber of steps : "I TER

I Set up the graphics w ndow.
CALL I NI TGRAPHI CS

SETPENMODE ( 2)

SETPENSI ZE (4, 4)



Learn to Program in GSoft BASIC

AS

I Make sure the starting position is on the screen.
CALL RESTRICT(X, 0, 319)
CALL RESTRICT(Y, 0, 199)

I Animate the ball.
MOVETO (X, YY)
LI NETO (X, Y)

FORI =1 TOITER
CALL MOVEBALL( X, Y, XSPEED, YSPEED)
NEXT
I NPUT ""; A$
END

SUB | NI TGRAPHI CS
HGR

SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)

X, Y - position of the ball
VX, VY - velocity of the ball

END SUB
et
!

I MoveBall - nove the ball

!

I Move a ball in the graphics window [If the ball hits one
I of the sides, the direction of the ball is changed.

!

I Paraneters:

!

!

I

SUB MOVEBALL(X AS INTEGER , Y AS INTEGER , VX AS INTEGER , VY
| NTEGER )

DIM X2 AS INTEGER , Y2 AS INTEGER :! New position for the ball



I Find the new X position for the bal
X2 = X + WX
IF X2 < 0 THEN

X2 =0

= - W

ELSE IF X2 > 319 THEN

X2 = 319

VX = - VX
END | F

I Find the new Y position for the ball
Y2 =Y + VY
IF Y2 < 0 THEN

Y2 =0

= - W

ELSE I F Y2 > 199 THEN

Y2 = 199

VY = - VY
END | F

I Draw the ball at the new position.
MOVETO (X2, Y2)
LI NETO (X2, Y2)

| Erase the old ball.
MOVETO (X, YY)
LI NETO (X, Y)

I Update the ball position.

X = X2
Y = Y2
END SUB

Restrict - nmake sure a value is inside a given range

Par anmet er s:
X - value to restrict to a range
LOW H GH - allowed range of val ues



Learn to Program in GSoft BASIC

SUB RESTRI CT(X AS I NTEGER , LOWAS INTEGER , H GH AS | NTEGER )
IF X < LOW THEN
X = LOW
ELSE | F X > H GH THEN
X =HGA&
END I F
END SUB

In this program the MOVEBALL subroutine is used to update the position of the ball
on the screen. We pass four values to the MOVEBALL subroutine; the current x and y
position of the ball and the current velocity of the ball. Each of these four variables can
be changed by the subroutine.

Problem 4.3. By using our neatly packaged subroutine you can quickly write a
program to bounce more than one ball around on the screen. Modify the sample program
to bounce 10 balls simultaneously.

Use the RANDOMYVALUE function to choose the initial positions and speeds of the
balls. Move the balls 100 times.

Shared Variables

With the exception of parameters, any variable declared in the program can’'t be used
from inside a subroutine or function, and any variable declared inside a subroutine or
function can’t be used from the main program. Fortunately, there isaway to change all
that so variables other than parameters can be shared among the various parts of the
program. Cleverly enough, it’s done with the SHARED command.

The SHARED command is used inside a subroutine when it needs to use a variable
declared in the program. The command is pretty simple; you just put the name of the
variable right after the word SHARED. If you want to share several variables with a
single SHARED command, list all of the variables separated by commas.

One good way to use SHARED variablesisto set up values used throughout a
program. For example, our graphics programs frequently use the number of pixels on the
screen as a boundary, making sure balls bounce off the edge and so forth. This boundary
value can change. If you move on to toolbox programming you’ll discover that thereis
another way to draw on the Apple I1GS that uses 640 horizontal pixels rather than 320.
You'll also learn to create windows, and these windows are generally smaller than the
physical screen. By placing the screen size in shared variables you can use asingle value
throughout the program, making it easy to change the screen size if you use the same
subroutine in alater program.




Here' s a short example that shows how to use shared variables. As our programs get
longer and more complicated, we'll find many uses for them that aren’t so simple!

ScCr

REM Draw a big X across the graphics screen.

DIM MAXX AS I NTEGER , MAXY AS INTECGER :! Size of the graphics
een

I Initialize the size of the graphics screen.
MAXX = 320
MAXY = 200

I Initialize the graphics screen.
CALL | NI TGRAPHI CS

I Draw a big x across the screen.
CALL X

I Wait for the user to press return.
I NPUT ""; A$
END

SUB | NI TGRAPHI CS
HGR

SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)
END SUB

X - Draw a big X across the screen

Shared vari abl es:
maxx, maxy - size of the screen



Learn to Program in GSoft BASIC

SUB X
SHARED MAXX, MAXY

MOVETO (0, 0)

LI NETO ( MAXX, MAXY)
MOVETO (0, MAXY)

LI NETO ( MAXX, 0)
END SUB






L esson Five—-Strings

What Are Strings?

Y ou may have noticed that a string was the first data type we ever dealt with, but you
haven’'t seen much of them. Back in Lesson 1 our very first program wrote a string
constant to the screen. Since then we have made extensive use of integers and real
numbers, but the only string variables we' ve used were on INPUT statements, and with
the exception of avery brief aside, that was really just away to wait for the user to press
return before ending a program. In this lesson we'll delve deeper into the mysteries of
strings, learning how to declare them and how to manipulate strings in our programs.

In BASIC astring isasimple variable, just like in integer or areal number. Unlike a
number, though, a string does not have afixed length. It can vary from no characters at
all to awhopper of a string with 32767 characters. It'simportant to keep in mind that the
upper limit on the length of a string varies from one implementation of BASIC to
another. In most implementations the upper limit is 255 characters, and frankly, that’s
enough for most situations.

The charactersin astring are any of the ASCII characters. The ASCII characters are
the 95 printing characters you see on your keyboard and 33 special purpose characters,
some of which, like the return key, are also on your keyboard. There' s a chart of them a
little later in the lesson, in the section where we discuss character values in detail.

GSoft BASIC aso allows the extended ASCII characters supported by Apple on the
Apple l1Gs and Macintosh lines of computers.

Since strings can vary in length, they aren’t stored the same way as numbers. A string
variable actually contains information about the location of the characters. The characters
in the string are stored in a separate area of memory in your computer. This puts some
l[imitations on what we can do with string values. We'll talk about them in more detail as
various topics come up in the course, but in a nutshell, you can’t fake the creation of a
string or change the length of an existing string behind BASIC’ s back—you must allow
BASIC to create, change, and del ete strings.

The Two WaysTo Read a String

You got abrief look at reading strings from the keyboard in Lesson 3, when we used
this short program to show that the INPUT statement could read strings, too, and not just
numbers.



| NPUT " Pl ease type your nane: "; NAMVES$
PRINT "Hello, "; NAME$

We didn't delve deeper at that time, but now it stime to look at a major weaknessin
the INPUT statement for reading strings. It’ s obvious when you make a slight change in
the program, like this:

I NPUT "Pl ease type your city, state and zip code: "; ADDRESS2$
PRI NT ADDRESS2$

The natural thing to type (in the United States, anyway) is something like this:

Al buquer que, New Mexi co 87120

Try it. Everything after the commaislost. Thefact is, the INPUT statement just
doesn’t handle commas well when reading strings. Just as with a number, the comma
signals the end of the string.

That’s not always bad. In fact, in this particular case, it can be very useful. Let’stry
the program again:

DM CTY AS STRING, STATE AS STRING, ZIP AS LONG

| NPUT "Please type your city, state and zip code: ";CITY,
STATE, ZIP
PRI NT CITY, STATE, ZIP

If you remember to put a comma after the state, like this:

Al buquer que, New Mexi co, 87120

BASIC divides the typed text neatly into two strings and a number, storing the resultsin
appropriate variables.

But more often than not, experienced BASIC programmers find that the way INPUT
handles commasis more of a hindrance than a help. That’s why there is another form of
the INPUT statement in BASIC called LINE INPUT. The LINE INPUT statement looks
just like the INPUT statement. In fact, there isreally only one difference: Instead of
separating the various values you type with commas, you must put them on a separate
line. In most cases you'll end up using one LINE INPUT statement for each line.



Learn to Program in GSoft BASIC

Here' sthe last version of our program for reading the city, state and zip code. This
one reads the entire line, commas and all, into a string variable.

LINE INPUT "Please type your city, state and zip code
ADDRESS2$
PRI NT ADDRESS2$

Manipulating Strings

BASIC only has five operations for manipulating strings, but surprisingly, they are
enough for any task you'd like to perform. Y ou can easily create more specialized
operations based on the ones BASIC already has.

The simplest of all of the operationsis technically known as string concatenation.
That’s just afancy term for attaching one string to the end of another. BASIC uses the +
operation to concatenate strings, which sort of makes sense, because you' re adding one
string to the end of another. For example,

A$ "test"
B$ "ing"
PRI NT A$ + B$

prints

testing

String concatenation gives you an easy way to combine strings to form a bigger one;
the next three functions give you away to extract a piece of along string. LEFT$ and
RIGHTS pull characters from the | eft or right end of a string. Each of these functions
takes two parameters, a string and the number of characters you want. It islegal to ask for
more characters than are actually in the string; if you do that, you will get the entire string
back. Y ou can see how this works by running this short program, which peels characters
off of the |eft edge of atest string.

A$ = "testing"
FOR 1% =0 TO 8

PRINT 1% LEFT$ (AS$, 1%
NEXT



Thelast of the most fundamental string operationsis LEN, which figures out how
many characters arein astring. LEN takes a single parameter, a string, and returns the
number of charactersin that string.

Let’s put these statements to work in areal program. This particular program takes a
string and reverses the order of the characters. It’s a cute gag program, but it also shows
clearly how LEFT$, RIGHT$ and concatenation can be used to tear apart a string and put
it back together in awholly different way. Just asimportant, it shows how to package this
operation asaBASIC FUNCTION, in effect creating a new string manipulation
command that you can copy from one program and paste into others that need to do the
same operation.

REM Rever se

REM

REM This programreads in a string, reverses the order of the
REM characters, and wites the string back to the text screen.
REM It continues doing this until a string of length zero is
REM entered. To get a string of length zero, press the RETURN
REM key wi t hout typing any other character.

DI M I NSTRING AS STRING :! input string
DI M QUTSTRI NG AS STRING :! output string

I Loop until there is no input string.
DO
I Get a string.
LINE I NPUT "String to reverse: ";INSTRI NG

I Reverse the characters in the string.
OUTSTRI NG = REVERSES$( | NSTRI NG

PRI NT "Reversed string : "; QUTSTRI NG
PRI NT

LOOP WHI LE LEN (INSTRING <> 0

END



Learn to Program in GSoft BASIC

Reverse$ - Reverse the characters in a string

Par anmet ers:
s - string to reverse

|
|
|
]
|
|
I Returns: String with the characters reversed
|

FUNCTI ON REVERSE$(S AS STRING ) AS STRI NG
DIMI| AS INTEGER :! |oop variable

DIM S1 AS STRING :! remaining characters in the input string
DIM S2 AS STRING :! string with characters reversed

S1 =5
S2 ="
FOR| = 1 TO LEN (S1)
S2 = S2 + RIGHT$ (S1, 1)
S1 = LEFT$ (S1, LEN (S1) - 1)
NEXT

REVERSE$ = S2
END FUNCTI ON

It may seem strange to create a completely new string variable, S1, to hold the same
string that was passed as a parameter. If you think so, try taking it out and renaming the
parameter S1. What happens to the program?

| did warn you about this sort of thing. In the last lesson, | suggested that you always
copy a parameter into alocal variable if you would be changing the value of the variable
in the subroutine, since it was possible you would change the variable in the original
program, with unwanted results. That’s just what happensin this case if you don’t make a
copy of the original parameter. The REVERSES function gradually removes characters
from one string while building a second. When in finishes, the original string has been
reduced to an empty string, which is another name for a string that doesn’t have any
characters. Back in the main program the DO loop ends unexpectedly because
INSTRING got changed to the empty string, too.

The last of the five string manipulation functionsis MID$. This function takes
characters from the middle of the string rather than the right or left side. MID$ uses three
parameters rather than two. Thefirst is still the string to work on. Next comes the index
of thefirst character you want MID$ to return, counting from 1. The last parameter is the
number of characters you want back. For example,



PRINT MD$("This is a test.", 6, 2)

prints the second word, “is’. Remember, spaces are characters, too, so the space between
“This’ and “is’ counts as a character.

Like LEFT$ and RIGHT$, MID$ does sensible things if you ask for characters that
are not there. If you start in the middle of the string and ask for more characters than
there are left in the string, M1D$ returns the ones that are there. For example,

PRINT MD$("This is a test.", 11, 50)

returns the string “test.” If the index is larger than the number of characters in the string,
MIDS$ returns an empty string.

Here' sthe string reversing program, rewritten to use M1D$ and a backwards-stepping
FOR loop to reverse the characters in the input string.

REM Rever se

REM

REM This programreads in a string, reverses the order of the
REM characters, and wites the string back to the text screen.
REM It continues doing this until a string of length zero is
REM entered. To get a string of length zero, press the RETURN
REM key wi thout typing any other character.

DI M I NSTRING AS STRING :! input string
DI M QUTSTRI NG AS STRING :! output string

I Loop until there is no input string.
DO
I Get a string.
LINE I NPUT "String to reverse: ";INSTRI NG

I Reverse the characters in the string.
OUTSTRI NG = REVERSES$( | NSTRI NG

PRI NT "Reversed string : "; QUTSTRI NG
PRI NT

LOOP WHI LE LEN (INSTRING <> 0

END



Learn to Program in GSoft BASIC

Reverse$ - Reverse the characters in a string

Paraneters:
sl - string to reverse

|
|
|
]
|
|
I Returns: String with the characters reversed
|

FUNCTI ON REVERSE$(S1 AS STRING ) AS STRI NG

DIMI| AS INTEGER :! |oop variable
DIM S2 AS STRING :! string with characters reversed

S2 ="
IF LEN (S1) > 0 THEN
FOR | = LEN (S1) TO1 STEP - 1
S2 =S2 + MD$ (S1, I, 1)
NEXT
END | F

REVERSE$ = S2
END FUNCTI ON

If you looked closely at this example, you may have noticed a feature of the FOR
loop we' ve never covered before. The STEP size of -1 isused to tell the FOR loop to
loop from alarge number down to a small one. For example,

FOR1 =10 TO1 STEP -1
PRI NT |
NEXT

does a countdown from 10 to 1. Other than counting down instead of up, thisloop works
just like al of the other FOR loops you’ ve used.

In some ways this version is simpler than the one that uses LEFT$ and RIGHT$, and
in some ways it is more complex. Thisversion doesn’t need to make a copy of the input
parameter, sinceit isn’t changed, and it uses one fewer statementsinside the FOR loop to
manipul ate the strings, since it doesn’t have to remove a character from the input string.
On the other hand, it needs an extra | F statement to make sure there are charactersin the
string before the FOR loop starts.

Asagenerd rule, thisversion is better than the first. They are both about the same
size and complexity, but the version based on MID$ has one fewer statement in the FOR



loop. While there are certainly exceptions, programs are generally faster when you reduce
the number of statementsinside aloop. That’s because statementsin aloop are amost
always executed more times than statements that are outside of the loop, sometimes
thousands of times more often, so moving things out of the loop tends to make the
program faster. In many programs, the difference is minimal or unimportant, but in others
the difference is dramatic. In fact, reducing the number of operationsin aloop is one of
the most effective ways to make a slow program run faster.

Problem 5.1. If you do alot of string manipulations, you'll start to build up alibrary
of more powerful commands. One that you might add is INSERT$, which inserts a string
in the middle of an existing string.

Write afunction that takes two strings and a position as input. Y our function should
insert the second string parameter into the first at the position given by the third, numeric
parameter. Be sure your subroutine handles any argument reasonably. If the position is
less than 1, the second string should appear at the beginning of the first string. If the
position is greater than the length of the first string, the second string should appear at the
end of thefirst string.

Write a program that tests this function. It should use a sequence of input statements
to read test strings and a position, then print the result returned by the function. The
program should stop if you press return immediately for both input strings, but not until it
calls INSERT$ with this odd case!

Test your program with every combination of add data you can think of. Do your best
to trick your subroutine, trying to make it fail. If it'sgoing to fail, it' sbest if it failswhile
you are testing it, rather than later, when someone is using your program!

Characters
Way back in Lesson 1, you learned that

"Hello, world."

isastring constant. A string constant consists of any number characters enclosed in quote
marks. That “any number” is quite literal—two quote marksin arow form alegal string
constant for a string with no characters. In various books you' |l see this called the empty
string or the null string. Any character you can type can appear in a string constant except
for the double quote mark itself. Later in the lesson we'll find away to force the quote
mark into a string.



Learn to Program in GSoft BASIC

The ASCII Character Set

Characters and integers enjoy a special relationship with each other. To decide what it
means to compare two strings, for example, we need to decide if one character isless
than another. While you can get pretty good agreement from most people whether the
character ‘@ islessthan the character ‘b’, things get alittle less definite when you ask if
the character ‘7' isless than the character **’. For this reason, as well as other reasons
we' |l explore, we often convert characters to integers and integers to characters.

There are two functionsin BASIC that are used to convert characters to numbers and
numbers to characters. The CHR$ function takes a number as a parameter and returns a
string with a single character. The number should be in the range 0 to 255; if it is not,
CHRS$ adds or subtracts 256 from the value you give until the number isin this range.

The ASC function does just the opposite. It takes a string and returns the numeric
value associated with the first character in the string. If the string has no characters, ASC
returns the value O.

The ASCII character set defines the relationship between the characters and their
numeric equivalents. It also lists all of the characters you can use. It has one character for
each of the values from 0 to 127. Some of these values are known as printing characters.
For example, the numeric value 65 is used to represent an uppercase ‘A’. The lowercase
letter *a’ isrepresented by 97. Some of the valuesin the ASCII character set are non-
printing characters. These are used for specia purposes. The character whose valueis 13,
for example, isused to separate linesin files of characters and to move to anew line on
the text screen.

The table below shows the complete ASCII character set in tabular form. Non-
printing characters are shown as the name of the value. To obtain the integer value used
to represent one of the characters, add the number at the top of the column to the number
at the start of therow. Try that for ‘A’ and ‘a’, which have values of 65 and 97, to make
sure you understand how this works.



0 16 32 48 64 80 96 112
0 nul de 0 @ P ) p
1 soh dcl ! 1 A Q a q
2 stx dc2 " 2 B R b r
3 etx dc3 # 3 C S c S
4 eot dc4 $ 4 D T d t
5 enq nak % 5 E U e u
6 ack syn & 6 F \% f v
7 bel etb ‘ 7 G W g w
8 bs can ( 8 H X h X
9 ht em ) 9 I Y [ y
10 If sub * : J 4 ] z
11 vt esc + ; K [ k {
12 ff fs < L \ I |
13 cr gs = M ] m }
14 co rs > N n n ~
15 S us / ? 0] _ o] rub

The ASCII character set is the dominant character set on microcomputers, but it is not
universal. On the Apple I1GS, and on most microcomputers, you can write your programs
specifically for the ASCII character set. If you will be writing programs that must run on
avariety of computers, though, you should be aware that the numeric equivalents of
characters may vary. If possible, find out what character set is used on the various
machines before you start to write your program, and make sure it will work with all of
the character sets.

Problem 5.2. Write a program that |oops over the numbers from 32 to 126, converts
these numbers to strings using the CHR$ function, and prints the characters to the screen.
Skip to anew line after every 16 characters.

Modify this program to switch to the graphics screen. Use the MOVETO command to
moveto 15, 15 before you start to print the characters. As you can see, you have asimple
but effective way to put text on the graphics screen.

The Extended Character Set

Apple defined extensions to the ASCII character set to allow Macintosh and
Apple l1Gs computers to display special characters used in non-English speaking
countries that still use more or less the same alphabet as English speaking countries. This
extended character set is not implemented for the text screen that most of our programs
use, but it is available on the graphics screen. The characters in the Apple extended
character set are shown in this table.



Learn to Program in GSoft BASIC

00 10 20 30 40 50 60 70 80 90 A0 BO CO DO EO FO
0 o @ P p A & T o ¢ -
1 ! 1 A Q a q A & - £+ —
2 " 2 B R b r C i ¢ < =
3 # 3 C S ¢ s E i £ > v
4 $ 4 D T d t N1 § ¥ f
5 % 5 E U e u O i . noo=
6 & 6 F \Y f \Y U f i 0 A
7 ‘ 7 G W g w a 0 By «
8 ( 8 H X h X a 0 ® M » y
9 ) 9 I Y [ y a 6 © m ..
A * : J 4 ] z a o} ™ [ spc
B + ; K [ k { a o : a A
C < L \ I | a « ° A
D - = M ] m } ¢ u =z o O
E . > N ° n ~ é a £ e €&
F / ? O 0 é 1] g o o

»  The characters from the space ($20) to thetilde ($7E) are al standard printing
ASCII characters.

e Whilethey have standard definitions, the characters $11..$14, $AD, $B0..$B3,
$B5..$BA, $BD, $C2..$C6 and $D6 tend to be rare in most fonts.

*  Character $CA isthe non-breaking space.

One thing worth pointing out is that you can change the font used to draw characters
when you are using the graphics screen. The reason this isimportant is that not all fonts
implement all of the special characters you seein the table. If one of the characters shown
existsin the font, it will almost always use the character code shown, but there aren’t
many fonts that implement all of these characters. In fact, many specialized fonts don’t
implement any of the characters you see in the table, even the standard ASCII characters.
For example, there are Hebrew, Greek, and hieroglyphic fonts, not to mention symbol
fonts that implement all sorts of pictures as font characters. You generally have to try the
fonts to see what they actually do.

Problem 5.3. Write a program that displays all 256 possible characters on the graphics
screen. Some characters won't exist. To account for this fact, try drawing each character
at a screen coordinate that matches the position of the character with a position in the
table of fonts.

Y ou can do this by using a MOV ETO command right before you draw each
character. One odd fact you must take into account is that the position you move to
specifies the base line for the character. Thisis the bottom left position for a character



like M that lies entirely above the baseline. For a character likey, thisposition is still at
the left edge of the character, but it is part way up, roughly where the tail startsto dip
below the rest of the character. Y ou will need to experiment abit to find the proper
number of pixelsto leave between each character.

While the program will work either way, you will be able to see the characters easier
if you paint the screen white with a series of MOVETO and LINETO commands before
drawing the characters themselves.

P-Strings, C-Strings, and Other Confusions

If you have read much about programming or browsed through Apple's toolbox
reference manuals, you know that there are several kinds of strings in the various
computer languages. The two most popular are generally called p-strings and c-strings.
The toolbox manuals also refer to text blocks, and the Apple 11Gs disk operating system
makes use of still another format for encoding file names.

P-strings get their name from the Pascal programming language because
microcomputer implementations of Pascal like UCSD Pascal popularized the format.
Ironically, they have little to do with the official definition of Pascal, but that’s another
story! The first character position in a p-string is actually occupied by a number, not a
character. This number is the number of characters that follow. On amost all computers,
and certainly on all of the computers where I’ ve seen p-strings used, each character uses
one byte of storage. While we won't go into the details of representing numbers using
bits and bytes, take my word for it that this means the number of charactersin ap-string
islimited to the range O to 255 on practically any computer. The charactersin the string
itself follow right after the length byte.

C-strings are named after the C programming language, which is the most famous
language that uses them. C strings are a sequence of characters followed by a null
terminator, which is a character whose numeric value is zero. This gives another common
name for thiskind of string, the null terminated string.

Asyou can see, one advantage of c-strings over p-strings is that there is no fixed limit
to the number of charactersin asingle string. A minor disadvantage is that you have to
scan the entire sequence of characters looking for the null terminator to find the length of
astring, which is a very common operation when you are doing string operations.

Text blocks are just sequences of characters. Y ou can’t tell from looking at the string
itself how many charactersit has; the length is kept in a separate variable.

GS/OS, the Apple 11Gs disk operating system, uses something alot like a p-string, but
instead of using a single byte to represent the length of the string GSOS uses two bytes.
This gives atheoretical upper limit of 65535 charactersin astring. GSOS itsalf limits the
size of apath name to 8192 characters, but there is nothing to prevent afuture version



Learn to Program in GSoft BASIC

from implementing alarger limit. GS/OS a so uses a variation on this format that has two
lengths rather than one. The first value is the amount of memory available for the string,
while the second is the current length.

With all of these formats available, it’sfair to ask what GSoft BASIC uses.
Essentially, GSoft BASIC uses c-strings. The format consists of a sequence of characters
followed by a null terminator. There are some internal limits in the microprocessor used
in the Apple l1Gs that make it easier to deal with strings that are no longer that 32767
characters, though, so GSoft BASIC imposes an upper limit of 32767 characters on each
individual string. If you try to create a string longer than 32767 characters, it is truncated.
The final string is made up of the first 32767 characters of the string you would expect if
there was no upper limit.

Comparing Strings

The same comparison operations used with numbers can also be used with strings.
Two strings are compared by comparing the characters in the string, one after the other,
until the characters don’t match. One string is “less than” another of the numeric value of
the first nonmatching character is less than the numeric value of the character at the same
position in the second string.

For example, “A” islessthan “B”, since the numeric value of the character “A” is 65,
while the numeric value of the characters“B” is 66. Following therules, “that” isless
than “this’, since the numeric value of the first nonmatching character, the“a’ in “that”,
IS 97, while the numeric value of the “i” from “this” is 105.

If two strings are not equal in length, but all of the characters up to the end of the
shorter string match, then the shorter string isless than the longer one. And, of course, if
the strings are the same, they are equal.

Looking at the ASCII character chart and thinking about these rules, they seem to
make alot of sense. Words compare pretty much the way we would expect from looking
in, say, adictionary. If aword is alphabetically before another, BASIC will say the first
word in alphabetical order is less than the second. There is one major exception, though.
Comparing strings fails to match our preconceptions miserably if one of the strings uses
uppercase letters but the other does not. In the ASCII character chart, uppercase letters
always come before lowercase letters, so the string “Washington™ is less than the string
“president”. Y ou can take care of this problem by converting both strings to all uppercase
letters or all lowercase |etters before comparing them, though.

Problem 5.4. Write afunction and a program to test it that converts any string to all
uppercase characters. Make sure the function does not change characters that are not
lowercase alphabetic characters.



Numbersand Strings

The two remaining string functions take care of a chore that is pretty tough to do by
writing your own subroutines: Converting strings to numbers and numbers to strings.

The STR$ function takes any number and convertsit to a string that has the same
characters you would see if you used the PRINT statement to print the same number. It's
cousin, the VAL function, takes a string and converts it to a numeric value. VAL always
returns a doubl e-precision floating-point number; STR$ can take any number format, and
formats each according to the rules used for that type of number by PRINT.

One use for these functions is in programs that need fool proof input of numbers. As
you know by now, an INPUT statement that expects a number will ask for oneif the user
of the program enters something the program can’t handle, but the way it handles the
error may not be exactly what you're after. You can use the LINE INPUT statement,
though, and read the input as a string. It’s not all that tough to write a subroutine that will
check to seeif the text isavalid floating-point number, and it’s pretty easy to check to
seeif the text isan integer. If your subroutine reports that the text is a number, you can
convert the value easily with VAL. If the text the user typed is not a number, you can
handle the error in away that is more appropriate in your program than the severe method
BASIC uses by default.

Garbage Collection

Asyour programs get longer, and especialy if they use lots of strings, you may
occasionally notice aslight pause. Thisis probably garbage collection. We'll explore
what garbage collection really is and how you can manage it in this section.

Each time you create astring in BASIC it is stored in an area of memory that BASIC
sets aside for variables. Y ou can visualize the process as writing the string on aline of
notebook paper. When the next string is formed, it is written on the next line. This
process continues until memory fills up completely.

To see how thisworks, let’ s follow avery simple program,

A$ = "Test 1"
B$ = "Test 2"
A$ = "Test 3"

Following along on paper, the lines on the notebook paper version of memory look like
this:

Test 1



Learn to Program in GSoft BASIC

Test 2
Test 3

Y ou might object that A$ contains the string “ Test 3" when the program finishes, so the
string “ Test 1” isno longer needed. You'reright, but it’s still in memory. It's garbage,
and the process of garbage collection is nothing less and nothing more than checking all
of the variablesin the program to see which ones are string variables, and of those, which
strings they are actually using, then deleting the strings that are no longer needed. When
garbage collection finishes, the strings in memory would be

Test 2
Test 3

The problem is that checking all of the variablesin your program and compressing
the memory can take a noticeable amount of time. Most of the time it’s not noticeable,
and even when it isit’s not worth worrying about, but every once in awhile you will
write a program that is just plain annoying to use if garbage collection happens at a
particular point while the program runs. Maybe that’s right in the middle of an animation,
or during atime-critical part of acommunications program. Whatever the reason, you can
force BASIC to do garbage collection using the FRE function. Thisforces BASIC to do
garbage collection, which makesisfar less likely that garbage collection will happen in
the next few lines of code.

The FRE function takes a parameter. For garbage collection, it should be 0. It also
returns avalue. The value returned is the number of free bytesthat are left in the
variables area. That’s agood way to seeif you're running out of memory, which could
cause garbage collection to occur way too often, slowing the program down alot. If you
have less than 10000 bytes of free space, I’d suggest you should increase the amount of
memory. We won't cover how that’s done in this course, but you can find the appropriate
commands in the GSoft BASIC reference manual.

Don't overuse the FRE function! Even if thereislittle or no garbage collection to do,
the FRE command can take afair amount of time. If you use it too often the entire
program can slow noticeably. In fact, you should not use the FRE command at all unless
you are trying to control when the garbage collection is done. BASIC will do garbage
collection automatically whenever it is needed, and your program will run fastest if you
let BASIC choose when to do garbage collection. The only advantage to FRE is that you
can force the garbage collection to occur before a time-critical section of the program
starts to execute.






L esson Six —Arrays

Groups of NumbersasArrays

Computers can deal with very large amounts of data. On the Apple I1GS, you can
easily write programs that will deal with thousands of numbers, names, zip codes, or
whatever. So far, though, the methods we have for dealing with these values are fairly
limited. A database of a hundred friends, each of whom has a name, street address, acity,
astate, and a zip code would be a daunting task if each value had to be placed in a
separate variable.

One way we have to deal with large amounts of datais caled an array. An array isa
group of values, each of which is the same type. We use an index to determine which of
the values we want to access at a given time.

For our first look at an array, let’s do a simulation of rolling dice. We' ve done this
several times before, on asmall scale, but this time we're going to roll the dice 10000
times and keep track of how many times we get a 2, how many times we get a 3, and so
forth. We could, of course, use a separate variable for each of the totals, but that would
get to be a bit tedious. Instead, we will use an array.

To define an array, you need to specify how many things you want in the array and
what kind they are. In our case, we are adding up the number of times a particular value
shows up on apair of dice. We can get any value from 2 to 12 from a pair of dice, so the
easy way to create the array isto use the numbers 2 to 12 as indexes. We'll define the
array thisway:

DI M TOTALS(12) AS INTEGER :! nunber of spots show ng

With the array defined this way, we can put a number into the array or take one out
by giving the name of the array followed by the index in parenthesis. For example, if the
variable DICE contains the number of spotswe rolled, the expression

TOTALS(DI CE) = TOTALS(DICE) + 1

will take the current value from the array, add one, and store the changed value back into
the array.

Thereisone subtle point here. The 12 asthe index for the array saysthe last valuein
the array isindexed with 12, asin



PRI NT TOTALS(12)

But what isthe first value? Actually, for every array in BASIC, the index of the first
valueis 0. In our dicerolling program we will never use TOTALS(0) or TOTALS(1). In
some programs wasting two integer numbersisabig deal. The space isimportant. In
other programs, wasting afew bytesis not nearly asimportant as writing a program that
is easy to understand. In this program we' |l sacrifice the extra four bytes of space for
clarity’s sake.

