
GSoft™ BASIC 1.0
AAA BBB AAA SSS III CCC III nnn ttt eee rrr ppp rrr eee ttt eee rrr

fff ooo rrr ttt hhh eee
AAA ppp ppp lll eee III III GGG SSS

Mike Westerfield

Byte Works®, Inc.
8000 Wagon Mound Dr. NW

Albuquerque, NM 87120-2845
Voice (505) 898-8183
FAX (505) 898-4092

E-Mail MikeW50@AOL.COM

iii

Credits

G
Soft BA

SIC Interpreter
M

ike W
esterfield

D
ocum

entation
M

ike W
esterfield

Beta Testers
Jeff Blakeney
Richard N

. Cain
G

areth Jones
G

len G
unselm

an
Charles H

artley
Eric Shepherd
Tim

othy Tobin

Copyright 1998
By The Byte W

orks, Inc.
A

ll Rights Reserved

M
aster Set 1.0.0.0

iv

Lim
ited W

arranty - Subject to the below
 stated lim

itations, Byte W
orks, Inc. hereby

w
arrants that the program

s contained in this unit w
ill load and run on the standard m

anufacturer’s
configuration for the com

puter listed for a period of ninety (90) days from
 date of purchase. Except

for such w
arranty, this product is supplied on an “as is” basis w

ithout w
arranty as to

m
erchantability or its fitness for any particular purpose. The lim

its of w
arranty extend only to the

original purchaser.
N

either Byte W
orks, Inc. nor the authors of this program

 are liable or responsible to the
purchaser and/or user for loss or dam

age caused, or alleged to be caused, directly or indirectly by
this softw

are and its attendant docum
entation, including (but not lim

ited to) interruption of service,
loss of business, or anticipatory profits.

To obtain the w
arranty offered, the enclosed purchaser registration card m

ust be com
pleted and

returned to the Byte W
orks, Inc. w

ithin ten (10) days of purchase.
Im

portant N
otice - This is a fully copyrighted w

ork and as such is protected under
copyright law

s of the U
nited States of A

m
erica. A

ccording to these law
s, consum

ers of
copyw

ritten m
aterial m

ay m
ake copies for their personal use only. D

uplication for any other
purpose w

hatsoever w
ould constitute infringem

ent of copyright law
s and the offender w

ould be
liable to civil dam

ages of up to $50,000 in addition to actual dam
ages, plus crim

inal penalties of
up to one year im

prisonm
ent and/or a $10,000 fine.

This product is sold for use on a single com
puter at a single location. Contact the publisher

for inform
ation regarding licensing for use at m

ultiple-w
orkstation or m

ultiple-com
puter

installations.

G
Soft BA

SIC is a tradem
ark of the Byte W

orks, Inc.
The Byte W

orks is a registered tradem
ark of the Byte W

orks, Inc.
A

pple and G
S/O

S are registered tradem
arks of A

pple Com
puter, Inc.

Program
, D

ocum
entation and D

esign
Copyright 1998

The Byte W
orks, Inc.