Aswith regular variables you can specify what kind of value the array holds using the
special type characters, so

DIM TOTALS%(12)

defines an array that works just as well in our program. As with our other programs,
though, we'll usually dispense with the extra character by defining arrays with a named
typein the DIM statement. One way isn’t necessarily any better than the other. |
generally use characters when I’ m writing short programs, and use named types for
longer ones.

One other interesting feature about BASIC isthat you can have an array and a
variable with the same name. Thisis usually something you find out when you make a
mistake and start trying to find out why a program doesn’t work! | wouldn’t recommend
using the same name for a variable and an array becauseit’s easy to get the two confused.

Y ou can use an element of the TOTALS array anywhere that you could use an integer
variable. You can, for example, print an element of an array, useit in an expression, or
pass it as a parameter to a subroutine. There are very few cases, though, where you can
usethe entire array. You can’'t write an array using PRINT, for example. We will explore
when and how you can use an entire array as we get to know arrays better.

Now, finally, it'stimeto look at areal program that uses arrays.

REM This programsinulates rolling dice. |t counts the nunber
REM of times each val ue appears, printing a summary after the
REM run i s conpl ete.

DI M TOTALS(12) AS INTEGER :! nunber of spots show ng

I Do the dice sinulation.
CALL SI MULATI ON(10000)



Learn to Program in GSoft BASIC

I Wite the dice array.
CALL WRI TEARRAY
END

RandonVal ue - Return a random nunber in the range 1 to nax

Par anmet er s:
max - maxi mum al | owed val ue for the random nunber

Ret urns: Random nunber in the range 1..nax

FUNCTI ON RANDOWALUE( MAX AS | NTEGER ) AS | NTEGER
DI M VALUE AS | NTEGER :! Random val ue to return

VALUE = 1 + R\D (1) * MAX

| F VALUE = MAX + 1 THEN
VALUE = MAX

END | F

RANDOWVALUE = VALUE

END FUNCTI ON

Sinmulation - roll the dice, saving the results in totals

Par anmet er s:
rolls - nunber of tinmes to roll the dice

Shared Vari abl es:
totals - array holding the total nunber of rolls

SUB SI MULATI ON( ROLLS AS | NTEGER )

SHARED TOTALS()



DM 1 AS INTEGER :! |oop variable
DIM SUM AS | NTEGER :! # of spots for this roll

| Set the totals to zero.

FOR| = 2 TO 12
TOTALS(1) = 0
NEXT

I Do the sinulation.
FOR I =1 TO ROLLS

! Roll the dice.
SUM = RANDOWALUE( 6) + RANDOWMVALUE( 6)

I Increnent the correct total.
TOTALS(SUM) = TOTALS(SUM + 1
NEXT
END SUB

WiteArray - Wite the results.

Shared Vari abl es:
totals - array holding the total nunber of rolls

SUB WRI TEARRAY
SHARED TOTALS()
DIM1 AS INTEGER :! |oop variable

PRI NT "spots", "tines"

FOR| = 2 TO 12
PRINT |, TOTALS(I)

NEXT

END SUB

Before you run this program, | want to let you know that it will take along time. In
fact, this program will run for over eight minutes on an accelerated Apple I1GS! Thisis
the first computationally intense program you have seen in this course. If you like, you



Learn to Program in GSoft BASIC

can try various tactics to speed up the program. Y ou can also use this program too see
how big an impact sloppy coding might have. One easy example of thisisusing single-
precision floating-point values instead of integer variables. If you switch al of the
variables to real numbers the program actually takes over eleven minutes.

There is one other thing to notice about this sample program. In the last lesson you
learned how to create shared variables so a value could be used in the main program and
in asubroutine. This program shows how to use shared variables with an array. For the
most part, sharing an array is done the same way as sharing a variable. If you remember,
though, | said you could have an array and a variable with the same name, so you need
some way to tell avariable from an array. You tell BASIC you want to share an array by
placing the parenthesis after the array name. Y ou don’'t put in the type or size of the
array, though. Those values are adapted from the size and type declared in the main
program.

Problem 6.1. Thereis often atrade-off between a program that is fast and a program
that is easy to understand. Which factor is the most important is one that the programmer
has to make as the program is written. The answer isreally an engineering choice, and
not something you can predict in advance.

The dicerolling program calls RANDOMINTEGER 20,000 times. That's really what
takes most of the time. Change the program so it doesn’t call afunction by including the
code from the RANDOMV ALUE function inside of the FOR loop.

How much faster is the program?

The Shell Sort

There are afew basic tasks that show up over and over when you are writing real
programs. One of these is sorting. If you use a program to keep track of your Christmas
list, for example, you might want to sort the list by zip code so the Post office will let you
send the Christmas cards out by bulk mail. If you want to check your Christmas list to see
who’ s been naughty and nice, though, and are trying to find E. Scrooge, you may want
the same list sorted alphabetically by name.

There are many ways to sort an array; each has its advantages and disadvantages. Y ou
will learn about other waysto sort an array later in the course, but we will start out now
with one of the classic sorting methods. While there are faster ways to sort large arrays,
the shell sort is very easy to understand, very easy to implement, and actually works
better on short arrays than the more complicated sorts you will learn later.

The idea behind the shell sort isvery smple. You start by scanning the array from
front to back. At each step, you look to seeif the value that comes after the current onein




the array is smaller than the current array element. If it is, you change them and continue
scanning. As an example, we will sort the following array by hand.

=
ol
R
<
QD
c
@

A WODN P
=~ O
w

We start off with the first array element and check to seeif the valueis smaller than
the value in the second element of the array. (The arrow shows which element of the
array we are working on.)

=
ol
R
<
QD
c
@

A WODN P
=~ O
w

In this case, 6 is smaller than 43, so we do nothing. Moving on, we check the next
element.

=
ol
R
<
QD
c
@

A WODN P
= A O
w

Thistime, 1 is smaller than 43, so we exchange the values in the second and third spots,
ending up with this array:

value

2
2

A WDN B
» PR O
w



Learn to Program in GSoft BASIC

Checking the third element, we find that 6 is also smaller than 43, so we again make a
swap.

=
ol
R
<
QD
c
@

A WODN P
A O O
w

We don't check the last element of the array, since there is nothing that followsiit.

At this point, we have successfully moved 43 to the last spot in the array, where it
belongs, but the array is still not completely sorted. To sort the array completely, we need
to keep track of whether or not we swapped any array entries. If we didn’t need to swap
any entries then the array is sorted. If we did swap two of the array elements, though, we
need to make another pass over the array. Our second pass makes one swap, moving 1 to
thefirst array element.

index vaue
1 1

2 6

3 6

4 43

Notice that we only want to swap elements of the array if the next element is actually
less than the one we are inspecting. If we swap elements when the values are equal, we
would loop over our sample array over and over, swapping 6 with itself on each pass.

Before diving into an example program that shows an actual sort, let’ s take a moment
to examine concept that we will use that has nothing to do with arrays. It's something you
saw briefly back in Lesson 3, but thisisthe first time it has appeared in areal program.
While we are sorting the array, one of the things we need to keep track of iswhether or
not we have swapped any entriesin the array. If we have, we need to make another pass
through the array; if we have not swapped any entries, the sort is complete, and we can
stop. One way to keep track of whether any swaps have been made would be to keep
track of the number of swaps, and check to seeif the number is zero. We could be alittle
more efficient, and set a number to zero, then set it to one if any swaps were made. It
turns out thisworks very well in BASIC. The reason is the way BASIC handles true and
false situations.



So far, every place where you' ve used atrue or false condition has been on an IF
statement or aloop of some kind, and the true or false condition occurred because you
compared two values. BASIC actually returns anumber for atest like this, though. Try

PRINT 2 < 1

and you' |l see that the program prints 1. If you try

PRINT 2 > 1

the program will print O. Following thisidea, if you try

IF 0 THEN
PRI NT "testing.."
END | F

you will seethat nothing is printed, while

IF 1 THEN
PRI NT "testing.."
END | F

does print the string.

In fact, BASIC actually accepts a number anytime a condition is expected. If the
number is zero the condition is false, while any other value is treated as true. Thislets us
keep track of true and false values with anormal numeric variable, generally an integer.

Y ou can see thisidea used in the sample program to keep track of whether or not we have
swapped a value; the sample program does this with the variable NOSWAP.

REM This programreads in an array of up to 100 real nunbers.
REM It then sorts the array, and prints the nunbers in order.
REM Nunbers are read until a zero is found.

DI M NUMBERS(99) AS SINGLE :! array to sort
DI M NUM AS | NTEGER :! # of nunbers actually read

| read the |ist of nunbers
CALL READEM



Learn to Program in GSoft BASIC

| sort the nunbers
CALL SORT

I wite the list of nunbers
CALL WRI TEEM
END

ReadEm - Read the |ist of nunbers

numbers - array of nunbers read

|
|
]
I Shared Vari abl es:
|
! num - nunber of nunbers read
|

SUB READEM
SHARED NUMBERS(), NUM
DIM RVAL AS SINGLE :! nunber read fromthe keyboard

NUM = 0
DO
| NPUT RVAL
I|F RVAL <> 0.0 THEN
NUVBERS(NUM) = RVAL
NUM = NUM + 1
END | F
LOOP UNTIL RVAL = 0.0
END SUB

Sort - Sort the list of nunbers

nunbers - array of nunbers read

|
|
]
I Shared Vari abl es:
|
! num - nunber of nunbers read
|



SUB SORT
SHARED NUMBERS(), NUM

DIM TEMP AS SINGLE :! tenp variable; used for swapping
DI M DI DSWAP AS | NTEGER :! has a swap occurred?
DIMI| AS INTEGER :! |oop variable

I Toop until the array is sorted
IF NUM > 1 THEN
DO
! no swaps, yet
DI DSWAP = 0

I check each el enment but the | ast
FORI =0 TO NUM - 2
' if a swap is needed then...
| F NUMBERS(| + 1) < NUVBERS(!) THEN
! note that there was a swap
DI DSWAP = 1

! swap the entries
TEMP = NUMBERS(|)
NUMBERS(1) = NUMBERS(I| + 1)
NUMBERS(1 + 1) = TEMP
END I F
NEXT
LOOP WHI LE DI DSWAP
END I F
END SUB

WiteEm- Wite the |ist of nunbers

Shared Vari abl es:
nunbers - array of nunbers read
num - nunber of nunbers read

SUB WRI TEEM



Learn to Program in GSoft BASIC

SHARED NUMBERS(), NUM
DM 1 AS INTEGER :! |oop variable

FORI =0 TONUM- 1
PRI NT NUMBERS( 1)

NEXT

END SUB

Try the program afew times to see if you can make it fail. Start with alist of five
numbers that are the same. Try alist of five numbers that are already sorted. Y ou might
also try the values from the sorting example we worked at the start of this section; the
values will be handled internally as real numbers, but INPUT can read an integer and
convert it to areal number.

Problem 6.2. The sample program from this section sorts an array so that the smallest
number comes first. Sometimes we want the largest number first. Change the sampleto it
sorts the values with the largest first, proceeding to the smallest.

Problem 6.3. Modify the sample program from the last chapter that reversed the order
of charactersin aword. Thistime, sort the characters.

Sort the characters by breaking the string up into individual characters which are
stored in an array of strings. Sort the array of strings just like the numbers were sorted,
then combine the charactersto form the final result string.

Y ou will need to set an upper limit on the size of the string you can sort. Use 255
characters, which also happensto be the largest number of charactersthe LINE INPUT
statement can read from a single line typed from the keyboard.

Multidimensional Arrays

The arrays we' ve dealt with so far are a series of similar values. It’s possible to use
more than one subscript, though, forming blocks of numbers. There are all sorts of
examples of multidimensional arrays from mathematics, especially linear algebra, and
from engineering. There’'s a great example that doesn’t use any math at all, though:
Conway’s game of Life. We'll use that game as away to introduce multidimensional
arrays.

Lifeisreally more of asimulation than agame. It starts with aworld consisting of a
two dimensional grid with cells, like a sheet of graph paper. Looking at a small chunk of
a sheet of graph paper you can see that each cell has eight neighboring cells.



In theory, the number of cellsisinfinite, extending off in all
four directions forever. Life proceeds in generations, filling or

emptying each cell based on asimple set of rules. 11213
1 E
1. If acell isfilled and hastwo or three neighbors that are 6178

also filled, it staysfilled on the next generation.

2. If acell isempty and has exactly threefilled neighbors,
itisfilled on the next generation.

3. Any other cell will be empty on the next generation.

It sounds simple, doesn’t it? That’s the point. Life was invented to explore how
complex systems could become when they are based on avery small number of very
simple rules. The results of exploring these ssimplerules literally fill volumes of
information!

Let’stry aseemingly ssmple example, the r-pentominoe. It’s afancy name for this
shape:

Here' s the figure as we're getting ready for the second generation. All of the cells that
started empty and become filled are marked with an asterisk. All cellsthat start filled and
become empty are shown with adash. All of the cells that start filled and stay that way
are shown with adot, and of course, al of the cellsthat start empty and stay that way
have no symbol.



Learn to Program in GSoft BASIC

Here' s the next few generations. Follow along with the rules to make sure you
understand how they are applied.

Generation 3

Generation 4

Generation 5

We'll use amultiply dimensioned array of integers to represent the grid in the
computer. In fact, we'll use two grids: One for the current generation, and one for the one
we' re working on. We'll keep the array fairly small for now, restricting it to 20 cells by
20 cells. The array declaration looks like this:

DIM GRID(19, 19) AS | NTEGER

Thislooks fairly smilar to the
array declarations we' ve used so far.
The only difference is the addition of a
comma and a second array subscript.
Thisformsagrid of 400 numbers,
each specified by aunique
combination of index values. For
example, GRID(3, 7) isadifferent
value than GRID(7, 3)—each usesthe

1
01234567890

[
O © N Ul W N RO

11
12
13
14
15
16
17
18
19




same two index numbers, but the order is very important! For our purposes, we can think
of the numbers as row and column numbers, with the first index as a column number and
the second as arow number. Thinking of the array that way, we could draw it on a piece
of paper like you see here.

Each of the squares can befilled in with adistinct value. We refer to a particular
value by reading its column number from above the value and its row number to the left
of the value. The location for GRID(7, 3) is marked with a spot.

For our Life simulation, though, we'll let each cell represent adistinct cell on the
grid. A value of 1 representsafilled cell, while zero represents an empty cell. Here'sa
program that displays the first fifty generations of the r-pentominoe.

REM Conway' s game of Life.

REM

REM This version is played on a small, 20 by 20 grid napped as
REM spots on the Apple |1 GS graphics screen.

DIM GRID(21, 21) AS INTECGER :! The current state of the world.
DIMR AS INTEGER , C AS INTEGER :! Row and col um nunber.
DIM G AS | NTEGER :! Generation nunber.

I Set up the world.
FORR=0 TO 21
FORC =0 TO 21
RDC R =0
NEXT
NEXT
GRI D( 10, 10)
GRI D(10, 11)
GRID(11, 11)
GRID(12, 11)
GRID(11, 12)

[T T T T
e

I Set up the graphics screen.
CALL I NI TGRAPHI CS

I Draw t he screen.
CALL DRAWSCREEN



Learn to Program in GSoft BASIC

I Create and nove through the generations.
FOR G =1 TO 50
CALL NEXTGENERATI ON
CALL DRAWSCREEN
NEXT
I NPUT ""; A$
END

DrawScreen - Draw the cells on the graphics screen

Shared vari abl es:
Gid - array containing the state of the spots

SUB DRAWSCREEN
SHARED GRI [X)
DIMR AS INTEGER , C AS I NTEGER :! Row and col unm nunber .

SETPENSI ZE (3, 3)
FORR =1 TO 20
FOR C = 1 TO 20
IFE GRID(C, R = 0 THEN
SETSOLI DPENPAT ( 0)
ELSE
SETSOLI DPENPAT ( 15)
END | F
MOVETO (C * 4, R * 4)
LINETO (C * 4, R * 4)
NEXT
NEXT
END SUB



of

1)

SUB | NI TGRAPHI CS
HGR

SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)
END SUB

Shared vari abl es:

SUB NEXTGENERATI ON

SHARED GRI [X)

DI M WORK( 20, 20) AS | NTEGER :!
t he worl d.
DIMR AS I NTEGER , C AS | NTEGER :!

Next Generation - Cal cul ate the next generation

Gid - array containing the current state of the
spots; this is updated.

Used to generate the next state

Row and col um nunber.

DIM N AS | NTEGER :! Nunmber of occupied surrounding cells.

FOR R =1 TO 20
FORC =1 TO 20

N=CGIDC- 1, R- 1) + RDC R-
+ GRID(C - 1, R + GRID(C + 1,
GRINC R+1) + RDC+ 1, R+ 1)

IF N = 3 THEN
WORK(C, R) = 1

ELSE I|F N = 2 THEN
WORK(C, R) = GRID(C, R

ELSE
WORK(C, R) = 0

END | F

R)

+ GRID(C -

11

1) + GRID(C + 1, R -

R + 1) +



Learn to Program in GSoft BASIC

NEXT
NEXT
FOR R = 1 TO 20
FOR C =1 TO 20
GRID(C, R = WORK(C, R)
NEXT
NEXT
END SUB

There are a couple of interesting points about the way the program is written. First,
notice that we used a 22 by 22 grid, not a 20 by 20 grid. By adding an extrarow of cells
around the entire grid we were able to simplify the entire program enormously. A single
loop handles all of the calculations, even for the corners and edges. Without that extra
row we would need an extra chunk of program to deal with the top row, another to deal
with the bottom row, athird to deal with the left edge, and afourth for the right edge. Not
only that, but we would need extra code for each of the four corners! That would be nine
chunks of code to do the calculations instead of one, making the program longer, harder
to write, harder to read, and increasing the chance of making a mistake. One extra row
around the outside of the grid is well worth the extra space!

Another point isthe way the rules are applied. They aren’t quite the same rules we
listed earlier in this section. The rules coded in the program do the same thing as the ones
listed earlier, but they have been reorganized to fit the way programs are written, not the
way people think. That’s another trick that often makes a program smaller and easier to
write.

When you run the program you’ll notice that it’s pretty slow. There are many reasons
for this. The bottom line, of course, isthat the program is doing alot of work to loop over
400 cells, examining as many as 3600 cellsin the process. Still, it seems slow, even
allowing for all that work. Part of the reason is that the program itself can be written to
run faster using lots of programming tricks. Those tricks apply strictly to this case,
though, and not to a broad class of programs you are likely to write, so we won't spend
time going over them. Another reason the program is slow is that GSoft BASIC isan
interpreter. Interpreters are not as fast as compilers, which in turn are not as fast as hand-
coded assembly language. This particular program is a prime candidate for an assembly
language subroutine implemented as a user tool. Even versions written with compilers
like C and Pascal are slow on astock Apple I1GS!

Every programmer eventually declares an array that is way too big for the available
memory. This sort of problem sneaks up on you, because the numbersinvolved can look
very manageable. For example, you might be tempted to try athree dimensional version
of Life, setting up a moderate size grid for experimenting like this:



DI M GRI D(100, 100, 100) AS I NTECER

While this declaration looks innocent, though, it eats memory at aferocious rate.
There are 100* 100* 100 numbers, for atotal of 1,000,000 values. Integers are one of the
smallest number formats you can use, but each does use two bytes of memory. The entire
array would take almost two megabytes. (A megabyte is 1024* 1024 bytes, or 1,048,576
bytes.) Two copies of the array would use al of the available memory on afairly well-
equipped Apple 11Gs computer, and four copies would burn up al of the memory you can
put on the best equipped Apple I1GS!

There is another problem, too. While GSoft BASIC lets you use al of available
memory, thereisalimit on the size of each individual array. No single array can use
more than 32767 bytes of memory. Even if you use several smaller arrays, you can't use
more than 65536 bytes of memory for al of your variables unless you use the SETMEM
command to expand the available memory.

We won't deal with such large chunks of memory in this course. If you would like
more information about how memory is used and how to use the SETMEM command to
extend the amount of memory available to GSoft BASIC, see the GSoft BASIC reference
manual .

Problem 6.4. Another interesting shape for Lifeis called aglider. It's shown below.
Change the Life program so it follows a glider for ten generations instead of the r-
pentominoe for fifty generations.

Thisis one of the key discoveriesin the game of life. A glider moves from one place
to another, so it cam be used to carry information. After all, what’'sreally the difference
in principal between an electron flowing through awire to carry abit in a computer chip
and a glider moving along a grid? Asit turns out, not as much as you might think.
Building on ideas like this, researchers have demonstrated that the rules for the game of
life are rich enough to construct the same logic circuits that are used in modern digital
computers!

Problem 6.5. A matrix is an array of numbers, frequently two dimensional. Linear
Algebra defines operations on matrices, just like every day arithmetic defines operations



Learn to Program in GSoft BASIC

on numbers. One simple matrix operation is matrix addition, where the corresponding
cellsin two arrays are added to create athird array. For example, adding these two arrays

1 2 3 111

4 5 6 111

7 8 9 111
gives this matrix

2 3 4

5 6 7

8 9 10

Write a program with three arrays, A, B and C. Each array should hold nine SINGLE
values, with two subscripts in each array than range from 0 to 2. Fill in the arrays A and
B with the values shown above, then add the two matrices. Print the result and make sure
it matches the result you see above.

Hint: Don't try to package the matrix addition as a subroutine. There are some subtle
features of BASIC involved that we haven't covered yet.

Passing Arraysto a Subroutine

So far we' ve used shared variables to use arrays from within subroutines. Y ou can
also pass arrays as parameters, and in fact doing so will speed up our program a bit. We'll
look at why in a moment.

First, though, let’ s look at the mechanics of passing an array. If you recall, an array
and a variable can share the same name. That forced us to use parenthesis after the name
of an array in the SHARED statement, and it forces us to do exactly the same thing for a
passed parameter. When you pass an array to a subroutine, place parenthesis after the
name of the array in both the subroutine or function call and the parameter list on the
SUB or FUNCTION statement. Here' s the Life program rewritten to use arrays passed as
parameters rather than shared variables.

REM Conway' s game of Life.

REM

REM This version is played on a small, 20 by 20 grid napped as
REM spots on the Apple |11 GS graphics screen.



I GRIDI and GRID2 hold the state of the world on alternate
gener ati ons.
DM GRID1(21, 21) AS INTEGER , GRID2(21, 21) AS | NTEGER

DIDMR AS INTEGER , C AS INTEGER :! Row and col uim nunber.
DIM G AS | NTEGER :! Ceneration nunber.

I Set up the world.
FOR R =0 TO 21
FORC =0 TO 21
GRIDI(C, R) =0
GRID2(C R 0
NEXT
NEXT
GRI D1(10, 10)
GRID1(10, 11)
GRID1(11, 11)
GRID1(12, 11)
GRID1(11, 12)

el e

I Set up the graphics screen.
CALL I NI TGRAPHI CS

I Draw t he screen.
CALL DRAWSCREEN( GRI D1())

I Create and nove through the generations.
FOR G =1 TO 25
CALL NEXTGENERATI ON( GRID1(), GRID2())
CALL DRAWSCREEN( GRI D2())
CALL NEXTGENERATI ON( GRI D2(), GRID1())
CALL DRAWSCREEN( GRI D1())
NEXT
I NPUT ""; A$
END



Learn to Program in GSoft BASIC

DrawScreen - Draw the cells on the graphics screen

Par anmet er s:
Gid - array containing the state of the spots

SUB DRAWSCREEN( GRI D() AS | NTEGER )
DIMR AS INTEGER , C AS INTEGER :! Row and col um nunber.

SETPENSI ZE (3, 3)
FORR =1 TO 20
FOR C = 1 TO 20
IF GRID(C, R = 0 THEN
SETSOLI DPENPAT ( 0)
ELSE
SETSOLI DPENPAT ( 15)
END | F
MOVETO (C * 4, R * 4)
LINETO (C * 4, R * 4)
NEXT
NEXT
END SUB

SUB | NI TGRAPHI CS
HGR

SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)
END SUB



Next Generation - Cal cul ate the next generation

Par anmet er s:
Gidl - array containing the current state of the spots
Gid2 - array containing the new state of the spots

SUB NEXTGENERATI ON( GRI D1() AS INTEGER , GRID2() AS | NTEGER )

DIM R AS INTEGER , C AS INTEGER :! Row and col um numnber.
DIM N AS | NTEGER :! Number of occupied surrounding cells.

FORR =1 TO 20
FOR C =1 TO 20
N=GRDL(C- 1, R- 1) + GRIDI(C, R- 1) + GRIDI(C + 1, R

- 1) + GRIDI(C- 1, R + GRIDI(C + 1, R + GRIDI(C - 1, R+ 1) +
GRIDI(C, R+ 1) + GRIDI(C + 1, R + 1)
IE N = 3 THEN
GRID2(C, R =1
ELSE IF N = 2 THEN

GRID2(C, R = GRIDI(C, R
ELSE
GRID2(C, R =0
END | F
NEXT
NEXT
END SUB

Asyou can see, the only difference between sharing an array and passing it asa
parameter is that you need to include the type of the array when you declare the
parameter.

Parameters can be passed by value or by reference, asyou learned in the last lesson.
Arrays are always passed by reference, since you can’t use the array in an expression.
Y ou can use an element of an array, of course, and we' ve done that in many of our
programs, but you can't add 1 to an array as awhole entity, nor can you do any other
operation on an entire array. Thisis avery important point. It means that every array in
BASIC can be changed by any subroutine you pass the array to—a fact we usein the Life
program, since the NEXTGENERATION subroutine fillsin the GRID2 parameter with
the appropriate values for the next generation in the game.



Learn to Program in GSoft BASIC

Y ou might be tempted to make copies of array parameters in subroutines and
functions, and there are certainly situations where that makes sense. Unlike the case with
variables, though, making a copy of an array has a serious downside. When you make a
copy of avariable in a subroutine the copy doesn’'t use much memory. The exact amount
depends on the kind of variable and the name, but it' s generally about a dozen bytes. If
you make a copy of the GRID1 array, though, the valuesin the array use 22x22x2 bytes
of memory, or 968 bytes total. It takes timeto set up that array, and the array itself eats
up asignificant chunk of memory. Copying the array from the one passed as a parameter
to the local variable also takes time. It's not something to do lightly!

Y ou might think the impact of copying an array would not be abig deal. You'd be
wrong. Take aclose look at this new version of Life. In the original version of the
program NEXTGENERATION calculates the new grid values, then copies them back
into the original grid. In thisversion NEXTGENERATION doesn’t copy the values from
GRID2 to GRID1; instead, the main program draws the values directly from GRID2, then
calsNEXTGENERATION again, this time passing GRID?2 as the current generation.
NEXTGENERATION creates the new grid in GRID1, which the main program draws,
completing a two-generation cycle. That's why the main loop goes from 1 to 25 rather
than 1 to 50, but still draws the same number of generations.

That simple change speeds the program up by about 12%. That may not seem like
much, but over the space of an hour you would save seven minutes—and seven minutes
isalong time to wait!

Problem 6.6. Redo problem 6.5, this time using a subroutine named ADD to add two
matrices.






L esson Seven — Types and Constants

So far we' ve concentrated on the mechanics of BASIC programs. We' ve learned how
programs execute and how to use loops and subroutine calls to change the normal flow of
aprogram. Along the way you’ ve become used to three kinds of variables, INTEGER,
SINGLE and STRING. In thislesson we'll discuss the other built in typesin more detail,
learn how to declare types of our own, and learn about a powerful new kind of variable,
the record. We'll also learn about constants, which offer a shortcut for an ideawe’ ve
already used occasionally in the course.

Simple Typesand Named Types

The Six Built-in Types

Back in Lesson 2 you got avery brief introduction to the built-in typesin BASIC
when you learned that you could use the DIM statement to create integer variables using
the type INTEGER, single-precision floating point values using SINGLE, and strings
using STRING. There are three other predefined typesin GSoft BASIC. All six types are
shown in the table.

name character size minimum maximum
BYTE ~ 1 0 255
INTEGER % 2 -32768 32767
LONG & 4 -2147483648 2147483647
SINGLE ! 4 1.2E-38 3.4E38
DOUBLE # 8 2.3E-308 1.7E308
STRING $ 1to 32768

There is also a strange seventh type called UNIV. It isonly used as the type of a
parameter for some Apple I1Gs tools. Unlike the other variable types, you can pass any
four-byte value at all asavalueto a UNIV tool parameter.

Thefirst three types are all different kinds of integer values. Asyou know by now,
this means the value can be a whole number, like 43 or -2, but not avalue that lies
between whole numbers, like 3.14159 or 2.56. Of the three, INTEGER appearsin
virtually every implementation of BASIC ever written, LONG appears in most
implementations of BASIC that are not restricted in size because they are on a small



machine, and BY TE israther rare. It appearsin GSoft BASIC to support certain values
used by the Apple I1GS toolbox.

SINGLE and DOUBLE are the types for floating-point numbers. SINGLE is almost
always implemented in BASIC, although the exact range of values varies. Applesoft
BASIC, for example, uses 5 bytes for each SINGLE vaue. Most implementations of
BASIC that are not implemented on small computers with limited memory also support
DOUBLE, which works just like SINGLE but gives alarger range for exponents and
more digits of precision. In GSoft BASIC, SINGLE numbers offer seven digits of
precision, while DOUBLE numbers offer fifteen digits.

The whole concept of precision may seem alittle strange at first. To get an idea what
it means think about paying for something with money. The smallest denomination of
money used in the United Statesis a cent, which is 0.01 dollars. We can’t express money
with more precision than this using actual currency, so values involving a portion of a
cent are rounded or truncated. For example, one third of adollar would be 33 cents, even
though we know there is another one third of a cent not accounted for. Floating-point
numbers have the same sore of problem, but the precision is limited to a specific number
of digits, not a specific value like 0.01. With the seven digits of precision offered by
SINGL E numbers you can represent dollar and cent amounts up to $99,999.99, for
example; or you can represent the mathematical value 1tto six decimals, 3.141593.

Floating-point numbers also loose overall accuracy as calculations pile on top of each
other. Going back to the one-third of a dollar example, if you pay one-third of adollar
three times, you would expect to pay atotal of 100 cents. If you actually spend one-third
of adollar three times, though, you will have one cent left. Exactly the same kind of error
can pile up as you do calculation after calculation using SINGLE or DOUBLE numbers.
Eventually, you may literally see values like 0.9999999 when you know that in theory the
value should be 1. Thereisan entire field of study called numerical analysisthat deals
with this sort of issue and others related to calculating values on digital computers. We
won't go into thisfield any further, but if the sort of programs you write need accurate
calculations with floating-point numbers you can certainly find alot of reading material!

Finally, if you look closely at the table, you'll notice that the smallest number you can
represent with a SINGLE or DOUBLE number islisted as avery small positive number.
Y ou can have negative SINGLE and DOUBLE values, of course. The table is showing
you how close to zero the number can get. Numbers between the value shown and zero
are truncated to zero. The reason this happens is rather complicated; it has to do with the
way the numbers are actually stored internally. In afew kinds of programs, though, it’'s
important to know that a number will drop to zero if it gets too small, so you need to
know this can happen as you plan your programs.

The last built-in typeis the STRING, which you’ ve already |earned about.



Learn to Program in GSoft BASIC

Problem 7.1. Double-precision floating-point numbers require twice the memory of
single-precision floating-point numbers, but there is another difference that is sometimes
just as important: Calculations with double-precision numbers take more time.

Write a program that stores 1.2 into one floating-point number and 2.3 into another.
Loop over aline that multiplies these and saves the result in athird variable. Use aFOR
loop with a LONG control variable so you can loop 100,000 times, which gives aresult
long enough to time with awatch that displays seconds. Run the program two times, once
using SINGLE variables and once using DOUBLE variables, comparing the times.

Some of the programs in this course may seem rather slow, and you might be tempted
to think that compilers are the only way to get adequate speed. For some kinds of
programs that’ s true, although many programs run fast enough with an interpreted
language. An interesting point, though, is that some programs actually run faster using
GSoft BASIC than they do in ORCA/C or ORCA/Pascal! That's because most languages
on the Apple 11Gs use Appl€e' s floating-point package, SANE, to do calculations. SANE
does all calculations using 92 bit numbers, even if you only need the precision of
SINGLE calculations. GSoft BASIC hasiit’s own floating-point routines which run much
faster than SANE because they only do calculations to the required accuracy.