v

Table of C
ontents

Chapter 1 – Introducing G
Soft BA

SIC
1

A
bout the M

anual
1

O
ther Books and Reference M

aterials
2

Chapter 2 – G
etting Started

5
Setting U

p G
Soft B

A
SIC

5
Backups

5
Registration

5
System

 Requirem
ents

5
R

unning G
Soft B

A
SIC

6
U

sing G
Soft BA

SIC from
 Floppy D

isks
6

Installing G
Soft BA

SIC on a H
ard D

isk
7

G
Soft B

A
SIC

7
G

Soft BA
SIC for O

RCA
7

G
Soft BA

SIC for O
RCA

 and Finder
8

.PRIN
TER D

river
8

The Three W
orlds of G

Soft BA
SIC

8
The G

Soft BA
SIC Shell

8
U

sing G
Soft BA

SIC from
 the O

RCA
 Shell

9
Creating G

Soft BA
SIC Program

s that Run From
 the Finder

9

Chapter 3 – Program
m

ing on the A
pple IIG

S
11

Text Program
s

11
Console Control Codes

16
Stand-A

lone Program
s

16
G

raphics Program
s

17
Y

our First G
raphics Program

17
Program

m
ing on the D

esktop
18

Learning the Toolbox
18

H
ardw

are Requirem
ents

19

Chapter 4 – G
Soft BA

SIC U
tilities

21
Printing W

ith the .PRIN
TER D

river
21

Installing .PRIN
TER

21
Configuring .PRIN

TER
22

M
akeRuntim

e
24

W
hat M

akeRuntim
e D

oes
25

Things That Can G
o W

rong
25

Including Libraries w
ith G

Soft BA
SIC Program

s
26

Licensing
26

Table of C
ontents

vi

Com
pileTool

27
W

hat Com
pileTool D

oes
27

Com
m

and Line Interface
27

The Syntax of Tool Interface Files
28

Structure of a Tool Interface File
28

BN
F For Tool Interface Files

32
Sum

m
ary of D

ifferences from
 G

Soft BA
SIC

33
O

R
C

A
 Shell G

Soft B
A

SIC
34

U
sing G

Soft BA
SIC from

 the O
RCA

 Shell
34

The D
eToke U

tility
35

Installing G
Soft BA

SIC in the O
RCA

 Shell
36

Chapter 5 - The Com
m

and Processor
39

The Line Editor
39

File N
am

es
40

Types of Files U
sed by G

Soft BA
SIC

41
Source Files

41
G

Soft BA
SIC Tokenized Files

41
Text Files and Source Files

41
A

pplesoft B
A

SIC
 Files

42
Entering BA

SIC Program
s

42
The A

ctive Program
42

Entering Program
s From

 the Com
m

and Line
43

Executing BA
SIC Com

m
ands

43
Com

m
and Reference

44
Bye

44
Catalog

44
CA

T
44

C
opy

46
Create

47
D

EBU
G

47
D

el
47

D
elete

47
Edit

48
List

48
Load

49
Lock

49
M

ove
49

N
ew

50
Prefix

50
PR

50
Renam

e
51

Renum
ber

51
R

un
54

Save
55

Table of C
ontentsvii

SSave
55

TSave
55

U
nlock

55

Chapter 6 – The Text Editor
57

H
ow

 Text Editors W
ork W

ith G
Soft BA

SIC Tokenized Files
57

M
odes

58
Insert

58
Escape

59
A

uto Indent
59

Select Text
59

H
idden Characters

60
M

acros
60

U
sing Editor D

ialogs
62

U
sing the M

ouse
64

Com
m

and D
escriptions

65
Setting Editor D

efaults
77

Chapter 7 – Program
 Sym

bols
79

Identifiers
79

Reserved W
ords

80
Reserved Sym

bols
80

Constants
81

D
ecim

al Integers
81

H
exadecim

al Integers
81

Real N
um

bers
82

String Constants
82

W
hite Space

83
C

om
m

ents
83

!
83

R
EM

83

Chapter 8 – Types of D
ata

85
Integers

85
Reals

85
Infinity

86
N

aN
86

Strings
87

Pointers
87

Chapter 9 – BA
SIC Program

s
89

The A
natom

y of a BA
SIC Program

89
Subroutines

89
Line N

um
bers

89
M

ultiple Statem
ents on O

ne Line
90

Table of C
ontents

viii

Chapter 10 – D
eclaring V

ariables and Types
91

W
hat Is a Type?

91
A

 Short H
istory of Types in BA

SIC
91

The K
inds of Types

91
Sim

ple Types
91

A
rrays

92
Records

93
Pointers

93
N

am
ed Types

94
Type Com

patibility
95

N
um

eric Type Com
patibility

95
Strings

97
Records

97
Pointers

98
D

efault Types
98

D
eclaring Types and V

ariables
100

D
IM

100
D

im
ensioning A

rrays
100

A
ssigning a Type W

ith A
S

101
U

sing D
efault Types W

ith D
IM

102
TY

PE-EN
D

 TY
PE

103
D

eclaring Record Types
103

H
ow

 Records A
re Stored In M

em
ory

103
V

ariant Records
105

U
sing the Record Type In The Record (Linked Lists)

107
TY

PE-A
S

108

Chapter 11 – Expressions and A
ssignm

ents
111

Expressions
111

K
inds of Expressions

111
M

athem
atical Expressions

111
Logical Expressions

111
Pointer Expressions

112
String Expressions

112
Evaluating Expressions

113
O

perator Precedence
113

Binary Conversions
114

U
nary Conversions

115
Converting D

O
U

BLE to SIN
G

LE
115

Converting D
O

U
BLE to LO

N
G

116
Converting D

O
U

BLE to IN
TEG

ER
116

Converting SIN
G

LE to D
O

U
BLE

116
Converting SIN

G
LE to LO

N
G

116
Converting SIN

G
LE to IN

TEG
ER

116
Converting LO

N
G

 to D
O

U
BLE

117

Table of C
ontentsix

Converting LO
N

G
 to SIN

G
LE

117
Converting LO

N
G

 to IN
TEG

ER
117

Converting IN
TEG

ER to D
O

U
BLE

117
Converting IN

TEG
ER to SIN

G
LE

117
Converting IN

TEG
ER to LO

N
G

117
Converting BY

TE to A
ny O

ther Type
117

Converting A
ny O

ther Type to BY
TE

117
A

ddition
118

Subtraction
119

M
ultiplication

120
D

ivision
121

Exponentiation
122

A
N

D
123

O
R

123
Com

parison O
perators

123
Term

s
125

Constants
125

U
nary M

ath O
perations

125
N

O
T

126
A

rray Subscripts
126

U
sing BA

SIC Functions
127

U
sing FU

N
CTIO

N
 Functions

127
U

sing D
EF FN

 Functions
127

The A
ddress O

perator
128

Type Casting
128

D
ereferencing Pointers

129
A

ccessing Record Fields
130

L-V
alues

130
The A

ssignm
ent Statem

ent
131

M
athem

atical Functions
133

A
BS

133
A

TN
133

CD
BL

134
CIN

T
135

CLN
G

135
C

O
S

136
C

SN
G

137
EX

P
137

IN
T

137
LO

G
138

RN
D

138
SG

N
139

SIN
139

SQ
R

140
TA

N
140

Table of C
ontents

x

String Functions
140

A
SC

140
C

H
R

$
141

FR
E

141
LEFT$

141
LEN

142
M

ID
$

142
RIG

H
T$

143
STR

$
143

V
A

L
143

Chapter 12 – Control Statem
ents

145
Looping

145
D

O
-LO

O
P

145
FO

R-N
EX

T
147

W
H

ILE-W
EN

D
150

M
aking D

ecisions
151

IF-TH
EN

151
IF-G

O
TO

151
IF-EN

D
 IF

151
SELECT CA

SE
153

Jum
ping A

round
155

G
O

TO
155

O
N

-G
O

TO
156

H
andling Errors

156
ER

R
O

R
156

O
N

ERR G
O

TO
157

ERL
158

ER
R

158
R

ESU
M

E
158

Stopping and Starting a Program
159

BREA
K

159
EN

D
160

CO
N

T
160

STO
P

161
W

A
IT

161

Chapter 13 – Input and O
utput

163
Printing Text

163
PRIN

T
163

U
sing ? A

s a Typing Shortcut
164

Printing Strings
164

Printing BY
TE, IN

TEG
ER and LO

N
G

 V
alues

164
Printing SIN

G
LE and D

O
U

BLE V
alues

165
Pointers and Records

166
Printing M

ultiple Expressions W
ith Com

m
as and Sem

icolons
166

Table of C
ontentsxi

Controlling Spaces U
sing SPC and TA

B
167

Controlling N
ew

 Lines W
ith Sem

icolons
168

Printing Blank Lines
169

Printing To D
isk Files

169
PRIN

T U
SIN

G
169

Form
atting N

um
bers

170
The D

ecim
al Point

170
A

dding Com
m

as
171

Controlling Positive and N
egative Signs

171
D

ollar Signs
172

Filling Spaces in N
um

bers
172

Form
atting N

um
bers In Scientific N

otation
173

Form
atting Strings

173
M

ixing Text and Form
at M

odels
174

Printing Form
at Characters as Text

174
Too M

any and Too Few
 Form

at M
odels

175
Printing To D

isk Files
175

SPEED
175

Choosing Character Types
176

IN
V

ERSE
177

M
O

U
SETEX

T
177

N
O

RM
A

L
178

Reading Text
178

IN
PU

T
178

Reading from
 D

isk Files
178

Prom
pts

179
M

ultiple Inputs
180

LIN
E IN

PU
T

181
Positioning the Cursor

182
C

SR
LIN

182
H

O
M

E
183

H
TA

B
183

PO
S

183
V

TA
B

184
Im

bedding D
ata In The Program

184
D

A
TA

184
REA

D
185

R
ESTO

R
E

185

Chapter 14 – D
isk Files

187
File N

am
es

187
ProD

O
S and H

FS N
am

es
187

O
ther File System

s
188

D
evices

188
Path N

am
es

188

Table of C
ontents

xii

The D
efault Prefix

189
Printing

190
The G

S/O
S O

ption
190

File N
um

bers
191

File Input and O
utput Exam

ples
191

Line O
riented Text Files

191
Binary Files