The TYPE Statement

Y ou can also define your own named types. We'll find many uses for this as the
course goes on, but we already have one good one. We' ve been using true and false
values throughout the coursein IF statements and loops, and in one case we needed to
store atrue or false value in avariable. Rather than continuing to piggyback on the
INTEGER type we can declare an entirely new one called BOOLEAN, which is the name
used for this type of value in many languages, including Pascal. The declaration looks
likethis:

TYPE BOCLEAN AS | NTEGER

After this statement there is a new type with the name of BOOLEAN that can be used
in DIM statements, parameters and function return values, just like we normally use the
six predefined types. In this case we' ve really just defined a new name for INTEGER,
any BOOLEAN variable works just like any INTEGER variable. The new name works
like a comment, though, reminding us what values we expect to store in the variable.

CONST

In afew of our programs we' ve used specific values that we might want to adjust at
some later date. A good example isthe Life program in the last lesson, where we used 20




for the size of the grid and 50 for the number of generations. It would be reasonable to
put these values at the top of the program where we could change them quickly. We
could do that easily like this:

DI M SI ZE AS | NTECER
SI ZE = 20

There' s another way to do it that combines these two statements into asingle line.

CONST SI ZE = 20

A CONST statement has another advantage over avariable besides just saving aline,
though. You can’t accidentally change the value of a CONST variable anyplace in the
program.

The added organization this offersisn’t very important in a 50 or even a500 line
program, but many programs are thousands of lines long, and in programs that large, any
trick to make the program more organized is worth the effort. We'll start to use CONST
valuesin many of our programs for the remainder of the course.

One of them will be for BOOLEAN values. Here'stwo CONST statements that fit
and in glove with the BOOLEAN type from the previous section.

CONST TRUE = 1
CONST FALSE = 0

If you try these you'll be in for a surprise, though: You'll get an error message saying
you misused a constant. That’ s because these constants are actually already declared!
GSoft BASIC loads the declarations for the Apple 11Gs toolbox automatically, and these
two constants are declared in the toolbox header file. You can find alist of al of the
constants, types and subroutines in the tool interface file by editing the tool interface file
itself, which is named GSoftTools.int.

Records Store Morethan One Type

Programs are written to manipulate information of one sort or another. So far I've
deliberately kept the kind of information we were using ssmple, using just afew numbers
or afew strings. In many real programs, though, you will mix several kinds of values
together to represent a single entity, or it will make more sense to use names rather than
array indices to combine values.



Learn to Program in GSoft BASIC

Let'slook at aclassic example, amailing list. Each entry in amailing list contains a
name, address, city, state and zip code. Y ou might break it down into first name and last
name or add more information, but for our example thisis enough! If you create a
program to handle up to 100 addresses, you would end up with declarations like this:

CONST SI ZE = 99

DI M NAVE( SI ZE) AS STRI NG
DI M STREET(SI ZE) AS STRI NG
DIM Cl TY(SI ZE) AS STRI NG
DI M STATE(SI ZE) AS STRI NG
DIM ZI P(SI ZE) AS LONG

WEell, thisworks, but it's cumbersome. Fortunately there is a better way. We can
create a new type using arecord that contains each of the various pieces of information in
anamed field, like this:

TYPE ADDRESS
NAMEFI ELD AS STRI NG
STREET AS STRI NG
CITY AS STRI NG
STATE AS STRI NG
ZI P AS LONG

END TYPE

ADDRESS isnow atype, just like INTEGER. The various values within the
ADDRESS type are called fields; they can be any type at al, including other records.
Y ou can use the new ADDRESS type to declare variables or parameters. There is one
restriction, though: Y ou cannot return arecord from afunction. Later we'll learn an easy
way around this restriction using pointers.

The name of the first field may seem alittle odd. Why not just call it NAME?
Looking way back to Lesson 1 you can find the answer: NAME is areserved word, so we
can't useit for afield name, just aswe can't use it for a variable or subroutine name.

Returning to the address book, we can declare an array of addresses like this:

DI M ADDRESSES( Sl ZE) AS ADDRESS

There are two names involved for each value, the name of the variable and the name
of the field within the record. Y ou need to use both names separated by a period. Here'sa
short section of code that sets up one entry in the ADDRESSES array.



ADDRESSES( | ) . NAMEFI ELD = "Byte Wrks, Inc."
ADDRESSES( | ). STREET = "8000 Wagon Mound Dr. NwW
ADDRESSES(1).CI TY = " Al buquer que"

ADDRESSES( 1) . STATE = "New Mexi co"
ADDRESSES(1).ZI P = 87120

Y ou can use fields from the record in expressions just like variables. For example,
you can print afield like this:

PRI NT ADDRESSES(43).Cl TY

Y ou can assign one record to another without stepping through each field, asin this
set of assignments that might be used in a bubble sort to sort records by zip code.

| F ADDRESSES(1).ZI P > ADDRESSES(| + 1).ZI P THEN
DI DSWAP = TRUE
TEMP = ADDRESSES(|)
ADDRESSES(1) = ADDRESSES(I + 1)
ADDRESSES(1 + 1) = TEMP
END | F

That’s the only operation you can perform on an entire record, though. Y ou can’'t add,
subtract, or even compare records; for those kinds of operations you need to work with a
specific field. For example, the I F statement shows a comparison of the zip code fieldsin
our address record.

Problem 7.2. Write a program that declares atwo variables of type ADDRESS, as
shown above. Fill one in with your name and address. After filling it in, copy this record
to the second record variable, then print the values from that record.



L esson Eight — Files

A lot of fun and useful programs never save afile to disk or read from adisk file.
Arcade games, some adventure games, many scientific and engineering calculations, and
all of the programs you have written so far in this course all read data from the keyboard
or do calculations based on internal values. On the other hand, the vast majority of
programs do read and write disk files. Spread sheets, word processors, data base
programs, many games, GSoft BASIC itself—all of these programs read and write files.
This lesson introduces files as used in GSoft BASIC.

An Overview of the Process

Any program that makes use of afile hasto go through three distinct steps. They are
similar to the steps you go through when you use a program like a word processor, so
we' [l compare the steps to using aword processor, but don’t get too carried away with
the analogy—as the text will point out, there are significant differences aswell as
similarities.

Thefirst step in using aword processor isto either create a new document or open an
existing document. That's also the first step in using afile from GSoft BASIC. Whether
the file aready exists or isacompletely new file, though, we aways call the process
opening afile. Y ou must always open afile before doing anything else to thefile.

Once aword processing file is open and before you close the file, you generally edit
thefile. There are exceptions, of course. Sometimes you open aword processor file to
read the file or print the file, and don’'t make any changes at all. The sameistrue when
you are programming. Once the file is open you either read from the file or write to the
file.

Thethird and final step isto close the file. When you are using a word processor, you
close the window that displays the file. Closing the window doesn’t mean you exit the
word processor, it smply means you are through with the particular document you have
closed. There may be other documents open, or you might open another document after
closing thefirst one. Again, filesin GSoft BASIC work the same way. The only real
difference is how a document is saved. With the word processor, changes are not saved to
disk until you issue a save command. In BASIC, information you writeto afileis saved
as soon as you issue the command that writes that piece of information.

One big difference between aword processor and GSoft BASIC isthat GSoft BASIC
files are opened for reading or writing, but generally not both. Let’slook at how this
would work if we were writing a word processor.



When the user opens a document in the word processor, the program would open the
document on disk, read the entire document into memory, and close the disk file. From
that point on it’s the copy in memory the user sees, prints, and changes. Nothing is
happening to the disk file at al, and in fact, most word processors will et you gject the
disk while the fileis open. The disk fileisn't needed again until thefileis saved, and
even then the file might be saved to a new filein anew location. If that happens the
original disk fileisn’t needed again at all.

When the word processor document is saved, the program opens thefile. If the
updated document is replacing the original copy on disk the next step is alittle scary:
Everything in the original fileis actually deleted! At this point the file the program is
about to write to is empty, whether it isanew filein anew location or whether the
program is replacing an old file. The word processor writes the entire contents of the file,
then closes thefile.

Thinking about this process, the word processor actually went through the process of
using the file twice. The first time the process was open—read—close, and the second
time it was open—write—close. That’stypical, although as we will seein thislesson it
isn’t universal. Asit turns out, the way the file is opened is actually quite important. You
always open afile for input, output, or both, and its generally easier to write the program,
and the program runs faster, if you don’'t open the file for both input and output at the
same time.

Opening a File for Output

In theory files can be of any length. Basically, that means that there is no fixed limit
to the number of things you can put in afile. Of course, there' s no free lunch. The
information you stuff into afile hasto be saved somewhere. In the case of the Apple [1GS
it is saved on one of the devices GS/OS handles. Thisisusually afloppy disk or hard
disk, but it can also be a network, a tape drive, aprinter, or anything else that GSYOS
recognizes.

To write avaueto afile you need to open the file for output. Y ou open afile with the
OPEN statement, which has this general format:

OPEN "nyfile" FOR OUTPUT AS #1

Thefile nameisastring. In the samplesin this course you'll end up using a string
constant, like “myfile” in the example, but you can use a string variable as well.

The number at the end is called the file number. Y ou can use any integer value from 1
to 32767 as afile number, and just as with the file name, you can also use avariable. It's
this number that identifies the file you have opened; you will use this number in every



Learn to Program in GSoft BASIC

command that refers to this file from the time you open it until the time you are finished
with the file and closeit.

Y ou can open more than onefile at atime, so long as the file number you use for each
fileis unique. Other than the obvious limit of 32767 filesimposed by the number of
available file numbers, BSAIC doesn’t limit the number of files you can have open at one
time. Memory and the limits of the GS/OS disk operating system used by the Apple lIGS
will have abigger impact than the number of available file numbers.

Writingto aFile

There are several waysto write to afile, and we'll cover the most important ways as
we go along. The simplest way to write to afile, though, isto use PRINT or PRINT
USING, writing more or less the same way you would write to the computer screen. The
only difference is the addition of the file number, which tells the program both that you
are writing to afile instead of to the screen, and which file you are writing to. For
example, the command

PRINT #1, "Hello, world."
writes the string to file number 1.

All of the formatting you are used to works with files just as well as it works on the
computer screen.

Closing a File

Once you finish writing the file you need to closeit. Thisis an important step. In
many cases a computer language buffers the output, saving the information you think is
being written to disk in memory until a significant amount of information builds up, then
writing it all at once. The GS/OS disk operating system does the same thing. This makes
file output enormoudly faster than it would be without the buffering, but it also means
that some of the information that you think has been written to the disk file may still bein
memory when the program finishes. Among other things, closing the file flushes the
buffer, writing any buffered information to the disk file.

GSoft BASIC does use file buffering, although you won't find that fact spelled out in
SO many words in the documentation. Like many aspects of programming, the reference
manual doesn’'t explicitly state facts about internal details that don’t matter when you are
writing programs. Y ou are supposed to close the file, and if you don’t it’s a bug in your
program—and, in the eyes of people who write operating systems and computer
languages, it’s your problem if you break the rules, not theirs! This may seem like a



heartless attitude, but there is areason: details like whether files are cached in a buffer
and how big the buffer actually is change from one version of a program to another to
take into account problems encountered in programs, changes in operating systems, and
even changes in how people use computer languages. By not documenting details like
these, or clearly stating that these details can change, the people who write languages are
giving themselves some freedom to maneuver when they need to make changes.

Closing afileis pretty smple. Y ou use the CLOSE command with the file number for
the file you want to close.

CLCSE #1

Writing Our First File

Let’s put al of thistogether to create a program that writes ten numbersto afile.

REM Wite the nunmbers 1 to 10 to a file on ten separate |ines.

I Open the file.
OPEN "tenp" FOR OUTPUT AS #1

I Wite the nunbers.
FOR1% =1 TO 10

PRI NT #1, 1%
NEXT

I Close the file.
CLCSE #1

This program creates a new file named temp on your disk drive and writes ten lines to
the file. Each line has anumber. Thefileitself isatext file. Y ou can open the file using
any program that can read text files, including the editor you use with GSoft BASIC.

Reading from a File

Reading afileisjust aseasy. To read from afile, you first have to open it for input.
The OPEN statement is amost identical to the one you used to write afile, but instead of
opening the file for OUTPUT, you open it for INPUT.

Here's aprogram that opens a text file named temp, reads the first ten lines, and
prints them to the screen. The file named temp must exist; if it doesn’t, you' |l get an error
when you run the program.



Learn to Program in GSoft BASIC

REM Read ten lines fromthe file TEMP and print the |ines.

I Open the file.
OPEN "tenmp" FOR I NPUT AS #1

I Wite ten lines fromthe file.
FOR 1% =1 TO 10

LI NE | NPUT #1, LI NE$

PRI NT LI NE$
NEXT

I Close the file.
CLCSE #1

Y ou can open afile for input or output, do some operation on the file, closeit, and
then reopen it to do some other operation, as this program shows. It opens the file temp
and adds a new number to the file before rewriting the file. The only restriction is that the
file can’t be opened twice unless you close it first. Y ou can open severd files at the same
time, but they must all be distinct files.

REM Read ten lines fromthe file TEMP, add an el eventh |i ne,
REM and wite the results back to the file.

DI M NUVBERS(9) AS | NTEGER

I Open the file for input.
OPEN "tenp" FOR | NPUT AS #1

| Read the lines fromthe file.
FOR1% =1 TO 10

LI NE | NPUT #1, NUMBERS(1% - 1)
NEXT

I Close the file.
CLCSE #1

I Open the file for output.
OPEN "temp" FOR QUTPUT AS #1



| Wite the old lines to the file.
FOR 1% =1 TO 10

PRI NT #1, NUMBERS(I1% - 1)
NEXT

| Wite anewline to the file.
PRI NT #1, 11

I Close the file.
CLCSE #1

Problem 8.1. We used numbers in the example, but the file contains ASCI|
characters. Y ou can see this for yourself by writing a program that writes strings to the
file instead of numbers. Writing the names of the monthsin the year to afile named
temp. Next, open the file for input, read the strings from the file, and print them.

File Names, Directories, Path Names and Folders

File Names, GS/OS and ProDOS

So far we' ve used the less than descriptive name temp for all of our files. Asyou start
writing larger programs you'’ || want to use more descriptive names, so it helps to know
what the rules are.

GSoft BASIC runs under the GS/OS disk operating system, and supports all file
names that the disk operating system itself supports. Asfar as GSoft BASIC is
concerned, afile nameisjust astring it sendsto the operating system. If GS/OS likes the
name, GSoft BASIC is happy, too.

GS/OS s actudly rather flexible about its rules for file names. It grew out of an older
disk operating system called ProDOS, and still supports ProDOS format disks. ProDOS
can still read and write GSOS disks, too, athough ProDOS can't properly handle files
with aresource fork. Because of this heritage, GS/OS still uses the file name rules for the
ProDOS operating system whenever it reads from or writes to ProDOS disks. The rules
for ProDOS file names are:

1. A file name starts with an alphabetic character.

2. Theremainder of the file nameis made up of alphabetic characters, numeric
digits, and periods.

3. A file name must have at |east one character, and no more than 15 characters.



Learn to Program in GSoft BASIC

4. GS/OS does not distinguish between uppercase characters and lowercase
characters. In other words, the file names MY FILE, MyFile and myfile all refer to
the same file on disk.

GS/OS supports other disk formats, too, like the HFS format disks that are used by
the Macintosh operating system. If you are reading or writing files on a disk that is not
formatted for ProDOS you can use the file name rules that apply for that kind of disk. For
HFS, for example, the rules are rather broad: afile name consists of 1 to 31 characters,
and you can’t use acolon. We'll stick to ProDOS format names in this course, both
because it’s the dominant file system on the Apple 11Gs computer and because all
ProDOS names are also valid on HFS disks, and ProDOS and HFS are the only two file
systems that are widely used on the Apple l1Gs.

Path Names

The remainder of this section deals with how folders are named and how path names
are used to specify particular files on the computer. If you' re used to the name directory
instead of folder, just keep in mind that they are just two different named for the same
thing.

| will assume that you are already familiar enough with your computer to move
around using a desktop program like the Finder. In the Finder, the first thing you see on
the desktop isalist of the disks, lined up aong the right-hand side of the screen. Below
each disk isaname. To give the name of adisk in aBASIC program you use exactly the
same name, but you start it off with a colon character. For example, the disk where the
GSoft BASIC program is located is called GSoft. In afile name, you would type

. GSof t

Double-click on the disk icon and the Finder will open awindow showing the various
filesand folders. For example, one of the foldersis called Samples. If you want to look at
afilein the samples folder, you add the name of the folder to the disk name, separating
the two with another colon, like this:

: GSof t: Sanpl es

If the folder contains other folders, you can repeat this process, adding the new folder
name to the name you have already accumul ated.

Eventually, you will get to the right folder, and you will see the file you want to read.
Let’s assume that you want to read the file Float from the Benchmarks folder, which is



itself in the Samples folder. Once again, you tack the file name onto the names you
already have, using a colon to separate the file name from the name of the disk and
folder.

: GSof t : Sanpl es: Benchnar ks: Fl oat

Theresultiscalled afull path name. It specifies exactly what file you want to read or
write.

Partial Path Names and the Default Prefix

So far our programs just gave afile name. Of course, the computer still writesto a
specific place on the disk. When you |leave off the name of the disk and any folders, the
file name is added to a default directory called prefix 8. Prefix 8 isaso called the default
prefix. In a desktop program you set the default prefix by using one of thefile related
commands, like open. When you click on the disk button, it changes the default prefix to
the name of anew disk. Opening afolder on the disk adds the name of the folder to the
default prefix. Closing afolder, of course, removes the name of the folder from the
default prefix. The computer remembers this location, and uses it for al files that only
have afile name.

Names in Programs

The process of forming names for the OPEN statement, then, isfairly simple. To get
at afilein the default prefix, just use the file name. If thefileisin afolder in the default
prefix, give the name of the folder, followed by the file name, using a colon to separate
the two. If you need to give the name of the disk, too, start off with a colon and the name
of the disk, then add the folders and file names, again separated by colons.

If thisis new to you, the best thing to do isto practice. The easiest way to practice is
with the CAT, EDIT and PREFIX commands, which you can use from the shell. The
PREFIX command sets the default prefix. To set the default prefix to :GSoft, for
example, you would use

prefix :gsoft

The CAT command catalogs the current prefix, showing you what files and folders
are there. Folders are marked with afile type of DIR in the second column.

You've used the EDIT command all through this course to edit programs, but so far
you've used it with file names or to edit the program that is already in memory. The
command



Learn to Program in GSoft BASIC

edit :gsoft:sanpl es: benchmarks: fl oat

will load and edit afile using afull path name.

Colons and Slashes

ProDOS uses a slash where GS/OS uses a colon to start path names and separate the
names of files, folders and disks. The only difference between the slash and colon is the
character used; they do exactly the same thing. One of the design goals of GS/OS wasto
allow Macintosh format HFS disks to be used directly from an Apple I11GS computer,
though, and HFS uses colon for a separator. Worse, HFS allows you to use a slash as part
of afile name. Obviously something had to give.

The GS/OS design team decided to switch from the slash character to the colon
character, but they actually added the colon without getting rid of the slash. Y ou can still
use the slash character as long as you are using ProDOS format disks. Frankly, | useit
instead of the colon when | am using an ApplellGs. | think it is easier to read a path
name with slashes, which are easier to pick out of text than colons, and the slash is easier
to type because it doesn’t involve using the shift key.

But that leaves alingering problem. If both slashes and colons are allowed, how does
GS/OS deal with names on HFS disks that contain slashes? The answer is pretty
pragmatic. As GS/OS scans afile name, it looks for the first character that is either a
slash or a colon. Once one of these charactersis found, that character is used for the
separator for the entire path name.

Problem 8.2. Insert your GSoft BASIC disk and use the PREFIX command to set the
current prefix to :GSoft: Samples:Benchmarks. Verify that you did it right by using this
command to open the Float program:

edit fl oat

Finding the End of a File

In real programsit’srare to actually know how many values are in afile before you
open the file and look. When a program reads afile it uses a function called EOF to find
the end of afile. The EOF function takes a file number as a parameter, and returns a
Boolean value. The value returned istrue if the program has reached the end of thefile
and there is nothing left to read, and falseif thereis still information in thefile.



You can’'t open and file for input if the file does not exist. If you try, the program will
stop with arun-time error. On the other hand, it is perfectly legal for afile to exist, but
not have anything in it. Y ou can create afile with no values by opening it for output but
never writing any values to thefile. In the case of an empty file, EOF istrue right after
you open it.

Putting all of these rules together, we will change our sample program from afew
sections back to read the temporary file of numbers without knowing in advance how
many numbers are in the file. That’s a good thing, since there could be ten or eleven,
depending on which of the sample programs you ran most recently!

REM Read any number of lines fromthe file TEMP and print the
REM | i nes.

I OQpen the file.
OPEN "tenp" FOR I NPUT AS #1

| Read the lines until we hit the end of file mark.
WHI LE NOT EOF (1)

LI NE | NPUT #1, LI NE$

PRI NT LI NE$
VEND

I Close the file.
CLCSE #1

Problem 8.3. At this point, you have the tools to merge two files. The basic method is
simple: you open one file for input and another for output. Y ou read values from onefile,
writing them to the other, until you get to the end of thefirst file. Once thefirst fileis
copied you can close it. Next you use OPEN to open the second file, then repeat the
process of reading and writing values. The only differenceisthat you don’'t open the
output file a second time. Once the second file is copied, you close both files.

Write a program that writes the integers 1 to 10 to afile called FILEL.

Write a second program to create a second file, called FILE2, that contains the
integers 11 to 20.

Write athird program to read FILEL, writing it to afile called FILES. It should then
read FILE2, adding the contents of FILE2 to FILE3. The program should not depend on
knowing the length of either file.

Check your work with yet another program that reads the valuesin FILE3 and writes
them to the text screen.



Learn to Program in GSoft BASIC

Problem 8.4. Some folks like uppercase, and some like lowercase. Let’ s assume that,
for some reason, you want to convert the source code for one of your programs to
lowercase characters. Change the sample program so it reads a line, converts al of the
characters to lowercase, and then writes the line to a new file. Since the new file is atext
file, you can open it with atext editor to seeif the program worked. Don't try to check
the file from GSoft BASIC using the EDIT command, though, since GSoft BASIC will
convert most of the program back to uppercase charactersin the process of reading the
program!

Keep in mind that you can save a program several ways using GSoft BASIC. This
program will not work on a program saved with the SAV E command; you must save the
program using SSAVE or TSAVE. All of the sample files on the solutions disk are saved
with SSAVE, so you can use any of those files asinput to your program.

Problem 8.5. One way publishers measure the size of an article or book is by counting
the number of words. Of course, they count them by hand, right? Well, you can do it
better.

Write a program that asks for the name of atext file. Scan thefile, counting the
words. For our purposes, aword is defined as any sequence of characters that starts with
an uppercase or lowercase character. It includes all of the characters up to the next
character that is not an uppercase or lowercase character or adigit. For example, all of the
following are words:

word stuff Vi

On the other hand, a number, like 9.6, is not aword.

As an added bonus, keep track of the lengths of the words. Use an array to track how
many words of each length appear in the file. Lump any words longer than 30 characters
together into a single element in the array, counting them as if the word was actually 30
characterslong. That's long enough to handle any word in the English language.

After scanning the file, print the number of words, the number of characters, the
average length of aword, and atable showing how many times aword of each length
appeared in thefile.

Be sure to use long integers for your character counters. After all, an integer can only
hold values up to 32767. Each of these |essons has 30,000 to 40,000 characters, not
counting the solutions to the problems.

Note: Be careful! You can’t divide the character count by the number of words to get
the average word length, because the character count includes spaces, commas, periods,
and so forth! Y ou must either compute the average from the word length array or keep a
separate character counter for characters that appeared in aword.



Test your program by typing the following text into afile and saving it to disk. If
you're feeling lazy, thisfileis on the solutions disk; it’s called WordTest.

How, now, brown cow.

single

i cab

t hi si saver yl ongwor dt ot est t oseei f| ongwor dsar ecaught

Leaving out the histogram entries where there were no entries, the results should be:

83 characters.

10 words.

4 lines.

The average word length is 5.4.

Onefinal note of caution about this problem. In terms of the complexity of the logic
involved, thisisthe hardest problem so far in this course. It’s worth spending some time
on it to test and develop your skills. If you get tangled up, though, don’t hesitate to scrap
your program and try another approach. There are relatively easy ways to make this
program work, and very hard ways. Don’t get stuck struggling with a hard way.

Printing with Files

It is possible to write adriver for aimost any input or output device that you can use
with GS/OS. One of the most useful examplesis one that comes with GSoft BASIC
caled .PRINTER. Asthe name implies, this driver is used to send information to printers.

If you have a printer, you have probably used it with two kinds of programs. Desktop
programs use a Print... command from the File menu which brings up adialog filled with
printer options. This method of printing isgreat asfar asit goes, but it has severe
drawbacks for simple text based programs. AppleWorks classic and Applesoft BASIC are



Learn to Program in GSoft BASIC

examples of the other way to use a printer. These programs only send text to the printer,
and they generally don’t support fonts. The .PRINTER driver works the same way.

You need to install the .PRINTER driver before you can useit. You'll find
instructions in the GSoft BASIC reference manual. Onceit isinstalled, using it is a snap.
Y ou simply open afile named .PRINTER for output and print. The only real trick is
gjecting pages, which you can do by sending the character CHR$(10) to the printer.
Here' s an example.

OPEN ". PRI NTER' FOR OQUTPUT AS #1
PRI NT #1, "Hello, printer."
PRINT #1, CHR$(10);

CLCSE #1

Binary Files

So far al of the files we have written and read have contained text. While text files
are common and useful, most of the files you deal with aren’t really plain ASCII text files
like the ones we' ve dealt with. In fact, even word processor files put other kinds of
information into the file. For example, fonts, sizes, underscores, index entries, tab stops
and formatting information are all imbedded in atypical word processor file.

There are several ways to handle all of thisinformation, but the most common isfor
the programmer to design away to place the information in the file using bytes, integers
or long integers. Since these files contain information that is not simple ASCI| text you
need some way to distinguish them from text, and some way other than INPUT and
PRINT to read and write the files. All of these files are collectively referred to as binary
files. Thereisabinary file type on the Apple I1GS, just like there is atext file type.
You'll also find awide variety of other file types on the Apple I1GS; most of these are
binary files, although afew, like the source files used by GSoft BASIC are actualy
special purpose ASCII text files.

Opening and Closing Binary Files
Y ou open abinary file for BINARY input and output, like this:

OPEN "tenp" FOR BI NARY AS #1

Unlike text files opened for INPUT or OUTPUT, binary files are always open for
both input and output. If the file already exists, reading will start with the first valuein
thefile, and writing will begin by overwriting the first value in the file. Just as with



opening atext filefor OUTPUT, opening a binary file that doesn’t exist creates a new,
empty file.

The CLOSE command closes a binary file the same way it closes text files.

If you recall, | said opening afile for both input and output was generally harder to
deal with and less efficient than opening afile for one or the other. You’'ll learn some of
the intricacies of dealing with reading and writing to the same file as you go through this
lesson. The one big efficiency tip for dealing with binary filesisto clump read and write
operations so that you' re not constantly switching between one and the other. The reason
has to do with the way files are buffered. When you write avalueto thefile, itisn’t really
written right away; instead, the value is stored in an internal buffer. When the buffer is
full the entire buffer is written in one chunk. This seems minor, but it can make disk
output faster by afactor of 10 to 20! The same thing happens when you read a value.
Actually, and entire buffer full of information is read into memory. On your next read,
the value is aready in memory, so it takes less time to read. If you constantly switch
between reads and writes these buffers have to be flushed, either writing a small amount
of information to disk or dumping all of the information in the read buffer. That causes
the program to slow down considerably.

Writing Binary Files

Thefirst example of file output in this lesson was writing the numbers 1 to 10. Let’s
return to that example to see how it would work with abinary file.

REM Wite the nunbers 1 to 10 to a binary file.

I Open the file.
OPEN "tenp" FOR BI NARY AS #1

I Wite the nunbers.
FOR1% =1 TO 10

PUT #1, , | %
NEXT

I Close the file.
CLCSE #1

Asyou can see, the PUT statement looks alot like aPRINT statement. There are
some differences, though.

First, there are two commas. The missing piece of information between the commas
isthere so you can say where you would like the value to be written in the file. We'll
return to that field when we look at random access files later in this lesson; it works the



Learn to Program in GSoft BASIC

same way for both binary and random accessfiles. If you leave the value out, as we' ve
done, the PUT statement writes the information to the next available spot in thefile. If
you'rewriting anew file, as we are here, the information is appended to the end of all of
the information already in thefile. That’s exactly what happened with the text files from
the earlier examples.

The other differenceisthat PUT will only write one value at atime, and that value
must be avariable. The technical term is|-value, which stands for the left-hand value in
an assignment statement. Y ou can use anything that you could assign a value too, but you
are not allowed to use anything that must be calculated or any constants. Because of this
rule these two statements are illegal .

PUT #1, , 4 :! illegal
PUT #1, , 1%+ 1 :! illegal

The value that is actually written to disk iswritten in the same format it is stored in
memory. That has two advantages over the text file we wrote earlier. First, alot of timeis
saved because the number doesn’t have to be converted from its internal binary format to
aseries of characters and back again. Second, the values are usually smaller, so binary
files take less space. A binary representation of an integer value requires the equivalent of
two characters worth of space. “Aha,” you think. “The character version only took one
character of space!” Well, yes and no. First, the text version of our program also had to
use at least one more character to separate the numbers. In our example it was an end of
line mark. That ties the two methods for the values 0 to 9. Even our simple example had a
value of 10, though, so with the end of line mark the text version of the file was one byte
longer than the binary version. And you have to admit that only ten values even tie binary
files, and in most applications you will use lots of values that need more than one
character to represent the value.

There' sathird advantage of binary files over text files when floating-point numbers
areinvolved. Unlike integer values, it's very difficult to precisely convert floating point
values from their internal binary representation to atext representation and back again
and end up with exactly the same value you started with. At the very least it takes alot of
text digits. Binary filesdon’'t have that problem. When you write avalue to a binary file
and read it back into a variable, you' re guaranteed to get the same value you originally
wrote.

Reading Binary Files

Reading values from a binary file isthe mirror image of writing them. Y ou use GET
instead of PUT, but other than that everything is the same. Here' s an example that reads
the file of integers created by the last sample.



REM Read nunbers froma binary file and print them

I Open the file.
OPEN "tenp" FOR BI NARY AS #1

I Read and print the numnbers.
VWHI LE NOT ECF (1)

CET #1, , 1%

PRI NT | %
VEND

I Close the file.
CLCSE #1

Reading and Writing Practically Any File

Every file on every modern desktop computer, and almost any other compuiter, is
ultimately made up of aseries of eight-bit bytes. In practical terms this means
GSoft BASIC can open, read, and write any file you'll find on an Apple l1Gs disk. By
reading the file as a series of BY TE values, rather than the INTEGER values we used in
the examples, you can see the contents of absolutely any file.

Problem 8.6. Write a program that asks for the name of afile, readsthefile, and
writesit’s contents to the screen as a series of BY TE numbers.

Try your program on atext file. How are the ends of lines marked?

More About File Types and File Formats

Asyou look around at the various filesin your computer it'sfair to ask what’'sin
them and how you can read and write the files from your programs. Unfortunately, the
answer in many casesisthat you can’t. It's not alimitation in BASIC itself that keeps
you from dealing with the files, but rather alack of information. To read files you have to
have a pretty good idea what the format is, and to write them you have to have avery
good idea or very good backups! What' s the exact format for a WordPerfect word
processing file? | have no idea.

There are some places you can go to find information about file types. The single
most complete source is File Type Notes, a collection of detailed information about the
internal contents of dozens of popular file formats, like AppleWorks classic files and
several kinds of graphicsfiles. This document was originally created by Apple Computer,
and is still available from the Byte Works, Inc. Sometimes you'll find file formatsin the



Learn to Program in GSoft BASIC

documentation that comes with a program, although that’ s rare. Y ou can find the formats
for public formats like TIFF or JPEG graphicsfilesin various books, from various
standards organizations, or by searching the Internet. Therereally isn’'t asingle repository
for al file formats, and there isn’'t even a guarantee that the file format has ever been
documented. Many programmers rely on internal comments within program source code
for documentation of file formats.

So why are companies so stingy with information about their files? The reasons vary.
In some cases they don’t want competitors to be able to read and write their files. You
can argue with their logic, but it is acommon reason. | think the main reason, though, is
simply that it takes along time to document afile format in away that someone who is
not familiar with the source code for the program can understand, and once the
documentation is available, the companies don’t really want to have to deal with the
inevitable questions from people trying to use the format. Worse still, myriads of
programs floating around creating almost correct files, or files that work with one version
of the program but end up failing with alater version, could cause the company alot of
grief in terms of customer support.

In any case, there are some kinds of files that you simply won't be able to read or
write without spending an enormous amount of time essentially decoding how thefileis
constructed.

A second issueisthefiletypeitself. Our programs create either text (TXT) or binary
(BIN) files. How do you change the file type, or for that matter, how do you tell what
type afileisfrom inside a program? It turns out that detecting and changing file typesis
so closely tied to the underlying operating system that most languages don’'t have away
to doit. You have to make calls directly to the operating system, in this case using the
GS/OS operating systems GetFilelnfo and SetFilelnfo calls, to detect or set the file type.
That’s not something we'll cover in this course, but you' [l know enough to strike out on
your own after the next lesson. The GS/OS operating system is documented in Apple
1GS GSOS Reference. It was written by Apple Computer and originally published by
Addison-Wesley. Reprints are available from the Byte Works, Inc. The whole subject of
dealing with GS/OS is a so discussed in Toolbox Programming in GSoft BASIC. As of
thiswriting it hasn’t been published, but is expected out in 1999, again from the Byte
Works, Inc.

Random Access

Let’s say you have afile with five numbers, 1, 2, 3, 3, and 5. Of course, we want a
file with a4 in the fourth spot. On a short file like this one, we could just read the entire
fileinto an array or linked list, make any changes we want, and write the modified file. If
you know you have enough memory to work on the file that way, it'sagood choicein
any language.



Of course, inreal life, we may not have enough memory to handle afile. It isn’'t
uncommon to work with amailing list with several thousand entries, for example. A
reasonable sized record for handling the entries would be about 200 bytes long. A 10,000
person mailing list, then, would take 2,000,000 bytes, which is more free memory than
you are likely to find on most Apple I1GS computers.

Let'sfaceit, if you are using a database, you might be willing to wait when you open
afile, and wait again when you save the changed file. Asking you to wait while thefileis
read and written for each changeis a bit much, though.

The obvious solution is to open the file for input and output at the same time. Y ou
then scan through the file until you find the value than has to be changed, or, if you
already know where the value is, jJump right to it. Y ou then read the old value, changeit,
and write the modified value back to thefile.

In GSoft BASIC you open afile for random access input and output by opening the
filefor RANDOM. You still give OPEN afile name and afile number. Unlike opening
thefilefor OUTPUT, though, the old contents of the file are not destroyed if it already
exists. Thereis also one new piece of information. Random access files let you jump
right to a specific record within the file, and the only way the file system can do thisisif
it knows in advance how long each record is. The last piece of information is the length
of each record.

Thinking this through, what we're really doing is turning afileinto akind of array.
Each entry in thefileis called arecord, and each of the recordsis the same size as every
other record in the file. If you know the size of each record, you can jump right to a
specific record.

While random access file records aren’t the same thing as the records you learned to
create in the last lesson, in practice it usually makes sense to read and write BASIC
record variables from and to the file. After all, if you're writing individual numbers, there
really isn't much difference between arandom access file and abinary file.

Let’s use the mailing list from the last lesson to see how this works. The record we set
up looked like this:

TYPE ADDRESS
NAMEFI ELD AS STRI NG
STREET AS STRI NG
CITY AS STRI NG
STATE AS STRI NG
ZI P AS LONG

END TYPE



Learn to Program in GSoft BASIC

Opening thefileisreally the only change between using random access files and
binary files, so let’slook at what an OPEN statement would look like for afile made up
of thiskind of record.

OPEN "tenp" FOR RANDOM AS #1 LEN SI ZE

There are many ways to choose the value for SIZE. In general you want the smallest
value that will hold all of the information you are stuffing into each database record. In
virtually all cases, random access files are made up of a series of record variables or
numbers that all hold the same kind of information, like afile of ADDRESS records. In
that kind of situation, the SIZEOF function is a huge help. SIZEOF takes asingle
parameter, which can be the name of atype, like ADDRESS, or the name of avariable.
Either way, SIZEOF returns the number of bytes used by the variable. Putting it to usein
our OPEN statement turns the OPEN statement into this:

OPEN "tenp" FOR RANDOM AS #1 LEN S| ZEOF ( ADDRESS)

Unfortunately, it isn’'t quite that ssimple. The problem is that string values don’t
occupy a specific amount of space. That's good and bad. We'll see the good pointsin a
moment, but first let’s deal with the bad: Y ou can’t tell how large the file records need to
be without knowing how long the string values will be.

To understand what this means, let’slook at exactly how records are stored in a
random access file. Aslong as the record does not contain stringsit is simply copied into
thefile, just like numbers are copied into BINARY files. Strings are actually stored asthe
location in memory where the string value can be found. When you write arecord
containing a string to adisk file, this value is converted into an offset past the start of the
disk record. If you skip that number of bytes past the start of the record you will find the
first character in the string. The string continues until all of the characters have been
placed in the file, then a zero byte marks the end of the string. If thereis more than one
string in the record, the next string starts right after the first, and so on.

This dump of an actua file shows an ADDRESS record. The address shown is

Byte Works, Inc.
8000 Wagon Mound Dr. NW
Albuquerque, NM 87120



$000000 14000000 25000000 3D000000 49000000 % = |
$000010 50540100 42797465 20576F72 6B732C20 'PT Byte Works,
$000020  496E632E 00383030 30205761 676F6E20  'Inc. 8000 Wagon
$000030 4D6F756E 64204472 2E204E57 00416C62 ' Mound Dr. NWAI b’
$000040 75717565 72717565 004E4DO0 00000000 'uquer que NM
$000050 00000000 00000000 00000000 00000000

$000060 00000000 00000000 00000000 00000000

$000070 00000000 00000000 00000000 00000000

$000080 00000000 00000000 00000000 00000000

$000090 00000000 00000000 00000000 00000000

$0000A0 00000000 00000000 00000000 00000000

$0000BO 00000000 00000000 00000000 00000000

$0000CO 00000000 00000000

The file dump uses hexadecimal values to show the values of the bytes. Hexadecimal
numbers use the characters A to F to represent the values 10 to 15; two hexadecimal
digits can represent all of the 256 possible values for abyte. The actual values aren’t that
important, since you can see atext version of the file dump to the right of the
hexadecimal values. In the text version it is easy to see how the four string values come
after the record itself, which uses the first twenty bytes. Each of the strings shows up in
the record as afour-byte hexadecimal offset. Thefirst value is hexadecimal 14, whichis
the equivalent of the decimal value 20, telling us that the string starts 20 bytes after the
start of the record.

If you're head is spinning by now, take heart: The details aren’t that important. The
important thing you have to remember is that any record that contains strings needs more
space in the file than SIZEOF returns as the size of the record. How much more space?

Y ou need to add the length of all of the strings as returned by the LEN function, plus one
extra byte for each string to store the zero that marks the end of the string.

One way to allow for the extra space is to add the lengths of the longest string that
appears in each field. Assuming you’ ve found the length of the largest string for each
field and stored the sum in avariable called STRINGLENGTHS, your OPEN statement
would look like this:

OPEN "tenp" FOR RANDOM AS #1 LEN S| ZEOF ( ADDRESS) +
STRI NGLENGTHS + 4

Y ou might want to add more entries to your database later, though, and some of those
entries may be longer than the ones already in the database. It's agood ideato add some
extrabytes to allow for longer fields in the future. Here' s the good news about how
records are stored: If arecord has one exceptionally long string, say a street name, but the
other strings are below average length, the strings will still fit in the file recordsif the



Learn to Program in GSoft BASIC

total length is small enough. By using the size of the longest string occupying each field
for the size of our records we are building in some extra space, since it is unlikely that
any one record will contain the longest string in every one of it’sfields.

So what happensiif the strings are too long? Basically, they are chopped off. Any
characters that won't fit in the file record are dropped, and will be missing when you read
the record from thefile.

Reading and writing random access files works just like it does for binary files. The
big differenceis that you' re more likely to want to read a specific value from the file, so
you're more likely to want to use that second parameter for the GET and PUT statement.
Here'sa GET statement that reads the third record from arandom access file, placing the
value in arecord variable named ADDR.

GET #1, 3, ADDR

There’' safile on the solutions disk called MailingList. We'll use thisfilefor al of the
problems that deal with random access files. Here' s a program that prints the contents of
the mailing list file. It does double duty by showing you how to put all these ideas
together into aworking program as well as giving you a program that will check your
answers for some of the problems. The program itself is also in the solutions disk; it’'s
called PrintList. Both the program and the datafile are in afolder called Lesson.8.

REM Wite the contents of the file MilingList.

TYPE ADDRESS
NAMEFI ELD AS STRI NG
STREET AS STRI NG
C TY AS STRI NG
STATE AS STRI NG
ZIP AS LONG

END TYPE

CONST Sl ZE = 200:! Nunber of bytes in one file record

DI M ADDR AS ADDRESS:! Address read fromthe file



I Wite all entries in the file.
OPEN "Mai | i ngLi st" FOR RANDOM AS #1 LEN S| ZE
VWH LE NOT EOF (1)
CGET #1, , ADDR
PRI NT ADDR. NAMEFI ELD
PRI NT ADDR. STREET
PRI NT ADDR. CITY;", "; ADDR STATE;" ";ADDR ZIP
PRI NT
V\END
CLCSE #1

Problem 8.7. Write a program that opens the MailingList file and prints the 3rd record
from thefile.

Problem 8.8. Write a program that let’s you type new values from the keyboard, then
stores those values in arecord, writing the record at the end of the current MailingList
file. (Be sure to make a copy of thefilefirstl)

Problem 8.9. The folks in the marketing department keep running across names that
are so long that the current record size is causing problems. Write a program that reads
the MailingList file and writes it to a new file whose records are ten bytes longer. Check
your work with amodified form of the PrintList program that appears in this section as a
sample program.



L esson Nine — Pointersand Lists

What is a Pointer ?

By now, you have used two very powerful techniques to organize information in
BASIC. Arrays are use to handle a large amount of information when all of the pieces are
the same type. Records are used to collect different kinds of information into asingle
variable.

While these types are very powerful, there is one situation they do not handle well. In
many programs you don’t know in advance how many pieces of information you need to
deal with. For example, a program to manage amailing list may have afew hundred
entries when one person uses it, but several thousand for another person. One solution is
to allocate an array that will be big enough to hold some maximum number and leave it at
that. Of course, that presents a problem, too. If one person has a computer with 1.25M of
memory, they may be able to handle amailing list with 7000 or 8000 entries.
Unfortunately, the program would be too large to run on a computer with 768K, and
would not make effective use of all of the memory in a2M machine.

Of course, you may not ever intend to write acommercial application. On your own
machine, you know how much memory you have, right? Well, that could be true, but
fixed size arrays present other problems. Many programs have to handle more than one
kind of data at the same time. For example, an adventure game might need one array for
handling the roomsin a castle, and another array for keeping track of the various
inhabitants. Y ou can try to make effective use of memory by guessing in advance how
big each array needsto be, but if you guess wrong, you could overflow one array while
thereisstill plenty of room in the other.

And, of course, all of thisignores the fact that the current implementation of
GSoft BASIC on the Apple I1Gs limits the maximum size of asingle array to 32K.

In al of these situations, the problem is that you know thereisalot of memory out
there, but you don’t always know, in advance, how much memory is available or exactly
what you will need to use it for when the program runs. The amount of memory used by
an array or record is determined when the program is written. Y ou can’t change it without
changing the program itself. What we need is away to ask for a chunk of memory while
the program is running. Programmers call this dynamically allocated memory. Since
GSoft BASIC doesn’t know where the memory will be when you compile the program,
or even how much will be allocated, you need some way of keeping track of the memory.
That, in anutshell, iswhat pointers are for. A pointer points to a memory location. In
terms of the BASIC program, a pointer pointsto a variable. The variable can be asimple
variable, like an integer or areal number; arecord; an array; or even another pointer. In



short, a pointer can point to a variable of absolutely any type except an array—and it can
point to an element of an array, or arecord containing an array.

| don’t want to scare you off, but pointers tend to give beginnersalot of trouble. |
would like to talk for a moment about what kind of trouble people have so you can watch
out for these issues as you read through the lesson. We will try to deal with each of the
issues.

Part of the reason people have trouble with pointersis that the idea of dynamically
allocated memory isforeign to those of you who cut your teeth on traditional
implementations of BASIC, which don’t support pointers. If pointers are a new concept
for you, you should expect it to take some time before you become comfortable with
them. Another factor is that pointers have their own operator that you must learn to use.
A lot of people get confused by this operator, which controls when you are dealing with a
pointer, and when you are dealing with the thing it is pointing to. Finally, there is a bit of
magic about pointersin a high-level language. The other data types we have dealt with
were definite, fixed structures. Y ou could get a handle on what they do, and how they
work. From alanguage like BASIC, there are some mysteries to how pointers work, since
the language takes care of alot of details. It is only from assembly language that you
really see how pointers work—and, if you ever learn enough assembly language to learn
how pointers work, you will probably follow in the footsteps of the vast majority of
programmers, and return to alanguage like BASIC that handles all of those mucky
details for you!

A realistic example of how pointers are used in areal program iswell beyond what
you are likely to understand at this point, so some of the first few examples will seem
very simplistic and contrived. Y ou will look at them and wonder why we are using
pointers at al, when you can easily see better ways to write the program without a
pointer. Well, you are right, but we will use some simple programs to get used to the
mechanics of pointers. By the end of the lesson, though, you will be dealing with data
structures that you could not handle with arrays. In the next few lessons, we will start
doing things with pointersthat are very difficult to do with arrays. In some cases, in
BASIC at least, some of the things we will do can’t be done any other way than by the
use of pointers. That’s especialy true if you continue on to toolbox programming after
this course. The Apple I1Gs toolbox it littered with various kinds of pointers.

Pointersare Variables, Too!

Thefirst thing we need to explore is how to define a pointer. Like an array, which
must be an array of something, a pointer must point to something specific. You can't
define what a pointer points to using atype character on the variable name as we have
done with simple variables. You always use a TY PE statement to declare a pointer type
and aDIM statement to create a pointer variable.



Learn to Program in GSoft BASIC

DM 1P AS PO NTER TO | NTEGER

Thevariable IPisavariable, just like any other. It just has an odd type. The type of IP
iISPOINTER TO INTEGER. There are only two things that you normally do with this
variable in BASIC: assign it to another pointer variable or compare it for equality or
inequality with another pointer value. Of course, for either operation, the pointers must
point to the same kind of value. For example, the following program islegal in BASIC:

DM 1P AS PO NTER TO | NTEGER
DI M JP AS PO NTER TO | NTEGER

1P = JP

The pointer is virtually worthless without the ” operator. The ”* operator, appearing
right after the pointer variable, gives us the value the pointer pointsto rather than the
pointer itself. For example, the assignments shown in the following program are legal,
although the program itself has some problems. Do not run this program!

DIM 1P AS PO NTER TO | NTEGER
DIM 1 AS | NTEGER
DIMJ AS | NTEGER
J =
| P

J
P/\
PRI NT |

= 1 b

Let’s step through the program, looking at what it is doing. First, we assign the value
4 to J. Nothing is new there; you’ ve done that sort of thing dozens of times. The next line,
though, assigns the integer J to the value pointed to by IP. Keep in mind that we are not
assigning avalue to the variable IP, we are assigning a value to the variable pointed at by
the variable IP. That's what the * operator does for us; it tells BASIC that we want the
value pointed at, not the pointer.

If that’s confusing, think about how records work for amoment. If A and B are the
same kind of record, then the assignment

A=B



copies the contents of the record B into the record A. Thisisvery, very different from the
assignment

A LEFT = 4

which copies the value 4 into one field of the record. The .LEFT tells the program to use
aspecific field from the record, not the record itself. The ~ operator is doing something
similar for a pointer variable. It tells the program to copy the value into the variable
pointed to by 1P, not into the pointer P itself.

The next line,
I[P =

uses the same idea to assign the value pointed to by IP to the variable I. Finally, the value
of | isprinted. The value should be 4.

Unfortunately, this program has avery, very serious flaw. Inisavery common error
in programs that use pointers. In fact, it is one of the most common causes of crashes on
the ApplellGs, in any kind of program, in any language. Did you catch the flaw? If
you' ve never seen pointers before, probably not.

What does IP point to?

What if IP points to the location in memory that turns on your floppy disk drive? The
disk drive would start to spin.

What if 1P happens to point to memory allocated by the GS/OS operating system that
holds a block of adatafile? When you save thefile, it will have some garbage
information in it.

What if 1P points into the middle of your program? Y our program may crash.

Worst of all, what if IP points to some memory that isn’t being used for anything?

Y ou might think the program works, and pass it around to friends. It could then do al of
these nasty things to their computer. This, of course, is not agood way to keep friends.

Allocating and Deallocating Memory

In short, pointers are no good without away to get some memory for them to point to.
BASIC gives us astatement called ALLOCATE to get some new memory. When you are
finished with the memory, the DISPOSE statement can be used to get rid of the memory.
Both statements need the name of the pointer for which you want to alocate or deallocate
memory. We can change our program from the last section into a safe one using these
procedures. This program is one you can run!



Learn to Program in GSoft BASIC

DM 1P AS PO NTER TO | NTEGER
DM 1 AS | NTECER
DM J AS | NTECER

ALLOCATE (1 P)
J=4
1P = )
| = 1P°
PRI NT |
DI SPCSE (1 P)

When this program runs, it starts by making acall to ALLOCATE. This statement
performs some advanced magic. The result isthat, after the call, two bytes of memory
have been obtained. The exact process involved in getting this memory is a bit involved,
and not particularly important to you, the BASIC programmer. The processis covered
below, just in case you're curious. In any case, thismemory is safe. It belongs to your
program, and no other correctly written program will disturb it.

Just before the program ends you see the DISPOSE statement. This statement goes
through a complicated mechanism that getsrid of the two bytes of memory. After calling
DISPOSE, the memory does not belong to your program anymore. It could be reused
within 1/60th of a second by an interrupt routine, which isasmall program that does
things like tracking the mouse or reading the keyboard in the background while your
program runs. Even if it isn’t reused, because of the process used to allocate and
deallocate memory, the location I P points to doesn’'t contain 4 anymore. In short, once
you call DISPOSE, the memory isn’t yours anymore, and you should not access or
change the value pointed at by IP.

How New and Dispose Work

The process used to allocate and deall ocate dynamic memory isabit involved, and
has nothing in particular to do with the way you write your BASIC program, but it is
interesting. If it’s not interesting to you, though, you can safely skip this entire
description.

One of the basic parts of the Apple 11GS operating system is the Memory Manager.
The Memory Manager is responsible for finding free memory and giving it to the various
programs in the computer. Even if your program is the only one you think is running, it
turns out that many other programs are calling the Memory Manager to get memory, too.
The GS/OS disk operating system calls the Memory Manager, as do many of the
ApplellGstools. GSoft BASIC is calling the Memory Manager to get space for your
program. Many desk accessories call the Memory Manager. Some of them may even



install interrupt handlers, which can be running while your program is doing something
else.

When you call ALLOCATE for the first time, GSoft BASIC makes acall to the
Memory Manager to get a4K block of memory. This memory is then subdivided into
smaller and smaller pieces, dividing the block in half each time, until the program gets a
chunk of memory of about the right size. In our program you need two bytes to hold the
integer, and the library subroutine allocating the memory needs four bytes to keep track
of all of the small pointers, so atotal of eight bytesis actually taken from the 4K chunk of
memory. (Remember, the number of bytes will be a power of two.) This method tends to
waste afew bytes of memory now and then, but it turns out that it is very fast. It has some
other technical advantages, too, that we won't go into here.

When you call DISPOSE at the end of the program the small block of memory is
deallocated. Since it was the only piece of memory being used in the 4K block, the 4K
block is also returned to the Memory Manager, where it can be reused by other programs.
If you had allocated other pieces of memory in addition to the one I P points to, and those
were still in use, the block would not be deallocated and returned to the Memory
Manager until all of the individual pieces were disposed of.

An interesting point about this memory is where it comes from. Unlike variables,
arrays, and even strings, memory alocated by calling ALLOCATE doesn’t come from
the fixed size variable space your program allocates when it starts. ALLOCATE gets
memory directly from the Memory Manager. It will continue to allocate memory until all
of the available memory in the Apple lIGsis used.

Problem 9.1. A pointer can point to any variable type. Use that fact to change the
program shown in this section to allocate a pointer to areal number. Assign the value 1.2
to the location pointed to by the pointer, and print the result. Do all of thiswithout an
intermediate real variable; in other words, assign the value directly to the value pointed at
by the pointer, and use the pointer with the  operator in the PRINT statement.

Problem 9.2. Y ou can, of course, use |P* anywhere that you could use an integer
variable. Making use of that fact, write a program to add two numbers and print the
result. The only variables you should define are three pointers, IP, JP, and KP. Be sure
and allocate memory for al of them using ALLOCATE, then assign 4 to the first, and 6
to the second. Add the two values together and save them at KP*, then print the result. Be
sure and follow your mother’ s advice, and clean up after yourself by calling DISPOSE to
deallocate the memory areas reserved by the callsto ALLOCATE.



Learn to Program in GSoft BASIC

Linked Lists

So far al of our programs have used a pointer to asingle variable. That’s about as
useful as your mother on a hot date. A single variable is easier to use, takes less space,
produces a smaller program, the resulting program runs faster, and there is no chance of
stepping on someone else’s memory because you forgot to use ALLOCATE to allocate
the memory. We used arrays to organize afixed number of valuesinto a data structure
that was easier to use. The equivalent for a pointer is one of the many forms of alinked
list.

Basically, alinked list is a series of connected records. Each of the records in the
linked list contains, among other things, a pointer. The pointer points to another record in
the list. A single pointer variable in the program points to the first record in the linked
list.

For our first look at alinked list, we will create alist of integers. The record, then,
must have a pointer to the next record, and an integer. It looks like this:

TYPE LI STRECORD
NEXTP AS PO NTER TO LI STRECCORD
I AS | NTEGER

END TYPE

TYPE LI STPO NTER AS PO NTER TO LI ST

DI M FI RST AS LI STPO NTER
DI M TEMP AS LI STPO NTER

With these definitions we can start to create alinked list. For each element in the list
we will need to call ALLOCATE to get space for anew record, and then place avalue
into the integer, like this:

ALLOACTE (TEMP)
TEMP. | = 4

Look carefully at the assignment that places a4 in the record. The characters . may
seem confusing at first, but they are the same simple ideas you are used to, combined to
do something a bit more complicated. TEMP, of course, is a pointer, so to put avalue
into TEMP we need to use the * operator. TEM P pointsto arecord. To place avalue
into the field | within arecord we add .1. The whole expression, TEMP.1, then, refersto
the integer variable I, located inside arecord that is pointed to by the pointer TEMP.



That's a complicated concept, but it is simple when you break it down into parts, reading
the expression one symbol at atime from left to right, the way BASIC itself does.

At this point we have adynamically allocated record with an integer valueinit. The
pointer in the record still does not point to anything. The next step is to add this record to
the list of records that the variable list points to.

TEMPM. NEXTP = FI RST
FI RST = TEWMP

On thefirst line we are assigning a value to the pointer in our new record. The value
we are assigning is FIRST; FIRST points to the first element currently in thelist. We
really don’t know how many things are in the list at this point. There may not be any, or
there may be several thousand. The beauty of the linked list, though, is that we don’t have
to know! It doesn’t matter at all how many things are aready in the linked list.

The second line assigns TEMP to FIRST. Thefirst thing in thelist, at this point, is
our new record. Our record contains an integer variable with avalue of 4, and a pointer to
therest of thelist.

The next thing we need to learn is how to take something off of the list. Let’s say that
we want to remove the first item. Basically, then, we reverse the process of putting a
record into the list, like this:

TEMP = FI RST
FI RST = TEMP*. NEXTP

There is one more detail that we need to deal with before we can use these ideas to
write a program. So far we have ignored the issue of the end of the list. How do we know
when we get to the end of the list? We could keep a counter, but actually there is a better
way. It involves the use of a predefined pointer constant called NIL. NIL istype
compatible with any pointer type. You can set a pointer to NIL or compare a pointer to
NIL. By convention, NIL is used to mean that the pointer doesn’t point to anything, and
that it how we mark the end of our list. By initializing list to NIL at the start of the
program and checking to seeif list is NIL before removing an item from the list, we can
tell when thereis nothing in the list.

Stacks
Using what we now know about linked lists, we can create our first program.



Learn to Program in GSoft BASIC

REM This programreads in a first of integers, and then prints
REM themin reverse order. The program stops when a zero
REM val ue is read

TYPE LI STRECORD
NEXTP AS PO NTER TO LI STRECCRD
I AS | NTEGER

END TYPE

TYPE LI STPO NTER AS PO NTER TO LI STRECORD
DI M FI RST AS LI STPO NTER: ! points to the top itemin the first
CALL CGETLIST(FIRST):! read a list

CALL PRINTLIST(FIRST):! print a |ist
END

GetlList - Read a list fromthe keyboard

Par anet ers:
first - pointer to the head of the I|ist

SUB GETLI ST(FI RST AS LI STPAO NTER)

DIM1 AS INTEGER :! value read fromthe keyboard
DIM TEMP AS LI STPO NTER: ! work poi nter

I initialize the list pointer
FIRST = NI L

DO
| read a val ue
I NPUT "Enter a nunber: ";I
IF 1 <> 0 THEN

! allocate a record
ALLCCATE ( TEWVP)



| place i in the record
TEMPM. I = |

I put the record in the |ist
TEMPM. NEXTP = FI RST
FI RST = TEMP
END | F
LOCP UNTIL I =0
END SUB

PrintList - Print a list

Par aneters:
first - pointer to the head of the Iist

SUB PRI NTLI ST(FI RST AS LI STPO NTER)
DIM TEMP AS LI STPO NTER: ! work poi nter

VWH LE FI RST <> NI L
| renpve an itemfromthe |ist
TEMP = FI RST
FI RST = TEMPM. NEXTP

I print the val ue
PRI NT TEMP?. |

I free the nenory
Dl SPOSE ( TEWP)
V\END
END SUB

We have already talked about all of the ideasin this program, thisisjust the first time
you have seen them all in one place. Looking through the program, the first step isto get
alist of numbers. GetList does this, reading numbers using familiar methods until you
enter 0. For each number, GetList allocates a new record, saves the number in the record,
and putstherecord in the list.



Learn to Program in GSoft BASIC

PrintList loops for aslong as there are entries | eft in the list. Each time through the
loop the top record in the list is removed from the list, the value is printed, and the
memory used by the record is dumped.

Notice how the PrintList procedure cleans up after itself. The memory used by every
record is carefully disposed of after we are finished with the record. Thisis an important
step in aprogram that uses dynamic memory. If you forget to dispose of some of the
memory in afew places, the memory areas will eventualy fill up, and there won’'t be any
free memory for new callsto ALLOCATE. Thisis known as amemory leak.

It is very important to understand exactly how this program works, since the ideas
used in this program form the basis for many of the fundamental techniques in modern
programming practice. Stop now, and type in the program. Run the program with the
following input:

O~ WNEPE

The program responds with this:

PN WA

This may not have been exactly what you expected. What happened is this: When the
program creates the list, each new element is added on top of the old list. Asthe program
retrieves records from the list, the last one added is removed first. This mechanismis
called a stack. The common analogy isto think of it like a stack of plates. Y ou pile the
list elements up on top of one another. To get one back, you pull the top record off of the
stack.

Just as afootnote, | should warn you about terminology buffs. Many high school
teachers, afew college professors, and even an occasiona book author figure that the
way to become a good programmer isto learn a bunch of arcane words. It is true that you
need some new words, like dynamically alocated memory, to describe new concepts, but
these terminology buffs want you to know that a stack is called a LIFO data structure, for
Last In, First Out. Let’sface it, they write the tests, so you better know the term if you
want to get a good grade in a class. Be warned, though: if you walk up to a group of
programmers at a conference and start babbling about L1FO data structures, you will find



awide gap forming around you. A few people will glance at your shirt pocket, looking
for the pencil holder, or examine the thickness of your glasses. In real life, these things
are called stacks.

Stacks are a very flexible data structure. They are used in awide variety of
applications. A stack is appropriate any time you need to collect alarge amount of
information, especially if you don't particularly care in what order you use the
information, or for the occasional case when you want to handle the most recent piece of
information first. Stacks are also frequently used as a part of a more complicated data
structure, like a hash table. We'll ook at complex data structures like thislater in the
course. Stacks are used in such diverse applications as burglar alarms, data bases, mailing
lists, operating systems, and arcade games.

There are many variations on the basic ideas covered in this section. Some of these
are explored in the problems. | highly recommend that you work both of these problems.

Problem 9.3. Many applications require you to process the information in alist from
back to front. In some cases, you know thisin advance, and a slightly different form of a
list isused, called aqueue. That situation is covered in the next section. In other cases,
though, you may not know that the list needs to be reversed in advance, or you may need
to process the list in both ordersin different parts of the program. In a case like that, you
need to be able to reverse the list.

Reversing alistisreally quite easy. To do it, you use two lists. The new list starts out
empty. Y ou then loop through the old list, just like we do in the PrintList procedure, but
instead of printing the value and disposing of the record, you add the record to the new
list.

Write a procedure to reverse the order of alist. Use this procedure in the sample
program so it prints the numbers in the same order they are read.

Problem 9.4. In some applications we read in alist, then scan the list repeatedly,
looking for records with certain characteristics. For example, in aburglar alarm, we
might use one subroutine to add new alarmsto alist. Another might repeatedly scan the
list, looking for fires. If no fires were found, the list could be rechecked for broken
windows, and so on.

Implement thisideain our sample program by counting the number of times a
particular number appears in the list. Use a FOR loop to loop from 1 to 5. For each value,
scan the list, incrementing a counter if the number isfound. Print atable of the results.

Try this program at least two times. The first time, enter zero immediately. The
second time, use this data:



Learn to Program in GSoft BASIC

g o0~ Ok WO WODNOOP~MODNPR

The results should be one one, two twos, and so forth.

Hint: To scan alist, set a pointer to the head of the list. Use a WHILE loop to loop
until this pointer isNIL. At the end of the WHILE loop set the pointer to the next record,
likethis:

TEMP = TEMP*. NEXTP

Queues

Another commonly used form of alist isthe queue. A queue looks just like a stack,
but it isformed differently. A queueis used when you want to process information in the
same order it isread, so instead of adding new records to the beginning of thelist, you
want to add them to the end of the list. In a sense, the records are lined up and processed
on afirst-come, first served basis. The terminology freaks call aqueue a FIFO list, for
First In, First Out, but again, don’t embarrass yourself in a crowd by talking about stuff
like that.

There are three basic ways to form aqueue. If al of theinformationisread in first,
then processed, you could just use the simple stack to read the data, then reverse the order
of thelist, like we did in problem 9.3. In many programming situations, though, you read
some data, process alittle bit, read some more, and so forth. In those cases, you need to
build the list in the proper order.

One way to build a queue is to keep a second pointer, which we will call LAST. This
pointer starts at NIL, like the pointer that points to the first member of the list. When we



add the first element to the list the pointer LAST is set to the value of the new pointer.
The next pointer in the new record is aways set to NIL. From then on, we add a new
record by setting the next pointer in the record pointed to by LAST to point to the new
record, and then set LAST to point to the new record.

In BASIC code, then, we set the list up like this:

FIRST = NIL
LAST = NI'L

To add arecord to the end of thelist, we check to seeif the record isthe first onein
the list. If so, we set both LAST and FIRST to point to the new record. If not, we chain
the record to the end of thelist.

IF LIST = NNL THEN
FI RST = TEMP

LAST = TEMP

ELSE
LAST”. NEXTP = TEMP
LAST = TEMP

END I F

Of course, since both branches of the IF statement assign TEMP to LAST, we can
make the program shorter and still do the same thing by pulling the assignment outside of
the IF statement, like this:

IF LIST = NNL THEN
FI RST = TEMP
ELSE
LAST”. NEXTP = TEMP
END I F
LAST = TEMP

We also don't actually make use of LAST beforeit is assigned avalue for the first
time, so setting it to NIL when we initialize the list is aso unnecessary.

Problem 9.5. Y ou probably saw this one coming. Change the GetList procedure from
the samplein the last section so it forms a queue instead of a stack. Use the mechanism
described in this section to do it.



Learn to Program in GSoft BASIC

Running Out Of Memory

What happens if you ask for more memory, but none is available? If this happens,
ALLOCATE setsthe pointer to NIL rather than to avalid memory location. Just for fun,
the following program does this on purpose.

After running this program, quit GSoft BASIC and reenter the program. That cleans
up the memory the program allocated and never disposed of. Also, be aware that this
program could run for avery long time, especially if you have alot of memory.

DM P AS PO NTER TO | NTEGER
DI M COUNT AS LONG

COUNT = 0
DO
ALLOCATE (P)

COUNT = COUNT + 1
LOOP UNTIL P = NIL
PRI NT COUNT;" integers were allocated."

The practical ramifications of this program are very important. In real programs you
need to make sure acall to ALLOCATE really worked. That means you need to check
after each and every call to seeif ALLOCATE returned NIL. If it did, your program has
to do something to handle the situation. That might mean reporting an error and quitting,
disposing of some buffersyou no longer need, or informing the user that an operation
can't be carried out. The one thing you can’t do isignore the problem!






L esson Ten —Miscalaneous Useful Stuff

The first nine lessons of this course have taken you on atour of the BASIC language.
By thistime you have learned most of the mechanics of the language itself. Because the
lessons have been devel oped using specific examples, though, afew topics have slipped
through the cracks. This chapter covers those topics.

| don’t want you to get the impression that these topics are unimportant. Quite the
contrary: agreat deal of the power of the BASIC language istied up in the topics we will
look at in thislesson. In our tour of the BASIC language, though, we have concentrated
on the mechanics of writing short, simple programs. As we learn more about writing
larger programs, programming efficiently, and organizing programs, the new techniques
covered in thislesson will be put to use over and over.

The SELECT CASE Statement

You've learned to use IF and EL SE IF to select from a series of possible conditions.
Here' s an example that accepts a number from 1 to 13, representing the value from a
deck of cards, and prints the name of the card.

PrintCard - Print the nane of a card

Paraneters:
V - point value of the card

SUB PRI NTCARD (V AS | NTEGER)



IF V=1 THEN
PRI NT "Ace";
ELSE IF V = 2 THEN
Print "Two";
ELSE IF V = 3 THEN
Print "Three";
ELSE IF V = 4 THEN
Print "Four";
ELSE IF V = 5 THEN
Print "Five";
ELSE IF V = 6 THEN
Print "Six";
ELSE IF V = 7 THEN
Print "Seven";
ELSE IF V = 8 THEN

Print "Eight";
ELSE I F V = 9 THEN
Print "Nine";
ELSE I F V = 10 THEN
Print "Ten";
ELSE I F V = 11 THEN
Print "Jack";

ELSE IF V = 12 THEN
Print "Queen";

ELSE IF V = 13 THEN
Print "King";

END | F

END SUB

BASIC has aspecia statement called the SELECT CASE statement that is used in
situations like this. The SELECT CASE statement is like a multiple branch. It works the
same as the series of IF and EL SE IF checks, but thereis alittle less typing and the
program runs a little faster. Using a SELECT CASE statement the PrintCard subroutine
becomes

PrintCard - Print the nane of a card

Par anet ers:
V - point value of the card



Learn to Program in GSoft BASIC

SUB PRI NTCARD(V AS | NTEGER )

SELECT CASE V
CASE 1
PRI NT "Ace";
CASE 2
PRI NT " Two";
CASE 3
PRI NT "Three";
CASE 4
PRI NT " Four";
CASE 5
PRI NT "Five";
CASE 6
PRI NT "Six";
CASE 7
PRI NT "Seven";
CASE 8
PRI NT "Ei ght";
CASE 9
PRI NT "Ni ne";
CASE 10
PRI NT "Ten";
CASE 11
PRI NT "Jack";
CASE 12
PRI NT " Queen";
CASE 13
PRI NT "Ki ng";
END SELECT
END SUB

When the SELECT CA SE statement executes, it starts by evaluating the expression
that comes after CASE. In our example, the expression is a simple one, consisting of a
single variable. The next statement executed is the one right after the value that
corresponds to the value of the expression. Y ou can put more than one statement there, of
course, even though we only used one statement after each CASE label in this example.
As soon as the next CASE label is encountered the program skips to the statement after
the END SELECT statement. In other words, the SELECT CASE statement works
exactly like aseries of IF ELSE clauses. The SELECT CASE statement isjust a bit easier
to read, and gives you another way to organize your program.



The PrintCard subroutine shows the classic way to organize a SELECT CASE
statement, but in situations like this one where there is a single value to check and a
single thing to do for each specific value, | like to use the : statement separator to
combine the CASE statement with the statement that handles the condition, like this:

PrintCard - Print the nane of a card

Paraneters:
V - point value of the card

SUB PRI NTCARD(V AS | NTEGER )

SELECT CASE V

CASE 1: PRI NT "Ace";
CASE 2: PRI NT "Two";
CASE 3: PRINT "Three";
CASE 4: PRI NT "Four";
CASE 5: PRINT "Five";
CASE 6: PRINT "Six";
CASE 7: PRI NT "Seven";
CASE 8: PRINT "Eight";

CASE 9: PRINT "N ne";
CASE 10: PRI NT "Ten";
CASE 11: PRINT "Jack";
CASE 12: PRI NT "Queen";
CASE 13: PRINT "Ki ng";
END SELECT
END SUB

Personally, | think this makes the program alot easier to understand.

There are many situations where you will want to use several different case labels for
the same statement. To do this, separate the case |abels with a comma, as the following
example shows.



Learn to Program in GSoft BASIC

FORI1 =1 TO 10
SELECT CASE |
CASE 1, 2, 3, 5, 7
PRINT I; " is prinme"
CASE 4, 6, 8, 10
PRINT I; " is even"
CASE 9
PRINT I; " is odd"
END SELECT
NEXT

While listing specific valuesis appropriate for the majority of SELECT CASE
statements you're likely to write, there are two ways to handle ranges of values. The first
isto give start and end values for arange of values, separated by the word TO. The
second is useful for collecting al of the remaining values that have not been picked off
by a specific CASE statement. The CASE EL SE statement should be the last CASE
statement before END SELECT. It works just like an ELSE in aseriesof ELSE IF
statements,

Here' s an example that might appear in a program that reads text, like a compiler or
an adventure game.

SELECT CASE M D$(LINE$, 1, 1)
CASE "A" TO"Z", "a" TO"z"
CALL DOMORD( LI NES, 1)
CASE "0" TO "9", "."
CALL DONUVBER(LI NE$, 1)
CASE ELSE
CALL DOPUNCTUATI ON(LI NES, 1)
END SELECT

Finally, if thereis no matching CASE statement for avalue at all, the program skips
to the statement right after END SELECT.

Problem 10.1. Write a program that generates a deck of cards using an array of 52
integers. Initialize the unshuffled deck by placing the numbers 1 to 52 in the array.

Use a subroutine called SHUFFLE to shuffle the deck. This should loop one time
through the deck swapping each array element with another chosen at random.

Print the first five cards in the shuffled deck using the PRINTCARD subroutine from
this section and a similar subroutine you design to handle printing the suit of the cards.



Just in case your card skills are alittle rusty, the names of the suits are Spades,
Hearts, Clubs and Diamonds. There are 13 cards in each suit. Card 1 would be the Ace of
Spaces; card 14 the Ace of Hearts, and so on.

Revisiting the FOR L oop

Once upon atime, in alesson long, long ago, you learned about the FOR loop. When
FOR loops were first introduced, though, you didn’t know enough about BASIC to
understand some of the features that apply to FOR loops. In this section we will take a
more detailed look at FOR loops to fill in some minor gapsin your knowledge.

The first point about FOR loopsis one you have seen by example, but it isagood
ideato spell it out. Y ou can use any valid BASIC expression to decide what the start and
stop value for the loop should be. For example, you can loop arandom number of times
using the results of the random number function we have used in so many simulations:

FOR | = 1 TO RANDOWALUE (20)
<<<do sonet hi ng here>>>
NEXT

Y ou might be justifiably concerned about what would happen if RANDOMVALUE
were called every time the condition was tested. The answer, of course, isthat the stop
value would change each time through the loop! BASIC evaluates the stop condition one
time, though, and saves the value. Even if the stop condition doesn’t change, you might
be worried about the efficiency of your program. The fact that BASIC computes the stop
value before the loop starts, and saves the value, means that even a very complex
expression for the stop value won't slow down the loop itself.

There is another interesting point about using an expression for the start or stop value.
What happens if the stop value is less that the start value when the loop starts? For
example, what does this program do?

The FOR loop can handle this situation. If the stop value is smaller than the start value,

the body of the loop is executed one time with the initial value for the loop variable. As
soon as the NEXT statement is encountered the loop will stop. This particular program

prints the value 1 the first time through the loop, then stops.



Learn to Program in GSoft BASIC

So far, all of our FOR loops have started with a small value and looped up towards a
larger one. That isn’t the only way to loop. Y ou can start with alarge value, and loop
down to asmaller one. The differenceisthat you use STEP to set a step size of -1, telling
the loop to go down by one each time through the loop rather than up. The program

FOR 1 =10 TO1 STEP -1
PRI NT |
NEXT

prints a countdown from 10 to 1.

The step size also shows one of the most powerful features of the FOR loop. It isn't
limited to INTEGER or even LONG values like the FOR loops in some languages. Y ou
can use floating-point loop variables and step by values that are not whole numbers.
Here's a short example that uses this fact to step from 0.0 to 2rtin increments of 1750.0.
Even if the math isalittle beyond what you're used to, you can still see how the FOR
loop can be used to loop over non-integer increments.

REM Draw 50 random circles on the screen the "hard" way.

DIM| AS INTEGER :! |oop variable
DIMR AS | NTEGER :! radius of the circle
DIM X, Y AS INTEGER :! position of the center of the circle

CALL I NI TGRAPHI CS
FOR1 =1 TO 50

R = 10 + RANDOWALUE( 40)
X = 50 + RANDOWALUE( 220)
Y = 50 + RANDOMVALUE( 100)

SETSOLI DPENPAT ( RANDOMVALUE( 15) )
CALL DRAWCI RCLE(X, Y, R

NEXT

| NPUT ""; A$

END



DrawCircle - Draw a circle using trigononetry

Par aneters:
CX, cy - position of the center
r - radius

SUB DRAWCI RCLE(CX AS SINGLE , CY AS SINGLE , R AS SINGLE )
CONST PI = 3. 1415926535

DIM A AS SINGLE :! for |oop angle
DIM X AS SINGLE , Y AS SINGLE :! position on the edge of the
circle

MOVETO (CX + R CY)

FORA=0.0 TO2 * Pl STEP Pl / 50.0
X = CX + R* COS (A
Y=C +R* SIN (A
LINETO (X, V)

NEXT

LINETO (CX + R CY)

END SUB

SUB | NI TGRAPHI CS
HGR

SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)
END SUB



Learn to Program in GSoft BASIC

RandonVal ue - Return a random nunber in the range 1 to nax

Par anmet ers:
max - maxi mum al |l owed val ue for the random nunber

Ret urns: Random nunber in the range 1..nax

FUNCTI ON RANDOWALUE( MAX AS | NTEGER ) AS | NTEGER
DI M VALUE AS | NTEGER :! Random value to return

VALUE = 1 + R\D (1) * MAX

| F VALUE = MAX + 1 THEN
VALUE = MAX

END | F

RANDOWVALUE = VALUE

END FUNCTI ON

There is one other feature of the FOR loop that you won't see in this course, but you
might run across in books that show BASIC programs. Y ou can list the loop variable on
the NEXT statement, like this:

FOR1 =1 TO 10
PRI NT |
NEXT |

There are two reasons you might want to do this. Thefirst is to give yourself both a
comment about which FOR loop the NEXT statement belongs to, and to ask BASIC to
check up on you. If you give the wrong FOR loop variable the program will stop with an
error.

The other reason to give the name of the FOR loop variableisto tell BASIC to finish
two loops with asingle NEXT statement. Here's an example that initializes a 10 by 10
matrix with zeros.

FOR| = 1 TO 10

FORJ = 1 TO 10

A(l, J) =0.0
NEXT J, |



While this does save one line, | personally think it makes the program harder to read,
S0 | use two separate NEXT statements in situations like this one. It's really a matter of
taste, though.

Problem 10.2. One way to reverse a sequence of charactersisto loop backwards,
starting at the last character in the string, and looping towards the first. Write a program
that uses this ideato reverse the charactersin a string.

Y our program should prompt for a string. Next, print the string in reverse order, using
STEP -1 and looping from the length of the string down to 1.

Continue processing strings until the user enters a null string (one with alength of 0).

The GOTO Statement

BASIC became popular on microcomputers before structured programming took
hold. Most of the early versions of BASIC did not have modern loop and logic statements
like the DO loop, REPEAT loop, or the IF-THEN EL SE statement. Before these
statements were available, programmers relied on GOTO statements almost exclusively
to control how their programs executed.

The GOTO statement is ajump. The program moves to the destination of the GOTO
and starts executing with that statement. The following program gives avery smple
example of thisidea

GOTO 3
PRI NT "This gets skipped."
3 PRINT "This gets printed."

Asyou can see, there isn’t much to a GOTO statement. In fact, it’sjust the reserved
word GOTO followed by anumber called alabel. The number tells the compiler where to
go to; a corresponding number must appear somewhere in the program at the beginning
of aline.

Modern implementations of BASIC like GSoft BASIC also let you use a name for the
label. To use anamed label, follow the label name with a colon, like this:

GOTO THERE
PRI NT "This gets skipped."
THERE: PRINT "This gets printed."”

The GOTO statement has an interesting history. In asense, it is a good example of
how an idea can be misapplied, abused, and eventually twisted into something the person



Learn to Program in GSoft BASIC

who came up with the idea did not intend. What | am referring to, of course, istheidea
that GOTO statements are bad. In fact, many people group structured programming and
so-called "GOTO-less programming” together, treating them as synonymous. In many
computer classes students are still taught that the GOTO statement is always bad.
Nothing could be farther from the truth.

In asense, ignoring the GOTO statement while you learn BASIC isagood idea, up to
apoint. Thisis especially trueif you learned to program in BASIC or FORTRAN using
an older implementation that did not have structured statements like WHILE loops, DO
loops and IF-THEN-EL SE statements. Before these statements were available, BASIC
programmers had to use IF statements and GOTO statements to do the same thing. That’'s
not altogether a bad thing, but the programs that were written this way tended to jJump
around seemingly at random, leading to a coding style derisively referred to as spaghetti
code. Experience has shown that most programs written using modern statements instead
of GOTO statements are easier to read, more efficient, and have fewer bugs than
programs written with GOTO statements. So, while you learn the structured statements,
and how to use them to organize programs logically, it isagood ideato forget that the
GOTO statement exists.

The reason we haven't used the GOTO statement isn’t because it is bad, or has no
use. The reason we haven't used the GOTO statement is because it isn’'t needed as much
in GSoft BASIC asitisin older versions of BASIC. There are two places, though, where
the GOTO statement is very useful, easy to understand, and will make your program
much more efficient. These two places are an error exit and an early exit from aloop.

A good example of an early exit from aloop iswhen you are searching alinked list
for aparticular item. As asimple example, let’ s assume that you want to scan alist of
namesto see if a particular name exists. This problem is avery common onein
programming: The list could be alist of namesin a customer database, alist of
commands that an adventure game recognizes, adictionary in a spelling checker, or alist
of variablesin aBASIC program. If the nameisin thelist, you want to print true. If the
name is not in the list, you want to print false.

The ONERR GOTO Statement

Even more important is ONERR GOTO, avariant of the GOTO statement that allows
you to intercept errors the BASIC language detects and deal with them on your own
terms. ONERR GOTO doesn’'t actualy do anything right away. The line number after the
statement is remembered by BASIC, though, and if any error occurs that would normally
cause BASIC to stop the program, it jJumps to the statement identified in the ONERR
GOTO statement instead. Y ou can handle the error there, cleaning up before you exit the
program or even handling the error and continuing on.



Here' s a short example that shows a complete ONERR GOTO handler. The error
itself is something that shouldn’t happen in a properly written program—there are better
ways to make sure an array subscript isn't out of range than using an ONERR GOTO
statement—Dbut this example has the merit of being short.

ONERR GOTO 99
DIM A(5) AS | NTEGER

FOR1 =0 TO5

A(5) =5

NEXT

| =7

B = Al)

PRINT "A(";1;") = ";B
END

99 IF ERR <> 11 THEN
ONERR GOTO 0
ERROR ERR

END | F

IF 1 >5 THEN
I =5

ELSE IF 1 < 0 THEN
I =0

END | F

RESUVE

Following along as the program executes shows how ONERR GOTO doesit’s job,
and also introduces a few commands that you will often use with ONERR GOTO to
create an effective error handler.

The ONERR GOTO statement itself doesn’'t do anything except tell BASIC where to
go if an error occurs. If no error is found the program will work exactly the same way
with or without the ONERR GOTO statement.

A few lines later the program tries to extract a value from the array A using an index
of 7, but the maximum index that isvalid for the array is 5. This causes arun-time error,
which triggers the error handler. Control jumps immediately to line 99.

The error handler itself shows the three components of a properly written error
handler. First the error handler checks to seeif the error is something it can handle by
checking the value returned by the ERR function. This error handler will only handle
error number 11. You can find alist of the errors and error numbersin the GSoft BASIC



Learn to Program in GSoft BASIC

reference manual. If the error is not something the error handler can deal with, it usesthe
statement

ONERR GOTO 0

to turn off ONERR GOTO handling. Next the error handler causes an error using the
ERROR statement, which tells BASIC to behave asif areal error was detected. In effect,
the error handler has refused to handle any error but error 11, telling BASIC to handle it
the way it normally would. Of course, if the program had not turned ONERR GOTO
error handling off before doing this, the program would have jumped right back to line 99
to start handling the error again!

The error occurred because the index | was out of range, so the next thing the error
handler doesisfix the index. Finaly, it uses the RESUME statement. This causes the
program to go back to the statement that caused the error in the first place and try
executing the statement again. If the error occurred inside of a subroutine or function the
RESUME statement jumps back to the line in the main program that made the subroutine
or function call, not to the line in the subroutine or function that actually generated the
error.

Y ou don’'t have to use the RESUME statement at the end of the error handler. You
can use END instead, just like you do at the end of aBASIC program. This|lets you stop
the program after doing whatever you need to do to handle the error gracefully.

This exampleis short, but it isn’t something that would happen in area program—or
at least not in awell written program. A much better example of areal error you might
want to trap is error number 56, afile I/O error. If your program has just modified a
critical database or spent hours calculating values for afile, you don’t want to loose the
information because adisk was full or has abad block! A properly written error handler
can detect this sort of error, giving you a chance to put in a new disk.

Variant Records

We have aready seen how records can be used to organize information in our
program, grouping any type of variable together into a record about a particular thing. For
example, we could use arecord to record a person’s name, address, and state (all strings),
zip code and phone number (possibly integers), and sex. All of these facts about a person
can be collected into asingle variable, so they can be kept together.

What if we need to keep different information about different groups of people,
though? For example, a pet store might want to list whether afish is a salt-water fish or
fresh-water fish, but they certainly wouldn’'t need to waste space on the same information
about a dog. For the dog, they might want to list if it has been spayed or neutered, but the



same information hardly applies to the fish. Rather than waste space by including all of
thisinformation when it isn’'t needed, a variant record can be used.

In avariant record you use atag variable to keep track of what the record isfor. For
the pet store, for example, the variant record might look like this:

0
1

CONST BI RD
CONST FI SH
CONST DOG = 2

TYPE ANl MALRECCRD
NEXTP AS PO NTER TO ANl MALRECORD
I NSTOCK AS | NTEGER
KIND AS | NTEGER
CASE BI RD
CASE FI SH
FSEX AS | NTEGER
FRESHWATER AS | NTEGER
CASE DOG
DSEX AS | NTEGER
SPAYED AS | NTEGER
END TYPE

Thereisawealth of information in this record, so we will take afew moments to
study it in detail. Thefirst three variablesin the record are NEXTP, INSTOCK and
KIND. Up to this point the record looks exactly like any other record, and it is. These
three variables are needed no matter what kind of animal we are dealing with, and they
will appear in every record of type ANIMALRECORD.

The CASE statement is what makes this record a variant record. The CASE statement
looks vaguely like a CASE label in a program, but there are differences. In the variant
record, the CASE condition isreally just a placeholder. In GSoft BASIC the variableisn’t
used for anything, although this may change in future versions. It's a good ideato create
some constants to record the kind of the record, though, and use the same constants as
CASE labels. That'swhat KIND isfor; it will befilled in with BIRD, FISH or DOG to
indicate what kind of animal the record refers to.

In this record we decided to record the sex of aFISH or aDOG. Fieldsin the record
must have unigue names, even if they appear in different parts of a variant record, so we
can’'t use SEX asthe name of both variables. To avoid a conflict, we append a unique
letter to the start of the variable names, creating FSEX for the sex of afish, and DSEX for
the sex of adog. There are other ways to handle the problem of duplicate names, but
appending a unique prefix to the field name is a common solution.



Learn to Program in GSoft BASIC

Let’stake alook at how the same information would be stored in a standard record,
and compare the standard record to the variant record. The standard record would look
likethis:

TYPE ANl MALRECCRD
NEXTP AS PO NTER TO ANl MALRECORD
| NSTOCK AS | NTEGER
KIND AS | NTEGER
SEX AS | NTEGER
FRESHWATER AS | NTEGER
SPAYED AS | NTEGER
END TYPE

This record requires 14 bytes of memory: 4 bytes for the pointer (NEXTP), and two
bytes for each of the other fields. It also has a FRESHWATER field for birds and dogs,
which is not the sort of thing that promotes clarity. The variant record, on the other hand,
has a variable size, depending on what kind of animal we are dealing with. In all cases,
the sizeisless than 14 bytes. In the case of a bird, the record has three variables, NEXTP,
INSTOCK and KIND. These variables use 8 bytes of memory.

The following example shows one use of variant records. In this example, we create
and then animate 10 shapes. The shapes can be squares, triangles, or stars. Each of the
shapes does arandom walk across the screen, moving one pixel in arandom direction on
each cycle through the program.

To animate the shapes, we need to keep track of what kind of ashapeit isand the
coordinates for the shape. Since each shape has a different number of points, we use a
variant record. All of the shapes have a color, so that is stored in a non-variant part of the
record.

REM Do a randomwal k with 10 random shapes

CONST NUMSHAPES = 10:! # of shapes to animate
CONST WALKLENGTH = 100:! # of "steps" in the walk

CONST TRI ANGLE = 0:! shapes
CONST SQUARE = 1
CONST STAR = 2



I information about one shape

TYPE SHAPERECORD
COLOR AS | NTEGER
KIND AS | NTEGER
CASE TRI ANGLE

X1
TX2
TX3
TY1l
TY2
TY3

AS
AS
AS
AS
AS
AS

I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER

CASE SQUARE

SX1
SX2
SX3
SX4
Syl
SY2
SY3
Sy4

AS
AS
AS
AS
AS
AS
AS
AS

I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER

CASE STAR

PX1
PX2
PX3
PX4
PX5
PY1
PY2
PY3
PY4
PY5

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

END TYPE

I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER
I NTEGER

DM I AS | NTECGER ,

DI M SHAPES( NUMSHAPES) AS SHAPERECORD: !

J AS INTECER :! | oop variabl es

DI M OLDSHAPES( NUMSHAPES) AS SHAPERECORD:

posi tion

I set up the graphics w ndow
CALL | NI TGRAPHI CS
SETPENMODE ( 2)

shapes

in

current array of shapes

| ast



Learn to Program in GSoft BASIC

I set up and draw the initial shapes
FOR | = 1 TO NUMSHAPES

CALL CREATESHAPE( SHAPES(1))

CALL DRAWSHAPE( SHAPES(|))
NEXT

I do the random wal k
FOR I =1 TO WALKLENGTH

I nmove the shapes

FOR J = 1 TO NUVSHAPES
OLDSHAPES(J) = SHAPES(J)
CALL UPDATESHAPE( SHAPES(J))

NEXT

I redraw the shapes
FOR J = 1 TO NUVSHAPES
CALL DRAWSHAPE( SHAPES(J))
CALL DRAWSHAPE( OLDSHAPES(J))
NEXT
NEXT
END

Creat eShape - creates a shape

The type, color and initial position are chosen randomy.
The size of the shape is based on preconputed val ues.

Shared Vari abl es:
triangle, square, star - possible shapes

Par anmet er s:
s - shape to create

SUB CREATESHAPE(S AS SHAPERECCRD)

SHARED TRI ANGLE, SQUARE, STAR



DIM CX AS

shape

I NTEGER , CY AS INTEGER :! center point for

I get a color
S. COLOR = RANDOWALUE( 15)

I get the center position
I on the graphics screen

CX = RANDOWALUE(300) + 10
CY = RANDOWALUE(184) + 8

| set the initial

position

SELECT CASE RANDOWALUE( 3)
CASE 1

nounnononon

X1
TY1
TX2

TY2 =

TX3
TY3

CASE 2
KI ND

2

noOonnnnonon

SX1
Syl
SX2
SY2
SX3
SY3
SX4
Sy4

. KIND = TRI ANGLE

CX - 9
CY + 4
cX

cY - 8
CX + 9
CY + 4
= SQUARE
cX - 7
CY - 6
CX + 7
CY - 6
cX - 7
CY + 6
CX + 7
CY + 6

pi cking the point so the shape is

t he



Learn to Program in GSoft BASIC

CASE 3

S.KIND = STAR
S.PX1 =CX- 6
S PYL =Cy +7
S.PX2 = CX
S.PY2 = CY - 8
S.PX3 =CX+ 6
SSPY3 =Cy +7
S.PX4 = CX - 10
S.PY4 =CY - 3
S.PX5 = CX + 10
S.PYs = CY - 3

END SELECT

END SUB

Dr awshape - draw a shape

Shared Vari abl es:
square, star

Par anmet er s:
s - shape to draw

|
|
|
|
! triangle,
|
|
|
|

possi bl e shapes

SUB DRAWSHAPE(S AS SHAPERECORD)

SHARED TRI ANGLE, SQUARE, STAR

I set the pen color for the shape
SETSCOLI DPENPAT ( S. COLOR)

I draw t he shape
SELECT CASE S. KI ND

CASE TRI ANGLE
MOVETO (S. TX1,
LI NETO (S. TX2,
LI NETO (S. TX3,
LI NETO (S. TX1,

S. TY1)
S. TY2)
S. TY3)
S. TY1)



CASE SQUARE

MOVETO (S. SX1, S.SY1)
LI NETO (S. SX2, S.SY2)
LI NETO (S. SX4, S. SY4)
LI NETO (S. SX3, S. SY3)
LI NETO (S. SX1, S.SY1)
CASE STAR

MOVETO (S. PX1, S.PY1)
LI NETO (S. PX2, S.PY2)
LI NETO (S. PX3, S.PY3)
LI NETO (S. PX4, S.PY4)
LI NETO (S. PX5, S. PY5)
LI NETO (S. PX1, S.PY1)

END SELECT

END SUB

SUB | NI TGRAPHI CS
HGR

SETPENMODE ( 0)
SETSOLI DPENPAT ( 15)
END SUB

RandonVal ue - Return a random nunber in the range 1 to max

Par anmet er s:
max - maxi mum al |l owed val ue for the random nunber

Ret urns: Random nunber in the range 1..nax

FUNCTI ON RANDOWALUE( MAX AS | NTEGER ) AS | NTEGER
DI M VALUE AS I NTEGER :! Random value to return



Learn to Program in GSoft BASIC

VALUE = 1 + R\D (1) * MAX

| F VALUE = MAX + 1 THEN
VALUE = MAX

END | F

RANDOWALUE = VALUE

END FUNCTI ON

Updat eShape - nove the shape across the screen randonmy

Shared Vari abl es:
triangle, square, star - possible shapes

Par anmet er s:
s - shape to update

SUB UPDATESHAPE(S AS SHAPERECORD)

SHARED TRI ANGLE, SQUARE, STAR

DIM DX AS I NTEGER , DY AS I NTEGER :! novenent direction
I get the wal k direction

DX = RANDOWALUE(3) - 2
DY = RANDOWALUE(3) - 2



I make sure we don't wal k off of the screen

I the position
SELECT CASE S. KI ND
CASE TRI ANGLE

IF DX = - 1 THEN
IF S.TX1 < 1 THEN
DX = 0
END | F
END | F

IF DX = 1 THEN
IF S. TX3 >= 319 THEN

DX =0
END | F
END | F
IF DY = - 1 THEN
IF S.TY2 < 1 THEN
Dy = 0
END | F
END | F

IF DY = 1 THEN
IF S. TY3 >= 199 THEN

DY = 0
END | F
END | F
S.TX1 = S. TX1 + DX
S.TYl = S.TYl + DY
S.TX2 = S. TX2 + DX
S.TY2 = S.TY2 + DY
S.TX3 = S. TX3 + DX
S.TY3 = S.TY3 + DY
CASE SQUARE
IF DX = - 1 THEN
IF S.SX1 < 1 THEN
DX = 0
END | F
END | F

IF DX = 1 THEN
IF S.SX2 >= 319 THEN
DX =0
END | F
END | F

t hen update



Learn to Program in GSoft BASIC

IF DY = - 1 THEN
IF S.SY1l < 1 THEN
DY = 0
END | F
END | F

IF DY = 1 THEN
IF S.SY3 >= 199 THEN

Dy = 0
END | F
END | F
S.SX1 = S.SX1 + DX
S.SY1 = S.SY1 + DY
S.SX2 = S.SX2 + DX
S.SY2 = S.8Y2 + DY
S.SX3 = S.SX3 + DX
S.SY3 = S.SY3 + DY
S.SX4 = S.SX4 + DX
S.SY4 = S.8Y4 + DY
CASE STAR
IF DX = - 1 THEN
IF S.PX4 < 1 THEN
DX =0
END | F
END | F

IF DX = 1 THEN
IF S.PX5 >= 319 THEN

DX =0
END | F
END | F
IF DY = - 1 THEN
IF S.PY2 < 1 THEN
Dy = 0
END | F
END | F

IF DY = 1 THEN
IF S.PY1l >= 199 THEN
Dy = 0
END | F
END | F



S.PX1 = S.PX1 + DX
S.PY1 = S PY1 + DY
S.PX2 = S.PX2 + DX
S.PY2 = S.PY2 + DY
S.PX3 = S.PX3 + DX
S.PY3 = S. PY3 + DY
S.PX4 = S.PX4 + DX
S.PY4 = S.PY4 + DY
S.PX5 = S.PX5 + DX
S.PY5 = S.PY5 + DY

END SELECT

END SUB

Problem 10.3. One common use of variant records takes advantage of the fact that the
variablesin the variant part overlap. This fact can be used to examine the values of a
complicated variable type.

One thing that happens over and over in toolbox programming isto extract the |least
significant 16 bits from along, or the most significant 16 bits. Y ou can do this with math
operations if you are very careful, but it ismuch easier and faster to do it with a variant
record.

Define avariant record with two variant parts. In one part, define along integer. In
the other part, define two integers, LSW and MSW, in that order. This record puts the
two integers in the same memory as the long integer, so that you can save along value
and then extract the integer parts.

Write a program that reads long integers from the keyboard, looping until a0 is
entered. Save this value in the record, then write the two integers.

Experiment with this program a bit. What you should find is that for values up to
32767 the program prints the same value you entered for the least significant integer (the
first one), then a zero for the most significant integer (the second one). As the numbers
get larger, you start to fill in the sign bit, so the first integer is written as a negative
number. Finally, when the numbers exceed 65535, values start to show up in the second
integer.

A Quick Tour of Some Advanced GSoft BASIC
Features

The next three topics cover some features in GSoft BASIC that are either missing in
other implementations of BASIC or are not always implemented the same way. The also
are not needed in this course. Asyou start to write your own programs outside of this



Learn to Program in GSoft BASIC

course, though, they are all features you may want to use. The purpose of this sectionis
to make you aware the features exist and show you basically what they are capable of.

Changing the Size of Memory

GSoft BASIC, The FREE Version islimited to 16K of program space and 16K or
variable space. The commercial version defaults to 64K for each area. That’s more than
enough for the programs in this course, and for most other programs, too, but you may
eventually write a program that runs out of memory. The SETMEM statement lets you
change the amount of memory available in either of these two buffers. See the
GSoft BASIC reference manual for details.

Of course, GSoft BASIC, The FREE Version doesn’t support these commands.

Libraries

There are timesin any high-level language where you need to drop into assembly
language, either because of speed, space, or very peculiar location requirements for a
particular subroutine. GSoft BASIC handles this using libraries, which are also the same
asApplellGs User Tools.

The commercia version of GSoft BASIC comes with two libraries. We'll use one of
those to see how you can use one from your programs. GSoft BAS C, The FREE Version
doesn’t come with any libraries, but it does support them.

Thefirst stepin using alibrary isto make sureit isinstalled in GSoft BASIC. The
two that come with GSoft BASIC are installed when you install GSoft BASIC itsdlf. If
you'reinstalling alibrary yourself, there are two files you need to copy.

First, there will be afile named UserToolxxx, where xxx is a three-digit number from
001 to 255. Thisfile must be copied to the Tools folder in your System folder. The
System folder is on the disk you boot from. This disk must also be in the computer when
your program runs.

The other file generally has a name like Userxxx.gst, but it can actually have any
name at all. Theimportant point is that thisfile must have afile type of DVU ($5E) and
an auxiliary file type of $8007. Y ou can put this file severa places, including the folder
where GSoftBASIC.Sysl16 is located or the folder where your program is located.

With the filesin place, there are three steps to using alibrary. First you must load the
library with the LOADLIBRARY statement. This actually reads the library from disk and
placesitin RAM. Thisisthe step where the system folder must be online so the
UserToolxxx file can be read from disk. The LOADLIBRARY statement is followed by
the number of the library to load; this number is the same as the number that makes up
the name of the UserToolxxx file.

The second step isto make callsto the library.



Finally, just before your program exits, it should use the UNLOADLIBRARY
statement to remove the library from memory. Like the LOADLIBRARY statement,
UNLOADLIBRARY isfollowed by the number of thelibrary.

Here' s a short program that uses the GSoft BASIC time library to read the current
date and time.

LOADLI BRARY 2
PRI NT DATESTRING ;" "; TI MESTRI NG
UNLOADLI BRARY 2

The MakeRuntime Utility

All of the programs you’ ve written so far run from GSoft BASIC itself. That's fine
for aprogram only you use, or while you' re developing the program, but once your
creation is complete you may want to share it with others that don’t have GSoft BASIC.
That’ s where the MakeRuntime utility comes in.

This utility reads the program you create from within GSoft BASIC and creates a
program that can run directly from the Finder, even if GSoft BASIC is not installed on
the computer. It includes all tool interfaces, your program, the interfaces for any libraries,
and enough of GSoft BASIC itself to run your program, cramming all of thisinto asingle
file the Finder can execute. The only thing you have to pass on to the person using the
program is any libraries you have used. For example, if you wanted to give someone the
program from the previous section that prints the date and time, you would also have to
give them the file UserTool002 and tell them to copy it to their tools folder.

| won'’t duplicate the documentation in the reference manual that tells you how to use
this utility. The important point is that you know it exists so you can find it when you
write a program you want to share.



L esson Eleven — Scanning Text

The Course of the Course

This lesson, and the three that follow, mark a changing point in the Learn to Program
course. Instead of springing it on you with no warning, | thought it would be best to stop
and look at what we have done so far and what is |eft.

Thefirst ten lessons were concerned primarily with teaching you the mechanics of
programming. In those lessons you learned most of the features of GSoft BASIC. While
we used a number of real programs to illustrate the features of the BASIC language, and
frequently discussed principals of good programming practice, programming techniques
were not the primary topic.

It turns out that a few tasks turn up repeatedly in many different kinds of programs.
The next four lessons deal with some of these basic techniques. In the process, you will
get a chance to hone your programming skills.

Because the nature of the material is changing, we will also change our approach a
bit. In the first part of the course the text was laced with complete programsto illustrate
the basic ideas. As the topics have changed, we have gradually moved away from that
technique. Starting with this lesson, we will abandon it almost completely. Instead, we
will talk about the concepts behind a particular agorithm. Complete subroutines will be
shown in many cases. The problems, for the most part, will involve using these ideas to
create complete programs. As always, the solutions are on the disk that comes with the
course, so if you get stuck you can aways refer to the complete solution.

There are anumber of reasons for changing to this approach. One is that you know
how to create a program, now, but you still need lots of practice to get really good at it.
Another isthat we will be able to cover alot more material thisway. Finally, when the
courseisover, | want you to know how to read intermediate computer science
books—the kind of books that teach you about data structures, compiler theory,
animation, and so on. Most of these books also give algorithms. If you are used to
learning about programming methods by studying algorithms when you see these books
for the first time, you will get alot more out of them. | think it is better to learn to read an
algorithm in a setting like this course, when complete programs are at least provided as
part of the solution to a problem. In the algorithm books, you won't generally find any
complete programs at all.



Manipulating Text

In today’ s world of graphically based computers, it might seem that manipulating text
just isn’'t important anymore. Asit turns out, though, that simply isn’t true. Stop and think
about it for amoment. The editor you use to type in programs manipul ates text. The
dialogs you use to enter search strings handle text. The BASIC interpreter that creates
programs starts with a text file. From word processors to spread sheets to adventure
games, text is still acommon way to store information in a computer, so programs still
have to manipulate text. That means that, as a programmer, you should know some of the
basic techniques used to deal with text.

Programs that deal with text generally divide the task up into well-defined subtasks.
These are called scanning, parsing, and semantics. An interpreter is aclassic example of a
program that manipulates text, so we will start by looking at each of these tasks from the
standpoint of aBASIC interpreter. Later, we will see how many other programs use these
same ideas.

Scanning, also called lexical analysis, is the process of collecting characters from the
text and forming the characters into words. It s not that hard to do, but the ideais avery
powerful one. Asaquick example, let'slook at asimple BASIC program and see how a
scanner would break it up into words.

PRINT "Hello, world."

It istempting to look at this program as a collection of characters, but if you stop and
think about it for a minute, that isn't the way you read it. Instead of individual letters, you
group the program into words. BASIC does the same thing. The scanner is responsible
for reading the characters and forming words from the characters. These words are called
tokens. The main driver for the interpreter never even looks at the characters. Instead, it
calls a subroutine, which we will call NextToken, that reads characters until a complete
word is formed, then returns a single value that indicates what the word is. The scanner
would break our short sample program down into reserved words and reserved symbols,
like PRINT; constants, like the string written by PRINT; and identifiers, like the names of
any variables. In the case of the identifiers, the scanner also returns a string variable with
the name of the identifier. For constants, it returns the value of the constant.

Scanner’saren't limited to interpreters. Virtually any program that deals with words
uses a scanner of some sort. Spelling checkers, text adventure games, and even some
advanced database programs that accept English-like questions are just afew of the
programs that use a scanner.

The next step in the processis called parsing. The parser looks at a sequence of
tokens to see if they fit certain preconceived patters. For example, the BASIC interpreter



Learn to Program in GSoft BASIC

knows that every line must start with aline number or acommand, and if it startswith a
line number, the line number must be followed by a command. It has alist of all of the
possible commands, and checks thislist asit starts to execute a line from the program.
Compilers, interpreters, grammar checkers and adventure games are all examples of
programs that use parsers.

Thelast step is called semantic analysis. That's afancy way of saying that the
program figures out what the words mean. In the case of an interpreter, semantic analysis
iswhen the program decides what to do and carries out the task. In an adventure game,
semantic analysis is when the game decides that "1 want to go north” means that the
character should be moved from his current location to another location.

Building a Simple Scanner

Thefirst step in writing a scanner isto decide, in very precise terms, what we mean
by atoken. In the case of a spelling checker we could define a token as any stream of
characters that starts with a letter and contains only letters. Any other characters, such as
punctuation marks or numbers, can be ignored, since you can’t misspell a number or a
comma. Y ou can misuse them, of course, but not misspell them. A BASIC interpreter
can't afford to skip commas or numbers, but it can skip comments, spaces, and end of
line marks. In other words, one of the jobs of the scanner is to skip characters that are not
relevant to the main program.

Let’s start with a scanner for a spelling checker. We will skip characters until we get
to an alphabetic character, then collect the charactersinto a string until we get to a non-
alphabetic character. We'll break this task down into two parts, reading characters from
the file and forming tokens from the characters.

There’' s more to reading characters from afile than you might think! There are three
significant issues to deal with.

First you have to decide how to report the fact that there are no more charactersin the
file. We'll use asimple but effective way. If there are no more charactersin the file, we'll
report an empty string for the next character.

The second issue is reporting the end of aline. In programs like a spelling checker we
really don’t care about the end of the line per se. We do have to do something, though, to
handle the situation when one word appears right at the end of aline, and the first
character of the following line starts anew word. For our scanner, we'll report the end of
the line with a space character.

Finally, we need to read the file efficiently. It may surprise you, but one of the most
serious time bottlenecks in every compiler | have ever written is the routine that gets the
next character from afile. It'simportant to make this subroutine work quickly. One of the
easiest things we can do in aBASIC program to speed up this processisto read thefilein



chunks rather than one character at atime. A convenient chunk in BASIC isaline, so
we'll read the file oneline at atime. That increases the bookkeeping a bit, but it makes
the program alot faster.

Here' s one way to implement the NextCh subroutine, aswe'll call it. We'll pick it
apart below.

Next Ch - get the next character fromthe file

Shar ed Vari abl es:
ch - next character fromthe file
f - file nunber
line$ - current line fromthe file
lineindex - index of the character ch in |line$

Notes: The end of a line is reported as a space
character.

SUB NEXTCH
SHARED CH, F, LINE$, LI NEI NDEX

I if we need one, get a new line
| F LI NEI NDEX > LEN (LI NE$) THEN
| F EOF (F) THEN
CH=""
ELSE
LI NE | NPUT #F, LINE$
LI NEI NDEX = O
END | F
END I F



Learn to Program in GSoft BASIC

I check for an end of file
IF LEN (CH) <> 0 THEN
LI NEI NDEX = LI NEI NDEX + 1
| F LI NEI NDEX > LEN (LI NE$) THEN
! handl e an end of line
CH=" "
ELSE
I report the next character
CH = MD$ (LINES$, LINEI NDEX, 1)
END | F
END | F
END SUB

The key to understanding how this subroutine works is understanding the variables.
As the subroutine runs, it picks characters out of aline read from the input file. Theline
that we're currently processing is LINES$. LINEINDEX isthe index of the last character
we plucked from the line; it will be O if we just read a new line. In the normal course of
events, the subroutine increments LINEINDEX and returns the character at that location
intheline.

The first situation that comes up is reaching the end of aline. That’s detected right at
the start of the subroutine. This section of code also has to handle another exception to
the normal flow of events, though, which is reaching the end of thefile. If we have
reached the end of the file, we set CH to an empty string. If we're not there yet the
subroutine reads the next line and sets LINEINDEX to O.

Thelast half of the subroutine reports a character. It starts off with a check to seeif
we' ve reached the end of the file, in which case it doesn’'t need to do anything else. It also
checksto see if we've just reached the end of the current line, in which case the
subroutine sets CH to a space. If we make it past that check, we' ve handled al possible
exceptions to the normal flow of events, so we can return the next character in the current
line.

We need to initialize the variables used by NextCh before calling in the first time.
Here' s one way to set them up:

CH=" "
LINE$ = "
LI NEI NDEX = 0

What we' ve done with these linesislie to the subroutine, telling it one line has
already been read from the file. We've also set CH to a space so the end of file check in
the second half of the subroutine can’t be triggered. The first call to NextCh will report a



space as the end of thisfake line, so part of the initialization isto call NextCh onetimeto
dump that initial character.

The subroutine NextToken, shown below, breaks the file up into words. While the
compares on the IF statements are rather involved, the subroutine itself is actually quite
simple. It skips characters, calling NextCh until it finds an alphabetic character or the end
of the file. Next it reads characters, appending them to the string TOKEN until a non-
alphabetic character or the end of thefileisfound.

Next Token - read a word fromthe file

Shared Vari abl es:
ch - next character fromthe file
token - string in which to return the token

SUB NEXTTCOKEN
SHARED CH, TOKEN

I initialize the token
TOKEN = ""

I skip to the first character
WHI LE ( ASC (CH <> 0) AND (CH < "A" OR (CH > "Z" AND CH <

") ORCH > "z")

CALL NEXTCH
VEND

| read the word
WHILE ( ASC (CH) <> 0) AND ((CH >= "A" AND CH <= "Z") OR (CH
"a" AND CH <= "z"))
TOKEN = TOKEN + CH
CALL NEXTCH
VEND
END SUB

Problem 11.1. Write a program based on NextCh and NextToken that will scan atext
fileand write alist of the wordsin the file, one word per line. As atest, try the program
on the source code for the program itself. Be sure you save the program as a source or



Learn to Program in GSoft BASIC

text file, though, not atokenized file. In other words, use the SSAVE or TSAVE
command, not the SAV E command, to save thefile.

Symbol Tables

One way to write a spelling checker isto collect each word and search for itin a
dictionary. Depending on how the spelling checker works, if you find aword that is not
in the dictionary, you could print it, display it and let the user correct or accept it, or save
it and print alist of words later. This approach works pretty well for interactive spelling
checkers. Not so long ago, though, spelling checkers were generally not built right into
word processors. Instead, they were separate programs. In thiskind of spelling checker,
instead of looking up aword as soon asit is found, the words are saved in alinked list. In
this kind of spelling checker, only one copy of each word is saved. After the entire
document has been scanned, each word islooked up in the dictionary. This drastically
cuts the number of times the program needs to look up aword. As aresult, the spelling
checker isalot faster than one that looks up each word when it is read from the source
file.

Thislist of words has aname: It is called a symbol table. Finding wordsin a symbol
table is such a common task that an enormous amount of effort has gone into finding very
fast waysto look up aword. We'll look at some of these later. For now, though, we will
use asimplelinked list.

To keep things simple, we generally don’t put aword in a symbol tablein the
NextToken subroutine. Instead, the main program repeatedly calls NextToken, then
another subroutine which we will call Insert. Insert creates the symbol table.

In most real programs we put more than just the symbol itself in the symbol table. In
our program we will also keep track of how many times the word appeared in the file.
The Insert procedure shows how thisis done. It uses arecord called SYMBOLRECORD,
which defines a single entry in the symbol table. This record is defined globally so we
can also use aglobal variable to point to the first element of the linked list. The record
looks like this:

TYPE SYMBOLRECCRD
NEXTP AS PO NTER TO SYMBOLRECORD
COUNT AS | NTEGER
SYMBOL AS STRI NG
END TYPE
TYPE SYMBOLPTR AS PO NTER TO SYMBOLRECORD

Y ou know enough to write Insert on your own. It’sjob isto scan the symbols already
in the symbol table, incrementing the count on the existing symbol if anew word is



already in the table. If the word isn’t in the table, Insert should create a new entry in the
symbol table for the token and initialize the count to 1. My version is shown in the text.

Insert - insert a word in the synbol table

Shared Vari abl es:
token - synbol to insert
table - synbol table

SUB | NSERT
SHARED TOKEN, TABLE

DI M SYM AS SYMBOLPTR:! the synmbol we found
DI M SPTR AS SYMBOLPTR'! work pointer

I try to find the synbol in the current synbol table
SYM = NL
SPTR = TABLE
VWH LE SPTR <> NIL AND SYM = NI L
I F SPTR*. SYMBOL = TOKEN THEN
! yes -> mark the synbol

SYM = SPTR
END | F
SPTR = SPTR*. NEXTP
VEND

I'if we didn't find the synbol, create a new one
IF SYM = NL THEN
ALLCCATE (SYM
IF SYM <> NIL THEN
SYM'. NEXTP = TABLE

TABLE = SYM
SYM'. SYMBOL = TOKEN
END | F

END | F



Learn to Program in GSoft BASIC

I update the synbol count
IF SYM <> NIL THEN
SYM'. COUNT = SYM'. COUNT + 1
END I F
END SUB

There is one thing about this subroutine that isworth pointing out. What happens if
ALLOCATE can’'t get more memory for a new entry in the symbol table? That’s actually
very, very unlikely, but assuming “unlikely” isthe same thing as “impossible” is one of
the easiest ways to create an unreliable program. Sometimes even assuming “impossible”
isreally impossible can lead to disaster. A classic exampleisthe crash of the first French
Arian rocket. Many of the sysemsin thisrocket were from the older version .Inthat
version, a programmer used an integer value for a speed component, knowing the rocket
could not go fast enough to overflow the number. Y ou guessed it. The Arian  rocket flew
fast enough to overflow the buffer, causing it to veer off course, forcing its destruction!

Problem 13.2. Using NextCh, NextToken and Insert, create a program that will count
the number of wordsin afile, and print the number of times each word appears in the file.

Using the techniques covered so far, this program will be very, very slow. Be patient,
though. We'll deal with the speed issue later.

Parsing

At one time or another you have probably played one of the adventure games that lets
you type text commands. Did you ever wonder how they worked? Some of them can
recognize all of these sentences, and in each case they will move the character to the
north:

Go north.

Run to the north.

| want to nmove north, now.

North is the direction that | would |ike to go.

Many of these programs are pretty small, so they can’'t be doing anything particularly
difficult. How do they work?

Thereis one surprisingly ssmple way to create a program that can recognize and act
on al of these commands. It involves building a verb and subject table. Look carefully at
the sentences. In each of our examples, there is a verb that indicates you want to move,
like go or run. Thereis also adirection, north. The simple parsers used in the adventure



games scan a sentence looking for a verb and subject the program recognizes. All of the
other words are simply discarded. The parser returns the verb and subject, and the
program takes some action.

Games aren’t the only place this method is used. The same basicideaisusedin a
program called Eliza, the first computer psychologist. This simple demonstration
program is surprisingly effective at giving almost human-like responses, yet it isonly a
few dozen lineslong. An even more direct application of this technology isfound in
some database query programs written for people who don’t normally use computers. For
example, you might type

Wiere can | find information
about Kansas and wheat crops?

The database program scans the line, finding just afew relevant words. Theverbis
find. There are two subjects, Kansas and wheat, separated by a Boolean operator, and.
The database program scans its list of articles and books, looking for all of the ones that
have both Kansas and wheat in the list of key words.

Let’s put these ideas to work in a simple parser to move a spot around on the screen.
We are creating a simple robotic control language to move an object around. It would be
natural for a person to use a variety of wordsto describe a direction, and avariety of
words to describe movement. For movement, our parser will recognize go and move. For
directions, it will recognize left, right, up, down, north, south, east and west. It isthe
parser’s job to make things easy for the main program, so it will report only one value for
each direction. We also need away to quit, so we will add the verb quit to the parser.
Quit does not have a subject; it simply means that we are finished. Stop will aso be
recognized as another form of quit. Our parser assumes that the scanner is converting all
characters to uppercase, and that the scanner reads and processes one line at atime, rather
than an entire file. In the GetAction subroutine that does the parsing, pay specia attention
to how NONE is used to indicate that nothing has been found yet. This“empty” value
simplifies the program quite a bit.



Learn to Program in GSoft BASIC

Get Action - find out what the player wants to do

|
|
|
I Shared Vari abl es:

! ch - next character fromthe file

! line$ - Iline containing the characters

! l'i nei ndex - index of the character ch in line$
! verb - action to take

! subj ect - what we do the action to or with

! none, go, quit - verbs

! up, down, left, right - subjects

! token - string in which to return the token

|

SUB GETACTI ON

SHARED CH, LI NES$, LI NEINDEX, TOKEN
SHARED SUBJECT, VERB
SHARED NONE, UP, DOWN, LEFT, RIGHT, GO, QUIT

DI M PROVWPT AS STRING :! Pronpt for the line input

I start with no subject or verb
VERB = NONE
SUBJECT = NONE

I set up a default pronpt
PROWPT = "Your command, Sir: "

VWH LE VERB = NONE
I get a command |ine
LI NE$ = GETLI NE( PROVPT)

I set up the scanner
CH=""

LI NEI NDEX = 0

CALL NEXTCH

I handl e the conmand
DO
I get the next token
CALL NEXTTOKEN



SELECT CASE TOKEN

! handl e a subj ect
CASE "NORTH', "UP": SUBJECT = UP
CASE "SOUTH', "DOMN': SUBJECT = DOWN
CASE "EAST", "RI GHT": SUBJECT = RI GHT
CASE "WEST", "LEFT":SUBJECT = LEFT

I handle a verb
CASE "QUIT", "STOP":VERB = QUIT
CASE "@GO', "MOVE": VERB = GO
END SELECT
LOOP UNTIL LEN (TOKEN) = 0O

I make sure the input is conplete and consi stent
SELECT CASE VERB
CASE NONE
PROWPT = "Please tell me what to do (go or stop)."

CASE GO
I F SUBJECT = NONE THEN
PROWPT = "Please tell me which way to go."
VERB = NONE
END I F
END SELECT
VEEND
END SUB

The various values for subjects and verbs, like NONE, DOWN and GO, are declared
as constants in the main program.

Thisisasimple example of aparser. Asthe number of subjects and verbsincreases,
the number of rules that are used to combine them also goes up. Some subjects will apply
only to certain verbs. In our program, we have an example of averb, QUIT, that doesn’t
even have a subject. Some programs also allow subjects with no verb. For example, the
adventure game Zork lets you type north, with no verb, to move north. Asthe
possibilities grow, programmers start to use other techniques besides writing SELECT
CASE statements for each possibility. Arrays can be used for moderate numbers of
subjects and verbs. Y ou index into the array by the subject and verb to find out which
subroutine to call. For even more complex programs, techniques for writing rule-based
programs can be used. In short, this subroutine gives you some basic ideas you can use to
write a program that reads text. If you will be writing large programs using these ideas,



Learn to Program in GSoft BASIC

though, you should spend some time looking at the more advanced techniques before
starting your program.

There is one interesting problem you will have to deal with to build a program that
exercises this parser. It would be natural to draw the robot on the graphics screen, but that
leaves us with no way to ask for text input. Mixing text and graphicsis pretty tough to do
without using the Apple I1Gs toolbox, which is beyond the scope of this course. One way
to handle thisis to draw the robot on the text screen instead of the graphics screen.
Creating the robot is easy enough: we can print an asterisk on the screen, erasing it with a
space. The problem is positioning the robot on the screen.

There are two statements that make positioning text on the screen fairly easy. HTAB
sets the horizontal position where the next character will be printed, and VTAB setsthe
vertical position. The top left corner on the text screenis 1, 1, with the values
incrementing as you move right or down.

Another statement you might find handy in this program isHOME. HOME clears the
entire screen and sets the positionto 1, 1.

Here' s a short subroutine that shows you how you can use these statements to print a
character at a specific location on the text screen.

Dr awRobot - draw t he robot

Shar ed Vari abl es:
X,y - position of the robot
ch - character to draw

SUB DRAVWROBOT( X AS INTEGER , Y AS I NTEGER , CH AS STRI NG )

HTAB X
VTAB Y
PRI NT CH
END SUB

Problem 11.3. Write a program to move a spot in the graphics window. The program
should use a modified form of the NextToken parser that reads characters from aline
instead of afile. NextToken should return tokens with all of the characters converted to
uppercase letters.



With these changes in mind, the business end of the main program should include a
main loop that looks like this:

DO

I find out what we are supposed to do
CALL GETACTI ON

I if it is a novenent then nove
| F VERB = GO THEN

! erase the old robot

CALL DRAVWROBOT(X, Y, " ")

! nove the robot
SELECT CASE SUBJECT
CASE UP:Y =Y - 1

CASE DOWN: Y = Y + 1

CASE LEFT: X = X - 1

CASE RIGHT: X = X + 1
END SELECT

I draw the robot in the new spot
CALL DRAVWROBOT( X, Y, "*")
END | F
LOOP UNTIL VERB = QUIT

Be sure you remember to initialize X and Y, and draw the starting position of the
robot, before the program starts.

GetAction will need to read a line from the user. Read that line from the top of the
screen, erasing any old typed input first by writing enough spaces to the screen to clear
out the old line.

This problem leaves more of the design of the program to you than any previous
problem in the course. If you get stuck, keep in mind that there is a solution on the
solutions disk. There are lots of correct ways to write this program. Once you finish,
check out the solution to see another way to write the program, and to see where your
program seems better organized and what tricks you can pick up from the solution.



. esson Twelve — Recursion

A Quick Look at Recursion

By now you are well acquainted with defining and calling subroutines. An interesting
point about subroutines that we haven’t talked about, and that you may not have noticed,
isthat a subroutine can call itself. The ability of a subroutine to call itself opensup a
whole new concept in programming called recursion.

We will start our look at recursion using a simple example. The purpose of thisfirst
section isto tell you about the mechanics of recursion. With the mechanics out of the
way, we will look at recursion as a problem solving technique, solving the classic
problem of the Towers of Hanoi. We will then combine recursion with a simple scanner,
like the ones you wrote in the last lesson, to create a recursive descent expression
evaluator.

How Procedures Call Themsalves

Let’s start by looking at a short program. This program multiplies two positive
integers.

PRINT MULT(4, 5)
END

FUNCTI ON MULT(X AS INTEGER , Y AS I NTEGER ) AS | NTEGER
IF Y =0 THEN

MULT = 0
ELSE
MULT = MULT(X, Y - 1) + X

END I F
END FUNCTI ON

Let'sfaceit, that’s a pretty weird looking program. We will start by tracing through
the program to see how it works.

Stepping through the program, the first thing that happensis MULT gets called with
X =4andY =5. After testing to see if Y is zero, the subroutine executes this statement:

MILT = MULT(X, Y - 1) + X



This statement isfairly strange al by itself. Here we have afunction call, MULT(X,

Y - 1), and an assignment to the function. Y ou have seen both of these things by
themselves, but never together on the same statement. What does this mean? Well, the
statement calls MULT again, thistimewith X =4, and Y = 4. Assuming for the moment
that this subroutine really will do a multiply properly, the function must return 16. We
then add X, which is 4, getting an answer of 20. Thisvalueisassigned to MULT, soitis
the value the subroutine will return. Of course, 4*5is, in fact, 20, so if the call to MULT
with X =4 and Y =4 works, the function will actually return the correct answer.

Itisfair to ask how the BASIC knows the difference between calling a function and
assigning a value for the function to return. After all, the name of the identifier isthe
same in both cases, and as we have just seen, afunction call and an assignment to set the
value returned by the function can occur in the same function. The answer liesin which
side of the assignment operator the function nameis used. If the function name occurs on
the left side of the assignment operator, like this:

MULT = <sone expression>

BASIC evaluates the expression on the right side and assigns the value to the function.
The function then returns this value to whoever called the function. If the function name
isused as part of an expression, like this:

<sonepl ace to put the value> = MILT(X, Y - 1) + X

BASIC calls the function and uses the value it returns.

Going back to our example, we said that the function would return the correct value if
MULT (4, 4) returned 16. Convince yourself that it does by tracing thorough the program.
Asyou go through, assume that MULT will return the correct value for MULT(4, 3). You
can continue this process right down to the point where acall is madewith'Y = 0.

Problem 12.1. The example showed you how to do a multiplication using recursion.
Basically, the program made use of the fact that, when N is any number greater than 0, M
* N givesthesameresultasM * (N - 1) + M. You can find the exponent of a number the
same way. For example, 23 (2 raised to the power 3) is 8, or 2*2*2. Thisisthe same as
(272)* 2. Change the program so it calculates an exponent, given two integers as input.
Useit to verify that 54 is 625. As with the addition example, be sure and step through
the program.



Learn to Program in GSoft BASIC

Recursion isa Way of Thinking

After trying to keep track of al of the values as you traced through a simple recursive
program, | don’t think it will be hard to convince you that you can’t think about recursion
the same way you think about I F statements, WHILE loops, and so forth. You will get so
tangled up in the details of keeping track of all of the values and how many times the
function has been called that you will forget what you are trying to accomplish. Y ou may
start to think that anyone that understands recursion must have a mind that would have
made Einstein envious. I’ ve watched a number of beginning programmers who would
agree as they struggled with recursion, trying to analyze all of those values and calls. It
reminds me of the time | opened the course outline for Classical Mechanics in college
and saw, on the front page of the outline, in the middle of the page, boldfaced, the
following quote:

Any problem, no matter how difficult, can be made still mor e difficult if
looked at it in theright way.

No kidding.

Once you understand that a function can call itself, and that it can have multiple
copies of local variables and still keep track of everything, you should never trace
through a recursive subroutine, trying to follow the values, again. If you do, you are
simply thinking about the problem the wrong way.

Instead, think about a piece of the problem, not the whole thing. Instead of thinking
about the multiply as a series of function calls, look at what happens on any particular
call. For the multiply function, there are two possibilities: either Y is zero, or it isnot. As
you know, zero multiplied by any other number is still zero, so we know it is correct for
the function to return zero if Y is zero. If Y isnot zero, we apply asimplerule: X * Y is
thesameas X * (Y - 1) + X. So, what is X * (Y - 1)? We don’'t know. More important,
we don’t care. The rule works all of the time, so we truly don’t have to worry about what
X * (Y -1)is; acal to acorrect multiply routine gives us that answer. With the answer to
X * (Y - 1) in hand, we add X and return the correct answer for X * Y. The crucial point
to remember isthat we don't try to trace through the morass of function calls to see what
X * (Y - 1) will giveus: We recognizethat if the function returns the correct value for
one terminal case, in our example when'Y = 0, and that if it returns the correct answer for
X and Y, assuming that X*(Y-1) is done correctly, that it must return the correct answer
all of the time. Mathematicians call this a proof by induction.

A good way to keep thisin mind is to remember that any recursive function must
satisfy two conditions to work. First, it has to have away to stop. In the case of the
multiply subroutine, we stopped when Y reached zero. Second, each call must move you



closer to the stopping place than you were when the subroutine was called. In our
multiply subroutine, any call that was made with Y greater than O reduced Y.

Let’s put these ideas to work to solve a classic puzzle, the Towers of Hanoi. Thisisa
puzzle that quickly befuddles anyone who triesto solve it iteratively, the way you have
been writing programs up until thislesson. The puzzle starts with six disks, all of a
different size, sitting on one of three pegs, like this:

The object isto move al of the disks from the left-hand peg to the right-hand peg. On
each turn you can move only one disk. The only other restriction is that you can never
cover one disk with alarger disk. Stop and try this before going on. Y ou can cut the six
disks from pieces of paper, and stack them on your desk instead of using pegs. Y ou can
also do a short version of the puzzle with a penny, nickel, dime and quarter.

So, did you solve the puzzle iteratively? Even if you didn’t make any mistakes, it
takes 63 different moves to solve the puzzle. Can you keep that many moves straight in
your head? If so, you have a better mind than mine.

The way to solve the puzzleisto turn it around. Instead of trying to move the top
disk, you have to realize that the real problem isto move the bottom disk! The goal isto
move the top five disks from the first peg to the second, like this:

L

The next step is to move the bottom disk to the third peg.

=N



Learn to Program in GSoft BASIC

The last step isto move the pile of five disks from the second peg to the third.

Expressing this as a BASIC procedure, we get something like this:

SUB MOVEDI SKS( COUNT AS |INTEGER , SRC AS |INTEGER , DEST AS
| NTEGER , SPARE AS | NTEGER )

| F COUNT <> 0 THEN
CALL MOVEDI SKS(COUNT - 1, SRC, SPARE, DEST)
CALL MOVEONEDI SK( SRC, DEST)
CALL MOVEDI SKS(COUNT - 1, SPARE, DEST, SRO)
END | F
END SUB

MOVEONEDISK, of course, isa subroutine that takes the top disk from one peg and
places it on another. We could represent the different pegs as three arrays, one for each
peg, with six spots in each array. Each spot could be empty, or it might have one of the
disks. In practiceit’s generally easier to have one extra space on each peg that is aways
empty; thisjust ssmplifies the checks that need to be made as you look for the top disk on
apeg.

The important thing to recognize is that we haven't worried about how to move five
disks from the first peg to the second. We know that if we can move six disks by first
moving the top five, then moving the bottom disk, and finally moving the top five disks
again, that we can use exactly the same idea to move the five disks. After all, to move
five disks, we start by moving four of them to the spare peg, then we move the bottom
disk, and finally we move the four disksto the correct peg. To move four disks... well,
you get the idea. Eventually, we end up with the trivial problem of moving one disk.

Problem 12.2. Write a program that solves the Towers of Hanoi problem. Draw the
disks in the graphics window as they are moved around by the call to MOVEONEDISK.



Problem 12.3. Recursion can be used to process alinked list in reverse order. To see
thisideain action, write a program that builds a linked list, stuffing the numbers 1 to 10
in the records, like this:

FORI =1 TO 10
ALLOCATE (P)
IF P <> NIL THEN
PA. NEXTP = FI RST
P\ VALUE = |
FIRST = P
END | F
NEXT

Next, write arecursive procedure that prints the valuesin the list. On each call, the
recursive procedure should return if the pointer that is passed to it isNIL. If the pointer is
not NIL, the procedure should call itself, then print the current value, like this:

CALL PRI NTLI ST(P*. NEXTP)
PRI NT P*. VALUE

After you write the program, reverse the last two statements, and run it again. This
time, the program prints the numbersin reverse order. Make sure you understand why,
tracing afew iterations with pencil and paper if you really must.

A Practical Application of Recursion

In the last lesson we looked briefly at scanners and parsers. One of the easiest kind of
parser to implement is called arecursive descent parser. To see how recursion can be
used in a parser, we will solve a problem that had computer scientists stumped for along
time back in the early days of computing, when they were trying to write the first
compilers. The problem is to solve a mathematically expressed equation.

For example, you know that
(4 +5) * (1+2)

is evaluated by adding the termsin parenthesis first, then doing the multiply. How can we
write a program that can do this? It's not an idle problem: Over the years | have been
asked to write a number of programs that had to solve an equation like thisone. The



Learn to Program in GSoft BASIC

problem doesn’t just crop up in computer languages, either. Y ou need to solve equations
in math programs that graph functions, in spread sheets, and even in some databases.

To see how to solve this problem we will write a simple expression evaluator that can
add, subtract, multiply and divide. It will accept integer numbers and parenthesis. Just as
in algebraand BASIC, add and subtract will have the same precedence, and multiply and
divide will have the same precedence, but multiply and divide have a higher precedence
than add or subtract.

To get agrasp on how the expression evaluator will work, let’slook at this
expression:

4*5+9/ 2-6

To solve this expression by hand we would first scan through, doing al of the
multiply and divide operations, leaving only numbers and the add and subtract
operations.

20+ 4 - 6

This equation can be solved by working from left to right, adding and subtracting
each new value to the old value. Thinking recursively, we can solve this equation by
caling afunction to do all of the stuff besides addition and subtraction, then checking to
seeif thereis an add or subtract operation, and finally looping. In true recursive style, not
to mention structured programming style, we won't worry about how the subroutine that
does the multiplies and divides works. Instead, we solve the smaller problem. Hereis our
solution, afunction that calls another function, FACTOR, to read numbers, do
multiplication, and handle parenthesis, does the adds and subtracts that are |eft over, and
returns the result. Our function assumes that the main program calls NEXTTOKEN one
time to collect the first token from the input line before expression is called; thisisavery
common technique in recursive descent parsers.

Expression - eval uate an expression

Shared Vari abl es:
token - last token read
t okenVal ue - val ue of |ast integer token
t _add, t_subtract, t_integer - nanes of the tokens



FUNCTI ON EXPRESSI ON AS | NTEGER

SHARED TCKEN, TOKENVALUE
SHARED T_ADD, T_SUBTRACT, T_I NTEGER

DIM FI RSTVALUE AS | NTEGER , SECONDVALUE AS | NTEGER :! val ues
from FACTOR
DI M OPERATI ON AS | NTEGER :! type of the operation

I get the first value
FI RSTVALUE = FACTOR

I handl e any operations

VWH LE TOKEN = T_ADD OR TOKEN = T_SUBTRACT
I skip the operation
OPERATI ON = TOKEN
CALL NEXTTOKEN

I get the second val ue
SECONDVALUE = FACTOR

I do the operation
| F OPERATI ON = T_ADD THEN

FI RSTVALUE = FI RSTVALUE + SECONDVALUE
ELSE
FI RSTVALUE = FI RSTVALUE - SECONDVALUE
END | F
VEND

| return the result
EXPRESS| ON = FI RSTVALUE
END FUNCTI ON

Let’ s trace through this function with our sample expression,
20+ 4 - 6

to see how it works. When the function is called, the main program has already called
NEXTTOKEN, so the global variable TOKEN aready has avalue. It is holding an
integer whose value is 20. So far, the function FACTOR doesn’'t have to do much. It just
checks to be sure that token is an integer value, returns the value, and reads in the next



Learn to Program in GSoft BASIC

token. When we get to the start of the while loop, then, valueis 20. The + character has
been read, and TOKEN has been set to ADD.

At the start of the while loop we save the operation in a variable called, surprisingly
enough, OPERATION and read the next number. If there is an operation, there must be a
number after it. We'll trust FACTOR to flag an error if the number is missing. We then
call FACTOR to get the next number, skipping the number token in the process, and do
the operation. At the end of the while loop, value is 24, and TOKEN is SUBTRACT. One
more pass through the while loop finishes off the expression, and we return afinal value
of 30.

The next step is to handle multiplication and division. That’s no trick, really. They
work the same way addition and subtraction do! In this case, we will call afunction
called TERM to handle numbers and parenthesis. Everything else is an echo of the
function that handles addition and subtraction.

Factor - do multiplies and divides

Shared Vari abl es:
token - |ast token read
t okenVal ue - val ue of |ast integer token
t_ multiply, t _divide, t_integer - nanmes of the tokens

FUNCTI ON FACTOR AS | NTEGER

SHARED TOKEN, TOKENVALUE
SHARED T_MULTI PLY, T_DI VIDE, T_I NTEGER

DI M FI RSTVALUE AS | NTEGER , SECONDVALUE AS | NTEGER :! val ues
from TERM
DI M OPERATI ON AS | NTEGER :! type of the operation

I get the first value
FI RSTVALUE = TERM

I handl e any operations

VWH LE TOKEN = T_MJULTIPLY OR TOKEN = T_DI VI DE
I skip the operation
OPERATI ON = TOKEN
CALL NEXTTOKEN



I get the second val ue
SECONDVALUE = TERM

I do the operation

| F OPERATI ON = T_MJLTI PLY THEN
FI RSTVALUE = FI RSTVALUE * SECONDVALUE
ELSE
FI RSTVALUE = FI RSTVALUE / SECONDVALUE
END | F
VEND

| return the result
FACTOR = FI RSTVALUE
END FUNCTI ON

Trace through our sample equation
4*5+9/ 2-6

to see how FACTOR works, and how FACTOR and EXPRESSION work together to
make sure the operations are done in the correct order. For this short example keeping
track of the global variables TERM and TOKEN on a piece of paper should work out
well.

The last step isto write the subroutine that handles numbers. There is one other thing
that can appear at this point, though, and that is a parenthesis. TERM handles that
particular problem by calling EXPRESSION to evaluate whatever appears between the
parenthesis! EXPRESSION can then call FACTOR, which will call TERM, and so forth.
Thisrecursive call iswhat allows our expression handler to handle very complex
equations.

Term - Handl e a nunber or parenthesis

Shared Vari abl es:
token - last token read
t okenVal ue - val ue of |ast integer token
t integer, t_Iparen, t_rparen - names of the tokens



Learn to Program in GSoft BASIC

FUNCTI ON TERM AS | NTEGER

SHARED TCOKEN, TOKENVALUE
SHARED T_I NTEGER, T_LPAREN, T_RPAREN

IF TOKEN = T_I NTEGER THEN

I handl e an i nteger
TERM = TOKENVALUE
CALL NEXTTOKEN
ELSE | F TOKEN = T_LPAREN THEN

I skip the (
CALL NEXTTOKEN

I eval uate the expression
TERM = EXPRESSI ON

I skip the )
| F TOKEN = T_RPAREN THEN
CALL NEXTTOKEN
ELSE
PRI NT "Syntax Error"
END I F
END | F
END FUNCTI ON

Take acloselook at the error message that is printed if TERM finds an opening
parenthesis but no closing parenthesis. Does it look familiar? If not, you might glance
through the list of error messages at the end of the GSoft BASIC manual. Now you know
where those error messages come from!

Problem 12.4. Write a program to evaluate an expression and write the value. Y our
program should handle addition, subtraction, multiplication, division, and parenthesis. All
operations should be on integers.

Y our program should start by prompting the user for an expression. It should then call
NEXTTOKEN to fetch the first token from the line, followed by acall to EXPRESSION
to evaluate the expression. The program should loop repeatedly, reading new expressions,
until the line typed by the user isanull string.

While the text did not cover writing the NEXTTOKEN subroutine, al of the concepts
were covered in the last lesson. Try to write NEXTTOKEN on your own; if you get
stuck, refer to the solution.






Lesson Thirteen — Sorts

Sorting

Way back in Lesson 5 you got your first ook at a sort. Sorting is a pretty common
topic in programming courses for a number of reasons. First, there are many placesin
real programs where you need to sort some information. In some cases, it is pretty
obvious that a sort is needed. For example, you may have sorted a database to put alist of
peoplein alphabetical order. Y ou may have sorted the same database to put thelist in zip
code order to get ready for amass mailing. In other cases, the fact that something is being
sorted is not so obvious, but sorts are none-the-less used. For example, a card playing
game may sort a hand of cards.

Another reason sorts are a popular topic is because sorting is a topic that people have
spent enough time on to understand fairly well. Computer scientists who deal with the
efficiency of algorithms have studied sorts for along time. In the process, they have
compiled arather impressive list of different ways to sort information.

The Shell Sort

The shell sort is one of several basic sorting methods that are easy to implement, easy
to understand, and reasonably efficient for small amounts of information. In the shell sort
you loop over the information to be sorted, swapping entriesif they are out of order. If
you make a swap, you also set aflag to remind you that you found entries that were out
of order. In that case, you will need to make another pass over the datato make sureitis
in theright order. Y ou keep doing this until you make a pass over the data without
finding anything that is out of order. If you are alittle fuzzy about the details, refer back
to Lesson 5, where this sort was first performed.

Here'sasimple version of the sort that sorts an array of SIZE numbers, where SIZE
isaconstant or variable telling how many entries are in the array.



DO
SWAP = FALSE
FOR|1 =1 TOSIZE - 1
IE NUVB[I] > NUMB[| + 1] THEN
TEMP = NUVE[ 1]
NUVB[ I] = NUMB[I + 1]
NUVS[ I + 1] = NUMS[I]
SWAP = TRUE
END | F
NEXT
LOOP WHI LE SWAP

When we start to worry about how efficient asort is, we usually ook at how many
times we have to compare the numbers, since that is the operation we do most often.
Let’ s trace through this routine for a short example and find out how efficient it is. We'll
use asize of 5, with starting numbers of 5, 4, 3, 2 and 1, in that order. Y ou should follow
along with a pencil and paper, writing down the values of variables, executing this
algorithm by hand, and counting the operations on your own.

The first time through the loop we do four compares and four swaps. The numbersin
the array are ordered like this after the first time through the loop:

4 3 2 1 5

We till have to do four compares each time through the loop. After the next loop,
and four more compares, the array looks like this:

3 2 1 4 5

This process continues until the numbers are sorted. We have to do one extra pass
after al of the numbers are sorted, since we keep going until SWAP stays FALSE. Here
are the numbersin the array, along with the total number of compares we have
performed:

2 1 3 4 5 12
1 2 3 4 5 16
1 2 3 4 5 20

While we won't go through aformal mathematical proof, by trying afew cases you
can probably convince yourself that if you are sorting N things, and the numbers start out



Learn to Program in GSoft BASIC

in reverse order, the number of compareswill be N * (N - 1). Starting with the array in
reverse order isthe worst possible situation for this sort, so we call this the worst case run
time.

Inasense, it is pretty unfair to judge anything by the worst case. Thisis especially
true in computer science, since it turns out that in many situations the typical run time for
an algorithm is very different than the worst case run time. In fact, there are many
situations where the algorithm that has the best worst case run time is not the one with the
best typical run time. On the other hand, you do need to know the worst case time, too,
since you may be planning a program that is very time critical. In other words, it paysto
know as much about algorithms and their efficiency as you can take the time to learn.

Y ou may end up picking one method of sorting in one program, and a different method in
another.

You will be able to find the worst case run time in published books for most
algorithms you are likely to need. What if you can’'t find out about the algorithm from a
book? Or, what if you find the algorithm, but they don’t tell you the typical run time, only
the worst case run time? Well, you' ve aready seen one way to find the worst case run
time, by tracing through the program by hand. Y ou could also do the same thing by
machine, of course. While this doesn’'t give you a mathematical proof, counting the
operations does give you a good handle on the run time of an algorithm. Y ou can use the
same ideato find the typical run time. These ideas are expanded on in the problems.

Problem 13.1. Write a program that creates an array of integersin reverse order, like
the array we looked at in the example in this section. Be sure and use a constant for the
size of the array. Sort the array using the algorithm shown, but add a counter than counts
the number of compares. Print this value.

Run this program with arrays that have 2, 3, 4, 5, and 10 values. Do all of the
numbers match the value N*(N + 1)?

Problem 13.2. Finding the typical run time for an algorithm isalot like finding the
worst case run time, like you did in problem 13.1. If you have some actual samples of
numbers you plan to sort, you can use the samplesto find the typical run time. Another
way isto use asimulation, filling the arrays with random values several times, then
averaging the run time for the various sorts.

Try this method to find the typical run time for the shell sort. Modify the program
from problem 13.1 so it uses arandom number generator to fill the array with values
between 1 and the size of the array. To keep things simple, alow duplicates. In other
words, you don’t have to check to be sure that the random number generator returns each
possible value once; it isfineif the array has some duplicates. Do this 100 times, and



average the number of compares. Find the values for arrays with 2, 3, 4, 5, and 10
elements.

Quick Sort

There are several ways of sorting information that are a little faster than the shell sort,
but these generally still have arun time that is proportional to N*N, or something pretty
closeto N*N, like the N* (N-1) that we found for the shell sort. There are also some sorts
that have atypical run time proportional to N*In(N)/In(2). To see what this means, let’'s
stop and think about afairly common sorting problem, sorting amailing list to zip-code
order. There are avariety of mailing lists that comein avariety of sizes, but it isn’t
uncommon to have 100,000 names in amailing list. Sorting 100,000 names using the
shell sort has aworst case run time of 100,000* (100,000-1), or 9,999,900,000 compares.
To say the least, doing nearly ten billion compares takes some serious computer time,
especialy if you are comparing floating-point numbers, or worse yet, strings. The faster
sorts that work in N*In(N)/log(2) time, though, would do the same thing using 1,660,964
compares, which is over 6,000 times faster!

The most popular of the fast sortsis arecursive sort called quick sort. Quick sort uses
adivide and conquer technique. On each step, a pivot value is picked. Picking a good
pivot value is something of afine art, and it isavery important step. In most cases, the
middle value is agood choice for the pivot value. For example, if you are sorting an array
with indices from 1 to 100, you would use the 50th element as the pivot value. The
routine then moves anything smaller than the pivot value to the left of the pivot, and
anything larger than the pivot value to the right of the pivot. The recursive step comes
next: the quick sort procedure calsitself, passing the part of the array to the left of the
pivot, then makes another recursive call to sort the right half of the array.

Understanding how this worksis pretty tricky, so let’s get used to it Slowly. Typein
the following program and make sure it works. It uses quick sort to sort asmall array
with ten values.

REM A sanpl e of quick sort.
CONST SI ZE = 10

DI M A(SI ZE) AS | NTEGER
CALL FILL

CALL SORT(1, (SIZE))

CALL PRI NTARRAY
END



Learn to Program in GSoft BASIC

Fill - fill an array

Shar ed Vari abl es
A - array to fil
size - nunber of elenents to fil

SUB FILL

SHARED A(), SIZE

DIM 1 AS INTEGER :! | oop variable
FORI =1 TO SI ZE
A(l) = SIZE + 1 - |
NEXT
END SUB

PrintArray - print the array

Shared Vari abl es
A - array to sort
size - nunber of elenents to fil

SUB PRI NTARRAY
SHARED A(), SIZE
DIM| AS INTEGER :! |oop variable
FOR| = 1 TO SI ZE

PRINT A(l)

NEXT
END SUB



Sort - sort an array

Shared Vari abl es:
A - array to sort
size - nunber of elenents to fil

Par aneters:
left, right - range of indices to sort

SUB SORT(LEFT AS INTEGER , RI GHT AS | NTEGER )
SHARED A(), SIZE

DMl AS INTEGER , J AS INTEGER :! array indices
DI M PI VOT AS I NTEGER :! pivot val ue
DIM TEMP AS | NTEGER :! used to swap val ues

I quit if there is only 1 elenent to sort
IF RIGHT > LEFT THEN

I find the pivot index
| = (LEFT - 1) + (RIGHT - LEFT + 1) / 2

I put the pivot at the end and save it for conpares
PIVOT = A(l)

A(1) = A(RI GHT)

A(RI GHT) = PIVOT

I set up the start indices
| = LEFT
J RIGHT - 1



Learn to Program in GSoft BASIC

I partition the array
VHLE | <>
VWH LE A(l) <= PIVOT AND | <> J

I =1 +1

VEEND

VWH LE A(J) >= PIVOT AND | <> ]
J=J-1

VEEND

TEMP = A(I)

A(l) = A(J)

A(J) = TEMP

VEND

I find the pivot insert point
IF A(l) < PIVOT THEN

I =1 +1

END | F

I replace the pivot
TEMP = A(I)

A(1) = A(RI GHT)
A(RI GHT) = TEMP

I sort to the left of the pivot
CALL SORT(LEFT, I - 1)

I sort to the right of the pivot
CALL SORT(I + 1, RIGHT)

END I F

END SUB

Typeit in, then run the program once to make sureit is typed in correctly.

For our first look at the SORT subroutine, we will not worry too much about how
each statement works. Instead, let’slook closely at what happens on the whole. The
SORT subroutineisreally divided into four distinct steps:

1. Find apivot value.

2. Put everything smaller than the pivot to the left of the pivot value, and everything
larger than the pivot value to the right of the pivot.

3. Sort the values to the left of the pivot.
4. Sort the valuesto the right of the pivot.



Thisisaclassic example of recursion aswe saw it in the last lesson. To understand
quick sort, it is very important to look at what happens on one step, not worrying about
how we "sort everything to the left of the pivot."

The first few lines of the procedure find the pivot value and move it to the right-hand
side of the array, whereit is out of the way:

I find the pivot index
| = (LEFT - 1) + (RIGHT - LEFT + 1) / 2

I put the pivot at the end and save it for conpares
PIVOT = A(l)

A(1) = A(RI GHT)

A(RI GHT) = PIVOT

It may seem strange to go to all of the work to pluck a pivot from the middle of the
array and move it to the right-hand side of the array, but there redlly is a good reason to
do this. The algorithm to shuffle the values smaller than the pivot to the |eft, and the
values larger than the pivot to the right, isalot simpler and faster if we move the pivot
value out of the way. It might seem like agood ideato simply use the right-hand value
for the pivot, then. It turns out that thisis arotten idea. If you pick the right-hand value
for the pivot, and start with a sorted array, quick sort gives the worst performance
possible. In practice, picking the middle element of the array for the pivot works very
well. An aternate scheme that works even better isto examine the leftmost, rightmost
and middle value and pick the middle of the three values. Other schemes for picking a
pivot are covered in books that go into more detail on sorting.

The next step is to partition the array. That’s the term used to describe the process of
shuffling all of the values less of the pivot to the left, and all of the values higher than the
pivot right.

set up the start indices
LEFT
RIGHT - 1

|
I
J
I partition the array
VHLE | <>

VWH LE A(l) <= PIVOT AND | <> J

I =1 +1
VEEND



Learn to Program in GSoft BASIC

WH LE A(J) >= PIVOT AND | <> J

J=J-1
VEND
TEMP = A(l)
A(l) = A(J)
A(J) = TEWP

VEND

This step uses two array indices, | and J. They start at opposite ends of the array,
working their way towards the middle until they meet (which means we are finished) or
they hit avalue that isin the wrong spot. If avalueisfound that is out of place, itis
swapped with another value that is out of place on the other end of the array.

Once the array is partitioned, the pivot value itself is floated to the proper spot in the
array.

I find the pivot insert point
IF A(l) < PIVOT THEN

I =1 +1
END | F

I replace the pivot
TEMP = A(I)

A(1) = A(RI GHT)
A(RI GHT) = TEMP

With these steps complete, SORT has finished the first cycle through the array and is
ready to sort the two partitions. At the point the array actually looks like this:

23451689107

The partition value of 6 has been floated to it’s proper spot. Every value smaller than 6
appearsto it’ sleft, and everything larger than 6 appearsto the right.

Thelast step isto call SORT recursively two times, once for the portion of the array
to the left of 6, and once for the portion of the array to the right of 6. Each of these calls
will perform this same process to sort the smaller piece of the array until SORT iscalled
with the indexes the same. One element can’t be out of order, so that’s when SORT
finally return without calling itself.

Let'sfaceit: Quick sort is quite a bit more complicated than the shell sort. Why isit
faster? After al, if you count the compares in the while loop that partitions the array, we
still end up with about N compares. The trick, though, is that quick sort doesn’t have to



go through its main loop as many times as the shell sort does. In this example, we've
divided the problem in half. Thinking about that in terms of the shell sort, where the
worst case sort timeis n*(n-1), you can see what an advantage thisis. If we are sorting
100 values with the shell sort, the worst case run time is 100* (100-1), or 9900. If we sort
2 arrays, each with 50 elements, though, the run timeis proportional to 2* (50* (50-1)), or
4900. Y ou can see that the savings would mount up pretty quickly, since quick sort
would divide the 50 element arraysin half, too.

Problem 13.3. How many times does the SORT subroutine get called in the example
shown in this section? (Hint: put a counter in the SORT subroutine and run the program.)

Problem 13.4. Find the typical run time for quick sort for arraysthat have 2, 3, 4, 5
and 10 elements. Use the same method that you used in problem 13.2. Count the
compares of valuesin the array, but don’t count the compares of array indices. There are
three places in the subroutine where you will need to increment the counter: inside each
of the short WHILE loops, and right after you exit the large WHILE loop.

How do these values compare to the ones you found in problem 13.2?

How Fast Are They?

All of this mathematical gobbledegook about theoretical efficiency may be making
your head spin. It can aso be taken too far. There are a surprising number of people
running around with a degree in computer science who will tell you that quick sort is
always faster than a shell sort. Even in theory, this simply isn’t true. There are some rare
cases where the shell sort will outperform the quick sort if the values in the array happen
to be placed just right.

On average, though, quick sort seems like it should work better than the shell sort. It
turns out that thisisn’'t quite true. The shell sort has one advantage over quick sort: It is
simpler. Recursive subroutine calls take some time; far more time than looping through a
WHILE loop. There are also alot of compares and testsin the quick sort subroutine that
aren’t needed in the shell sort. It turns out that the shell sort is actually faster than quick
sort for small arrays. In fact, on my machine, the solution to problem 13.2 ran faster than
the solution to problem 13.4, even though it did more compares. Some sophisticated
sorting subroutines take advantage of this fact by using quick sort to sort the array until it
isdivided into small chunks, then using the shell sort, or one of its close relatives, to sort
the small pieces.

Thisiswhere practice meets theory. A computer scientist who really understands his
topic knows all of this, of course. The theoretical run times are very important, but it is
also important to keep the overhead in mind. Unfortunately, while a computer scientist



Learn to Program in GSoft BASIC

can use mathematical proofs to find the theoretical run time for an algorithm, thereis no
easy way to predict the actual run time. That depends on alot of variables, like how
efficient subroutine calls are (they are more efficient compared to loops on an
ApplellGs, for example, than on an IBM 370 mainframe, which does not have a stack),
what kind of information you are comparing (integer compares are much faster than
string compares), and how long it takes to swap elements of the array (for arrays of
records, the swap may take longer than the compare!).

While the theoretical efficiency is agreat number to know, there’s nothing like
actually timing area program on real data to decide between two competing algorithms.

Quick Sort Can Fail!

One little point has been ignored up to now. Quick sort is very fast, especialy for
large arrays. Quick sort is alittle tougher to implement, but you can modify the SORT
subroutine from this lesson fairly easily. The big problem with quick sort is that it doesn’t
always work.

This may come as quite a shock to you. After all, you stepped through the SORT
subroutine fairly carefully. Y ou saw how it worked. How could it fail?

The answer isthat there is nothing wrong with the basic idea behind quick sort. Quick
sort will always work unlessit runs out of memory. Y ou see, every time you make a
subroutine call, your program uses a small amount of memory from the variable buffer.
The variable buffer islimited in size. By default, programs written in GSoft BASIC have
an 64K variable buffer. Y ou can increase this size, but there is always alimit—and the
larger the data you' re sorting, the less space is left over for subroutine calls.

Inversion 1.1 of GSoft BASIC, each call to the SORT procedure uses 477 bytes of
space from the variable buffer. If you call a subroutine several times from aloop, the
procedure uses the same memory each time you call it, but if a subroutine callsitself
recursively, each recursive call uses a new chunk of memory. For avariety of reasons,
there is no good way to tell in advance exactly how much stack space will be used by a
subroutine. Adding anew local variable or switching to a different version of
GSoft BASIC will change the memory used. With the default stack size of 64K, and the
SORT subroutine we have used in thislesson, it is easy to see that the Sort procedure
cannot safely recur more than 137 levels deep. In practice, the valueis alittle smaller.

If SORT happens to hit aworst-case situation, it will recur as deep as the size of the
array. In the best case, Sort will recur In(N)/In(2) levels deep, where N is the size of the
array. This happens when Sort splits the array exactly in half on each call.

All of this points out that you really have to understand not only the advantages of a
particular algorithm, but its disadvantages as well. Any algorithm has to be viewed with a
critical eye. Quick sort isalot faster than the shell sort for large arrays, but the shell sort



never fails. And for small array, like the 10 element arrays used in our examples, the shell
sort is actually faster than quick sort because it is aless complicated agorithm and ends
up executing fewer statementsin order to make a swap.

Fortunately, there is a solution to this mess. Y ou can use the FRE(0) function to
determine how much free memory is left in the variables buffer. If the amount drops
below some predetermined limit, say 2000 bytes, you can use a shell sort to sort the piece
of the array that you are working on, rather than recurring deeper. Y ou can also time the
two sorts for small arraysto find out how large an array needsto be before quick sort is
faster, and trigger ashell sort if the array is smaller than that limit.

Problem 13.5. Modify Sort so it uses ashell sort if the number of array elementsto
sort is smaller than SHELL SIZE, a constant in your SORT procedure. Also, add a
constant called MEMLIMIT and compare the free memory left in the variables buffer to
this value when you enter SORT. If the free memory drops below this value, switch to a
shell sort. Try your sort on an array with 50 elements.

If you are curious, run the program several times with different values for
SHELL SIZE to determine the proper value for sorting integers. If you're really curious,
you could do the same thing for an array of DOUBLE values.

Sorting Summary

Sorting has given you your first real taste of writing efficient programs. Y ou can start
to see some of the trade-offs that you will have to make when you write programs, as
well as some of the techniques you can use to see the impact of these trade-offs.

Y ou probably know that this lesson has only scratched the surface of sorting.
Complete books—long ones, at that—have been written on the topic of sorting. The
methods covered in this lesson will work in amost any programming situation you are
likely to come across, but if you are ever writing a program that is doing alot of sorting,
it would pay to dig into some books to learn about some of the other sorting methods.



L esson Fourteen — Searchesand Trees

Storing and Accessing I nformation

Thetitle for thislesson is " Searches and Trees," but a more down-to-earth description
would be "better ways to store and find information.” Why is thisimportant? Why spend
the very last lesson of an introductory programming course on this topic, when there are
so many more topics | could have picked?

To answer that, let’s step back from the trees a bit and look at the forest. Computers
are used for alot of things, but desktop computers are used most often to display
information, make calculations, or store and retrieve information. That’s a pretty broad
statement, but | think it is true. Spread sheets and engineering calculations are obviously
applications where we make calculations. Spread sheets, data bases and spelling checkers
are examples of applications where one goal isto store or retrieve information. Word
processors, page layout programs, paint programs, and some database programs display
information. What about an adventure game, though? Most adventure games are really
databases inside, concerned with storing and retrieving information about the adventure
world. A chess program is calculation intensive. The list goes on and on.

Y ou already know afew basic ways to store and access information. Y ou have used
arrays when you knew how much information would be stored in advance, or when you
could put areasonable [imit on the amount of information that would be stored. Y ou have
used linked lists when the fixed size of an array created problems. Y ou have even used
files when the information had to be written to disk.

This lesson concentrates on two basic themes. If the information is stored in an array,
linked list, or disk file, how can you find it quickly? And, what are some better waysto
store the information so you can find it even quicker?

Sequential Searches

If you have an array, linked list, or file, the ssmplest way to find a particular piece of
information is to start at the beginning and scan through the data structure until you find
the entry you want. Thisis called a sequential search, and it is nothing new to you. Y ou
used a sequential search in Lesson 11 to look for a particular name in alinked list of
strings. Of course, you can use a sequential search to look for something in afile or array,
too. To look for anumeric value in an array of records, a sequential search would look
likethis:



| =1
FOUND = FALSE
DO
IE A(l).AGE = 40 THEN
FOUND = TRUE

ELSE
I =1 +1
END | F
LOOP UNTIL FOUND OR | = MAXI NDEX

On average you will have to look through half of the information to find the record
you want. If the record doesn’'t exist—if, for example, you are looking for someone who
iS40, but there are no 40 year olds in your data base—you will always scan the entire list.
A sequential search, then, hasatypical run time of O(N/2) if the item you are looking for
isfound, and aworst case run time of O(N), where N is the number of things to look at.
(The capital O means “on the order of.”)

TheBinary Search

The sequential search is avery common kind of search to implement, and it is often
the best kind of search to use. In some cases, though, you know more about the
information you are searching. For example, one common thing that you might know is
that the information is sorted in some kind of order. If you are looking for a man named
Smith, for example, you may have ordered your data base so that al of the people are
listed in alphabetical order. If you are looking for hospital patients using a Social Security
Number, you may be searching a database that is sorted by Social Security Numbers.

When you are searching alist of itemsthat is sorted, and you know in advance how
many things are in the array, there is a much better way of finding the information than
scanning the array sequentially. The "better way" is called a binary search. The binary
search is basically a divide and conquer method, just like quick sort. Binary searches are
usually not implemented with recursion, though.

The idea behind a binary search isto start by checking the middle value, rather than
the first value. To see how thisworks, let’s assume we are looking for the number 44 in
an array of 100 things. The array is very simple: each value is the same asits index, so
A(44) is44. We'll start by looking at the middle value, A(50). The value is 50, which is
too large. Since the array is sorted, we know that the value we are looking for must bein
the portion of the array from A(1) to A(49), assuming it exists at all. We split the array in
half again, and so forth. The table below shows our progress.




Learn to Program in GSoft BASIC

index value result

50 50 too big
25 25 too small
37 37 too small
43 43 too small
46 46 too big
44 44 match

This divide and conquer search is extremely powerful. Itsworst caseruntimeis
O(In(N)/In(2)). For our sample of 100 items, afew seconds with a calculator gives the
value of 6.64, which tells us that the search will always succeed after no more than 7
compares. That's abig improvement over the sequential sort, with atypical run time for
the same array of 50—the binary search is 7 times faster. The larger the array, the bigger
the difference, too. For an array with 100,000 values, the sequential search will ook at an
average of 50,000 values. The binary search will only need to look at 17 values! For an
array with 100,000 elements, the binary search is nearly 3,000 times faster.

While there are many twists on the sequential search and binary search, these two
basic ideas are at the core of many searchesin real programs. Whenever the information
you need to search isin no particular order, or isin alinked list, the sequential searchisa
good choice. If the information is sorted, the binary search is the best choice. Most other
searching methods depend on organizing the information better to start with.

Problem 14.1. Develop a binary search algorithm, and test in on asimple array. The
search should be implemented as a function that returns the index into the array if the
value you passit isfound, and zero if it isnot. Use an array of 100 integers, with each
array element containing an even number. For example, A(1) would be 2, A(2) is4, and
so forth. Test your search by looking for all of the even numbers from 2 to 200. Make
sure the search works when values are not found by passing it 0, 202, and 101.

A Cross Reference Program for BASIC

A binary search is an extremely efficient way of looking for a particular piece of
information, but it does have one drawback. While it works well for arrays, it is
impossible to implement an efficient binary search for alinked list, smply because you
can’'t hop into the middle of the linked list.

The two most common ways of searching records in dynamically allocated memory
are called binary trees and hash tables. Both of these methods use a different way of
organizing information to make the search faster. We're going to use a BASIC cross
reference program to look at binary trees. A cross-reference program is a program that



looks at the source code to a program and lists al of the places where a particular
identifier are used. The purpose of thislesson isn't really to make you write aBASIC
cross reference program, so this section gives you oneto start with. This BASIC cross
reference program uses alinked list for the symbol table.

This program uses the same scanning techniques that we discussed back in Lesson 11,
although afew new features have been added to handle comments and to keep track of
line numbers. Once atoken isfound, the program searches for the token in a symbol table
that isasimple linked list. If the token does not exist, the search routine creates a new
entry in the symbol table. Finally, the program places the line number where the token
was found in alinked list in the symbol table. While both the symbol table itself and the
line numbers are smple linked lists, thisis the first time you have seen alinked list where
each element of the linked list point to yet another linked list. There are no new concepts
involved in creating linked lists this way, but the details are interesting enough to make it
worth looking at the program carefully.

If you have time, you might want to try writing this program on your own before
typing in the version you see here.

REM XREF

REM

REM Thi s program generates a cross reference of a BASIC
REM program show ng where any synbol is used.

I line nunber |ist

TYPE LI NERECORD
NEXTP AS PO NTER TO LI NERECORD
NUMBER AS | NTEGER

END TYPE

TYPE LI NEPTR AS PO NTER TO LI NERECORD

I synmbol table entry
TYPE SYMBOLRECORD
NEXTP AS PO NTER TO SYMBOLRECORD
SYMBOL AS STRI NG
LI NES AS LI NEPTR
END TYPE
TYPE SYMBOLPTR AS PO NTER TO SYMBOLRECORD

CONST F = 1:! file nunber



Learn to Program in GSoft BASIC

DIM CH AS STRING :! current character

DIM FNAME AS STRING :! file nane

DIMLINE$ AS STRING :! current line

DI M LI NEI NDEX AS I NTEGER :! index into |ine$

DI M LI NENUVMBER AS | NTEGER :! current |ine nunber

DI M SYMBOLS AS SYMBOLPTR:! synbol table

DIM TOKEN AS STRING :! current token

DI M TOKENLI NE AS I NTEGER :! |ine nunber at start of token

I nothing in the synbol table
SYMBOLS = NI L

I first line
LI NENUMBER = 0

I get the file nane
FNAVE = GETFI LENAME
| F LEN (FNAMVE) <> 0 THEN

I initialize the scanner
OPEN FNAME FOR | NPUT AS #F
CH=""

LINE$ = ""

LI NEI NDEX = 0O

CALL NEXTCH

I find all of the synbols
DO
CALL NEXTTOKEN
| F LEN (TOKEN) <> 0 THEN
CALL | NSERT
END | F
LOOP UNTIL LEN (TOKEN) = O

I print the synbols
CALL PRI NTSYMBOLS

I dispose of the synmbol table
CALL DI SPOSESYMBOLS

I close the file
CLCSE #F

END | F

END



Di sposeSynbol s - di spose of the synbol table

Shared Vari abl es:
synbols - pointer to the first entry in the synbol table

SUB DI SPCSESYMBCLS
SHARED SYMBCOLS

DI M LPTR AS LINEPTR'! work |ine pointer
DI M SPTR AS SYMBOLPTR' ! work symbol pointer

VWH LE SYMBOLS <> NI L
I renove the synbol fromthe synbol table
SPTR = SYMBOLS
SYMBOLS = SPTR*. NEXTP

I dispose of the lines

VH LE SPTRM. LI NES <> NI L
! renove the line fromthe line |ist
LPTR = SPTRM. LI NES
SPTRM. LI NES = LPTR*. NEXTP

I di spose of the line record
DI SPCSE (LPTR)
VEND

I di spose of the synbol record
DI SPOSE ( SPTR)

VEND

END SUB

I GetFileNane - get the name of the file to cross-reference



Learn to Program in GSoft BASIC

FUNCTI ON GETFI LENAME AS STRI NG
DIM NAME$ AS STRING :! file nane

INPUT "File to cross-reference: "; NAME$
GETFI LENAME = NAMVE$
END FUNCTI ON

Insert - insert a synbol use in the symbol table

Shared Vari abl es:
tokenLine - line nunber at the start of the token
token - synbol to insert
synbols - pointer to the first entry in the synbol table

SUB | NSERT
SHARED TOKENLI NE, TOKEN, SYMBCLS

DI M LPTR AS LINEPTR: ! current |ine nunber pointer
DI M SPTR AS SYMBOLPTR:! current symbol pointer
DI M WPTR AS SYMBOLPTR:! work symnbol pointer

I try to find the synbol
SPTR = NI L
WPTR = SYMBOLS
VH LE WPTR <> NI L
I F TOKEN = WPTR*. SYMBOL THEN

SPTR = WPTR

WPTR = NI L
ELSE

WPTR = WPTR*. NEXTP
END | F

VEND



I if the synmbol isn't in the table then create a new entry
IF SPTR = NIL THEN
ALLOCATE ( SPTR)
IF SPTR <> NI L THEN
SPTR*. NEXTP = SYMBCLS
SYMBCOLS = SPTR
SPTR*. SYMBOL = TOKEN
SPTR*. LINES = NIL
END | F
END | F

| enter the line nunber
| F SPTR <> NI L THEN
ALLOCATE (LPTR)
IF LPTR <> NI L THEN
LPTRM. NEXTP = SPTRM. LI NES
SPTRM. LI NES = LPTR
LPTRM. NUMBER = TOKENLI NE
END | F
END | F
END SUB

Next Ch - get the next character fromthe file

Shar ed Vari abl es:
ch - next character fromthe file
f - file nunber
line$ - current line fromthe file
lineindex - index of the character ch in |line$
|l i nenunber - current |ine nunber

Notes: The end of a line is reported as a space
character. Al characters are converted to uppercase.

SUB NEXTCH

SHARED CH, F, LINE$, LI NEINDEX, LI NENUVBER



Learn to Program in GSoft BASIC

I if we need one, get a new line
I F LI NEI NDEX > LEN (LI NE$) THEN
| F EOF (F) THEN
CH = ""
ELSE
LI NE | NPUT #F, LI NE$
LI NEI NDEX = 0
LI NENUVBER = LI NENUMBER + 1
END | F
END | F

I check for an end of file
IF LEN (CH) <> 0 THEN
LI NEI NDEX = LI NEI NDEX + 1
| F LI NEI NDEX > LEN (LI NE$) THEN
! handl e an end of line
CH=" "
ELSE
I report the next character

CH = MD$ (LINE$, LINEINDEX, 1)
IE CH >= "a" AND CH <= "z" THEN

CH = CHR$ ( ASC (CH) - 32)
END | F
END | F
END | F
END SUB

Next Token - read a word fromthe file

ch - next character fromthe file

token - string in which to return the token

|
|
!
I Shared Vari abl es:
|
|
|

SUB NEXTTOKEN

SHARED CH, TOKEN, TOKENLI NE, LI NENUMBER

I initialize the token
TOKEN = ""



I find the next token

DO
| record the line nunber for the token
TOKENLI NE = LI NENUVBER

IF CH="!" THEN

I handl e a coment
VWHI LE ASC (CH) <> 0 AND TOKENLI NE = LI NENUVBER
CALL NEXTCH
VEND
ELSE IF CH >= "0" AND CH <= "9" THEN

! handl e a nunber
VH LE CH >= "0" AND CH <= "9"
CALL NEXTCH
VEND
IFCH="E ORCH="D" THEN
CALL NEXTCH
IFCH="-" ORCH="+" THEN
CALL NEXTCH
END | F
VH LE CH >= "0" AND CH <= "9"
CALL NEXTCH
VEND
END | F

ELSE | F ASC (CH) = 34 THEN

! handl e a string constant

CALL NEXTCH

VWHI LE ASC (CH) <> 34 AND TOKENLI NE = LI NENUVBER
CALL NEXTCH

VEND

| F ASC (CH) = 34 THEN
CALL NEXTCH

END | F

ELSE IF (CH >= "A" AND CH <= "Z") OR (CH = "_") THEN



Learn to Program in GSoft BASIC

I handl e a token
VWH LE (CH >= "A" AND CH <= "Z") OR (CH >= "0" AND CH <=

"9") OR (CH="_"
TOKEN = TOKEN + CH
CALL NEXTCH
VEND

ELSE | F ASC (CH <> 0 THEN

! handl e any ot her character
CALL NEXTCH
END | F
LOOP UNTIL ASC (CH = 0 OR LEN (TOKEN) <> 0
END SUB

Print Nunber - recursively print the Iine nunbers

Par aneters:
nPtr - pointer to the remainder of the line nunber Iist

SUB PRI NTNUMBER( NPTR AS LI NEPTR)

I F NPTR <> NI L THEN
CALL PRI NTNUMBER( NPTR*. NEXTP)
PRI NT NPTR*. NUMBER, " ";

END I F

END SUB

PrintSynbols - print the synbols and |ine nunbers

Shared Vari abl es:
synbols - pointer to the first entry in the synbol table

SUB PRI NTSYMBOLS



SHARED SYMBOLS
DI M SPTR AS SYMBOLPTR:! current synbol pointer

SPTR = SYMBOLS
VWHI LE SPTR <> NI L
PRI NT SPTR*. SYMBQL, ;
CALL PRI NTNUMBER( SPTR*. LI NES)
PRI NT
SPTR = SPTR*. NEXTP
VEND
END SUB

There are two ways to save a BASIC program. The SAVE command saves the
program as atokenized file, which replaces BASIC' s reserved words with shorter
numeric values. This program is designed to process text files, so be sure you try it on
programs saves with the SSAVE or TSAVE command. If you want to try to improve the
program so it can handle either format, refer to Appendix F of the GSoft BASIC
reference manual for details about the tokenized file format used by GSoft BASIC.

Even for text files, though, there are a couple of problems with the BASIC cross
reference program you just tried. The program is alot slower than it could be if we read
the fileinto memory in one chunk using GS/OS disk operating system calls, but the
purpose of thislesson isn’'t learning GSOS, so we'll put up with that problem. The most
subtle problemisthat it isalot slower than it could be, smply because it takes so darn
long to deal with asequential linked list. Thisisthe main problem we will try to solvein
the next section. The most obvious problem, though, is that the symbols are printed in the
reverse order of when they arefirst seen in the program. It would be alot more
convenient if they were printed in aphabetical order. We will take care of this problem as
aside effect of getting rid of the linked list. The last problem is that any sequence of
alphanumeric charactersis treated as a symbol. Y our program reports all of the places
where you used the reserved word end, for example. That one you will solve yourself a
bit later, as one of the problems.

TheBinary Tree

The major problem with alinked list is the same as the major problem with a
sequential search: The program has to scan through an average of half of thelist to find a
particular entry. If the entry doesn’t exist, the program scans through the entire list. A
binary treeis another way of handling dynamically allocated records that essentially does
the same thing for linked lists that the binary search did for searches. At each level, the
tree divides the search in half.



Learn to Program in GSoft BASIC

The way this works is to include two pointers to another record in each record, rather
than one. In alinked list, each record has a pointer we have called NEXTP that points to
the next record in thelist. In abinary tree, each record has two pointers, which we will
call LEFT and RIGHT. If welook at a particular record, and the one we want is "smaller"
that the one we are looking at, we follow the left link. If the one we want is"larger” than
the one we are looking at, we follow the right link.

WEe Il use afew short programs to see how thisworks. Thefirst task is to learn to add
anew item to abinary tree. Thisis alittle harder than it was for alinked list, but the same
basic ideas are involved. The program below reads strings from the keyboard and adds
them to a binary tree.

REM Create a binary tree from keyboard strings

I tree entry
TYPE TREERECORD
LEFT AS PO NTER TO TREERECORD
RI GHT AS PO NTER TO TREERECCRD
STR AS STRI NG
END TYPE
TYPE TREEPTR AS PO NTER TO TREERECORD

DI M TREE AS TREEPTR:! top of the tree
DI M TPTR AS TREEPTR:' ! work pointer
DIM STR AS STRING :! work string

I nothing in the tree
TREE = N L

I build the tree of strings
DO

I get a string

LINE I NPUT "String: ";STR

|F LEN (STR) <> 0 THEN

! create a new record

ALLOCATE (TPTR)

IF TPTR <> NI L THEN
TPTR. LEFT = NI L
TPTR. RIGHT = NI L
TPTR. STR = STR



! add it to the tree
CALL ADX TREE, TPTR)
END | F
END | F
LOOP UNTIL LEN (STR) = 0

I di spose of the tree of string
IF TREE <> NIL THEN
CALL DI SPOSETREE( TREE)
END | F
END

Add - add a record to the tree

Par anmet er s:
tree - next node in the tree
rec - record to add to the tree

SUB ADD( TREE AS TREEPTR, REC AS TREEPTR)

|F TREE = NIL THEN
TREE = REC

ELSE | F REC". STR < TREE®. STR THEN
CALL ADD( TREE". LEFT, REC)

ELSE | F REC". STR > TREE®. STR THEN
CALL ADD( TREE". Rl GHT, RECQ)

ELSE
DI SPOSE ( TREE)

END | F

END SUB



Learn to Program in GSoft BASIC

Di sposeTree - dispose of the tree

Par anmet er s:
tree - node to dispose of

SUB DI SPOCSETREE( TREE AS TREEPTR)

| F TREE. RIGHT <> NI L THEN
CALL DI SPOSETREE( TREE". Rl GHT)
END | F
| F TREE”. LEFT <> NIL THEN
CALL DI SPOSETREE( TREE". LEFT)
END | F
DI SPOSE ( TREE)
END SUB

One of the first things you might notice as you look at this program is that we are
using arecursive subroutine again. Just as with any situation where recursion is useful,
we can look at the tree as a piecemeal problem. Let’slook at an example to see how this
will work. As an example, let’s place four statesin the tree. We'll use Maine, Oregon,
Texas and Colorado for our states. Maine is simple: we create a new record, set LEFT
and RIGHT to NILL, record the string, and call ADD. The subroutine ADD sees that
TREE isNIL, and records TREE there. The effect on the global variablesisto assign
TPTR to TREE, so tree now pointsto the first record in our list, Maine. Symbolically, we
write the tree like this:

Mai ne

Well, there isn't much there, yet, so our meager tree doesn't look very impressive.
Adding Oregon shapes things up a bit, though. This time when we call ADD, the
subroutine sees that PTR is not NIL, and checks to see if Oregon is less than Maine. It
isn’t, so it moves on to the next check to be sure that Oregon is greater than Maine. It is,
but let’s stop for amoment and consider what would happen if it wasn't. The only way a
name could fail both checksisif it matched the name in TREE".STR exactly. The series
of checks, then, prevents duplicates. Y ou can have duplicates in abinary tree, but your
search hasto take it into account if you do. We don’'t need them.



At thispoint, ADD callsitself, passing TREE".RIGHT as the new top of the tree.
TREEMN.RIGHT isNIL, so REC is added as the so-called "right child" of Maine. It makes
as much sense to call Oregon a branch of Maine, but for historical reasons, we refer to
Oregon as the right child of Maine, and Maine as the parent of Oregon. Our tree looks
like this, now:

Mai ne
\
\
O egon

Notice how recursion handled the problem of tracing the tree fairly neatly. Once we
decided that the top node existed, and which way to go, we called ADD again, treating
TREEMN.RIGHT as a brand-new tree, which in asenseit is. If you recall, when recursion
was first introduced, | said that the way to think about recursion was to think about one
part of the problem at atime. We used that method to solve the Tower of Hanoi problem,
where we conceptually moved an entire pile of disks, rather than thinking about the
problem as moving individual disks. The same idea cropped up when we used recursion
for quick sort, where the subroutine split the problem in half and called itself to solve
each half. Here we see the same idea again: ADD decides which half of the treeisthe
important part, then callsitself, processing the appropriate half of the tree as a new tree.

The next state to add is Texas, which makes two recursive calls, getting tacked onto
the tree as the right child of Oregon. Follow through the code, writing the steps down on
paper if necessary, to see how thisis done.

Mai ne
\
\
O egon
\
\
Texas

The last state is Colorado. Since Colorado islessthan Maine, it is added as the | eft
child of Maine. Our final tree looks like this:



Learn to Program in GSoft BASIC

Col or ado Oregon
\
\
Texas

By now, you may have noticed one of the problems with binary trees. To keep the
search time to a minimum, you want the tree to be balanced. What that meansiis that,
when you start at the top, the top element of the treeis also the middle element, so that
the compare splitsthe tree in half. In this example, if we had started with Colorado,
adding the states in aphabetical order, we would have ended up with a pretty poor excuse
for atree:

Col or ado
\
\
Mai ne
\
\
O egon
\
\
Texas

Y ou can add a new record to the tree and shuffle the tree around at the same time to
make sure it stays balanced. We won't cover how, since it involves some fairly advanced
pointer manipulation. In practical situationsit often isn’t necessary to create a perfectly
balanced tree. If records are added to the tree in afairly random manner the savings of
using atreeinstead of alinked list are still enormous. Whether the extra effort involved
in balancing the tree is worth the time depends on how often the tree will be searched and
how random the records are. In our application, they are fairly random.

Searching abinary treeis pretty trivial once you know how to create one. After all,
adding a new record to the tree searches the tree as a side effect! Here's afunction, based
on the ADD procedure, that will search the tree, returning a pointer to the correct record,
or NIL if the record does not exist.



Search - search the tree

Par anet ers:
tree - node to search
str - string to | ook for

FUNCTI ON SEARCH( TREE AS TREEPTR, STR AS STRING ) AS TREEPTR

|F TREE = NIL THEN
SEARCH = NI L

ELSE | F TREE®. STR > STR THEN
SEARCH = SEARCH( TREE". LEFT, STR)

ELSE | F TREE". STR < STR THEN
SEARCH = SEARCH( TREE”. RI GHT, STR)

ELSE
SEARCH = TREE

END | F

END FUNCTI ON

Thisis one of those subroutines that you might struggle for along time to come up
with on your own, but is so simple that once you see it, it is easy to understand and
remember. Trace through the subroutine, looking for Oregon and Indianaif you aren’t
sure how it works.

Finally, we come to a subject that impacts directly on our cross-reference program.
Using amethod called recursive tree traversal we can write avery simple subroutine that
will trace through the tree, doing something in order. In our case, we want to print the
symbols found in the BASIC program. Here’'s a simple PRINTTREE subroutine that
prints the states in our example program; the subroutine in the BASIC cross reference
program will have exactly the same structure.

PrintTree - print the tree

Par anet ers:
tree - tree to print



Learn to Program in GSoft BASIC

SUB PRI NTTREE( TREE AS TREEPTR)

| F TREE <> NI L THEN
CALL PRI NTTREE( TREE". LEFT)
PRI NT TREE™. STR
CALL PRI NTTREE( TREE*. RI GHT)
END I F
END SUB

Notice how, once again, recursion simplifies the problem. At any particular placein
the tree, we need to print all of the names that come before the one we are working on
first, so we call PRINTTREE to do that. Next, we need to print the record we are working
on. Finally, we print al of the names that come after the one we just printed. The initial
check to make sure TREE is not NIL keeps us from stepping off of the "end" of the tree.

Problem 14.2. Add the print subroutine to the binary tree sample program. Try the
program with avariety of names.

Problem 14.3. Change the XREF program so it builds a binary tree for the symbol
table instead of alinked list. The easy way to do thisisto use the INSERT subroutine to
insert each symbol in the program into the symbol table. Because of the way the INSERT
subroutine is written, if the symbol already exists, anew symbol is not created. Y ou then
call the SEARCH subroutine to find the correct entry in the symbol table (which must
exist, since you just created one if there wasn't one aready), and enter the appropriate
line number.

A more challenging, and more efficient way to implement the program is to combine
the Search and Insert subroutines, creating a function that returns a pointer to the correct
entry in the symbol table, creating one if one did not already exist. Thisis the method the
solution uses.

In either case, printing the symbol table is a simple matter of modifying the
PRINTTREE subroutine from the text.

Problem 14.4. Add a new check to the XREF program that checks to see if the
symbol just found is areserved word in BASIC. You can find alist of the reserved words
inLesson 1.

An easy way to handle reserved words is to add a new flag to each symbol table entry
that tellsif the entry is areserved word. If you find areserved word, you skip adding the



line number to the line number list. When printing the symbol table, you again skip
reserved words.

Creating the reserved word list in the first placeis alittle tedious. Y ou will need a
subroutine that calls INSERT for each of the reserved words. There is an optimum order
to add the reserved words. See if you can figure it out by thinking about the way trees are
created, referring to the example where the names of four states were entered into atree.

Ruffles and Flourishes

WEell, afew weeks ago, you couldn’t spell recursive tree traversal, and now you know
what it is. Not bad. Let me be the first to congratul ate you on joining the ranks of real
programmers, who do it with bytes and nibbles.

Of course, as | have pointed out so many times that you may be sick of hearing it,
programming isaskill. Like all skills, the more you practice, the easier it gets. There are
also alot more things to learn about programming. Where you go from here depends on
your own interests.

BASIC doesn’'t have a universally accepted standard, but it’s generally pretty easy to
read books written for any version of BASIC and translate the programs into
GSoft BASIC. The exception is books that deal with desktop programming. While the
BASIC language won't change enough to make the books impossible to use, the
ApplellGs toolbox is different enough from the way the desktop isimplemented on other
computers that you won't find much of use from, say aVisual BASIC book.

That leaves an enormous number of good books out there, though. I’ d recommend
visiting your bookstore, Amazon.com, and especially your local library. While BASIC
has seen aresurgence in popularity in the past few years, it's no where near as popular as
it wasin the early 1980's, when BASIC dominated the microcomputer market. Y our
library may have a good selection of books from that era on awide range of topics.

Don't discount other books just because they are written for another language, either.
One book I think every programmer should own is

Algorithms
Robert Sedgewick
Addison-Wesley Publishing Company

Thisisawonderful encyclopedia of fundamental subroutines that you will use over
and over when you program, no matter what computer or language you pick. It was the
source for the version of quick sort used in this course, for example.



Learn to Program in GSoft BASIC

Algorithms+Data Structures = Programs
Niklaus Wirth
Prentice-Hall

This classic book is agreat introduction to intermediate techniques in computer
science. It only hasfive chapters: Fundamental Data Structures, Sorting, Recursive
Algorithms, Dynamic Information Structures and L anguage Structures and Compilers.
These chapters give you a basic understanding of data structures that can improve your
programming skills enormously. It’s written for Pascal, but you should be ableto read it
and make use of it from GSoft BASIC, too.

If you would like to learn to program the toolbox, writing desktop programs with pull
down menus and so forth, you need to study a different set of books. A companion course
called Toolbox Programming in GSoft BASC is underway as | write thisone. It's
designed as afirst book for toolbox programming, and comes with it’s own abridged
toolbox reference manual, so you don’t need any other books to get started. For technical
references for the toolbox and other parts of the Apple 11GS operating system, see the
Byte Works web site, currently hosted at http://www.hypermall.com/byteworks.

Whatever you decide to do from here, | hope you enjoyed the course, and learned a
few things along the way. Once again, congratul ations on completing the course!






Learn to Program in GSoft BASIC

| statement, 18

A

addition, 25, 26
ALLOCATE statement, 146
animation, 49-51, 52
arrays, 93-114

declaring, 93

miltidimensional, 103

of records, 119

passing to subroutines, 110

problems with, 143

range of indecies, 93
ASC function, 84
ASCII character set, 84
assembly language, 178
assignment statement, 18

| ndex

comments, 17, 23, 62
comparing strings, 88
comparisons, 26, 29, 55
compiler, 2

CONST statement, 117
constants, 117

c-string, 87, 88

cursor position, 192

B

backups, 5

binary operator, 26
binary search, 220-21
binary trees, 229-36
Boolean logic, 55-56
Boolean values, 99
BYTE type, 115

D

DIM statement, 20, 93
pointers, 144
DISPOSE statement, 146
division, 47
DO-LOORP statement, 3842
DOUBLE type, 32, 116
double-precision real numbers, 32
drawing
COPY mode, 50
exclusive OR mode, 50
dynamic memory, 143

C

CALL statement. See subroutines

CASE EL SE statement, 160
case sensitivity, 11
character set, 77, 84-87
CHRS$ function, 84

CLOSE statement, 124, 133

E

EDIT command, 7

EL SE statement. See | F statement

END FUNCTION statement. See
subroutines

END |F statement. See |F statement

END statement, 62

END SUB statement. See subroutines

END TYPE statement. See TY PE
statement

EOF function, 129

ERR function, 167

error handling, 16668



ERROR statement, 167

errors, 9

evaluating expressions, 200
exclusive OR drawing mode, 50
exponents. See real numbers
extended character set, 86

GSoft BASIC, The FREE Version!, 5,
178

F

false, 55, 99, 118
files, 12141
binary files, 133
closing, 123
end of file, 129
file names, 122, 126-29
file number, 122
file types, 136
opening, 122, 133
opening for input, 124
path names, 127-28
random access, 137-41
writing with PRINT, 123
Finder, 179
FOR statement, 2223, 161-64
NEXT, 23, 164
STEP size, 83, 162
format model, 29
format string, 29
FRE function, 90, 217
FUNCTION statement. See subroutines

H

handling run-time errors, 16668
HFS disks, 126

HGR statement, 14

HOME statement, 192

HTAB command, 192

| F statement, 4649

EL SE clause, 48

ELSE IF clause, 51

old forms, 53
INPUT statement, 14, 35, 77, 89
INTEGER type, 21, 115
integers, 18, 21, 26, 30, 33

long. Seelong integers
interpreter, 2

G

GET statement, 135
GOTO statement, 12, 53, 165-66
graphics, 13-16, 35. See also animation
colors, 16
drawing a dot, 45
GS/OS, 126
GS/OS strings, 88

L

LEFTS function, 79

LEN function, 79

LET statement. See assignment
statement

lexical analysis, 182

libraries, 178

LINE INPUT statement, 78, 89

line numbers, 12

LINETO tool call, 15

linked lists, 148-56, 199

LIST command, 8

LOADLIBRARY statement, 179

long integers, 27, 33

LONG type, 27, 115

L OOP statement. See DO-LOOP
statement



Learn to Program in GSoft BASIC

M

MakeRuntime utility, 179
memory

changing size, 178
memory leak, 152
MID$ function, 81
MOVETO tool cdl, 15
multiplication, 19, 25

Q

gueues, 155-56
quick sort, 210-15, 216-17
QuickDraw II, 14

N

negative numbers, 26
NIL constant, 150
null terminated string, 87

O

ONERR GOTO statement, 16668

OPEN statement, 122, 124, 133, 137,
138

operator precidence, 24

ORCA shell, 6

R

random numbers, 42—46
rea numbers, 18, 21, 27, 30, 33
exponents, 31
REAL type, 21
records, 118-20
variant, 168-77
recursion, 195-205
REM statement, 17
reserved words, 10, 11
RESUME statement, 167
RIGHT$ function, 79
RUN command, 8

P

parenthesis, 26
parsers, 182, 18993, 200205
pixel, 14
pointers, 143-56
declaring, 144
prerequisits, 4
PRINT statement, 7, 10, 19
infiles, 123
PRINT USING statement, 29
printing, 132
ProDOS, 126
ProDOS disks, 126
p-string, 87
PUT statement, 134

S

SAVE command, 8
scanning text, 182, 183-86
scientific notation. See real numbers
searches, 219-21

binary search, 220-21

sequential search, 219
SELECT CASE statement, 15761
semantic analysis, 183
sequential search, 219
SETMEM statement, 178
SETPENMODE tool call, 15
SETSOLIDPENPAT tool call, 15, 16
SHARED command. See subroutines
shell sort, 207-9
SINGLE type, 116
SIZEOF function, 138
sorting, 207-18

quick sort, 210-15, 216-17



shell sort, 97, 207-9 T

stacks, 150-54
stand-alone programs, 179 text blocks, 88
statement separator, 21 tokens, 182, 183, 186
STR$ function, 89 true, 55, 99, 118
STRING type, 21 truncation, 47
strings, 77-91 type characters, 19
adding, 79 TY PE statement, 117
ASCII character set, 84 records, 118-20
character set, 77 types
comparing, 88 BYTE, 115
concatenation, 79 DOUBLE, 116
constant, 7 INTEGER, 115
c-string, 87, 88 LONG, 115
extended character set, 86 SINGLE, 116
garbage collection, 89 UNIV, 115
GS/OS strings, 88
null terminated string, 87 U
p-string, 87
size limit, 88 unary operations, 26
text blocks, 88 UNIV type, 115
SUB statement. See subroutines UNLOADLIBRARY statement, 179
subroutines, 5775 User Toals, 178
CALL statement, 60
END SUB statement, 61 v

FUNCTION statement, 66
parameter list, 60
parameters, 69-74
passing arrays, 110
SHARED command, 74

VAL function, 89
variable names, 19
variant records, 168—77
VTAB command, 192

SUB statement, 60

value parameters, 70 w
variable parameters, 69 WEND statement, 28
subtraction, 26 WHILE statement, 28, 41

symbol tables, 168-77