192
Backtracking in Files

195
Reading A

n Entire File
198

Random
 A

ccess Files
199

O
pening and Closing Files

200
CLO

SE
200

O
PEN

200
Reading and W

riting Files
202

EO
F

202
G

ET
202

LO
C

202
LO

F
202

PU
T

203
SEEK

203
D

ealing W
ith D

irectories and Files
203

CH
D

IR
203

CU
RD

IR$
204

D
IR$

204
K

ILL
205

RM
D

IR
205

M
K

D
IR

205
N

A
M

E
205

Chapter 15 – G
raphics

207
A

pplesoft BA
SIC G

raphics
207

G
raphics Com

m
ands

207
H

CO
LO

R=
207

H
G

R
208

H
PLO

T
209

TEX
T

210

Chapter 16 – U
tility Statem

ents
211

M
em

ory H
andling

211
A

LLO
CA

TE
211

D
ISPO

SE
213

N
IL

213
SETM

EM
213

SIZEO
F

214
Peeks and Pokes

214
PEEK

215

Table of C
ontentsxiii

PO
K

E
215

Clearing the W
orkspace

216
CLEA

R
216

G
Soft V

ersion N
um

ber
216

V
ERSIO

N
216

Chapter 17 – Subroutines
219

G
O

SU
B Subroutines

219
G

O
SU

B
219

O
N

-G
O

SU
B

220
PO

P
221

RETU
RN

221
D

EF FN
 Functions

221
D

EF FN
221

Subroutines and Functions
223

SU
B and FU

N
CTIO

N
 Param

eter Lists
223

Passing Param
eters by Reference and V

alue
227

U
sing Param

eters
228

Local V
ariables and Types

228
Recursion w

ith SU
B and FU

N
CTIO

N
229

CA
LL

230
FU

N
CTIO

N
230

SU
B

231

Chapter 18 – Standard Libraries
233

The G
am

e Paddle Library
233

G
TBootInit

233
G

TStartup
233

G
TShutD

ow
n

234
G

TV
ersion

234
G

TStatus
234

G
TG

etSw
itch

234
G

TClearA
nnunciator

234
G

TSetA
nnunciator

234
G

TG
etPaddle

234
U

sing the G
am

e Paddle Library
235

The Tim
e Library

235
TTBootInit

235
TTStartup

235
TTShutD

ow
n

236
TTV

ersion
236

TTStatus
236

D
ateString

236
Tim

eString
236

Tim
e

237
U

sing the Tim
e Library

238

Table of C
ontents

xiv Chapter 19 – Tool Interface
239

The Toolbox Interface
239

U
sing the Toolbox

239
The G

Soft BA
SIC Toolbox Interface

240
U

sing A
pple’s D

ocum
entation

241
G

S/O
S and the O

RCA
 Shell Calls

244
The Role of U

ser Tools
244

Tool and G
S/O

S Errors
244

TO
O

LERRO
R

244
Loading and U

nloading Libraries
245

LO
A

D
LIBRA

RY
245

U
N

LO
A

D
LIBRA

RY
245

TO
O

L and G
SO

S Tokens
245

G
SO

S
245

TO
O

L
246

LIBRA
RY

246

A
ppendix A

 – Error M
essages

247

A
ppendix B – Console Control Codes

267

A
ppendix C – Character Sets

269
The A

SCII Character Set
269

Text Screen Codes
270

Toolbox Character Codes
270

A
ppendix D

 – W
riting U

ser Tools for G
Soft BA

SIC
273

The Role O
f U

ser Tools
273

W
riting U

ser Tools
273

A
pple IIG

S Toolbox Reference V
olum

e 2
273

A
voiding Tool N

um
ber Conflicts

273
The G

Soft BA
SIC Interface

274
Installing the G

am
e Paddle Library

274
Sam

ple Source
275

A
ppendix E – Converting A

pplesoft BA
SIC Program

s to G
Soft BA

SIC
277

A
pplesoft BA

SIC Peeks, Pokes and Calls
277

Low
 Resolution G

raphics and Text Screen A
ccess

283
Com

m
ands in G

Soft BA
SIC That A

re N
ot In A

pplesoft BA
SIC

284
Com

m
ands in A

pplesoft BA
SIC That A

re N
ot In G

Soft BA
SIC

284
Com

m
ands That A

re D
ifferent in A

pplesoft BA
SIC and G

Soft BA
SIC

285
O

ther D
ifferences

286
A

vailable M
em

ory
286

D
isk Input and O

utput
286

Line N
um

bers
287

N
um

bers
287

Table of C
ontentsxv

A
ppendix F – Im

plem
entation D

etails
289

M
em

ory U
se

289
Program

 Buffer
289

V
ariable Buffer

289
D

ynam
ic M

em
ory

290
O

ther M
em

ory Locations
290

Tokenized Files
291

The O
rganization of Tokenized Program

s
291

Line N
um

ber Schem
es

292
BA

SIC Tokens
292

Exam
ple of a Tokenized Program

294

A
ppendix G

 – Q
uick Reference to the Shell

295

A
ppendix H

 – Q
uick Reference to G

Soft BA
SIC

299
Statem

ents
299

Functions
313

Index
321

1

C
hapter 1 – Introducing G

Soft BA
SIC

W
elcom

e to G
Soft BA

SIC! G
Soft BA

SIC is a com
plete program

m
ing environm

ent for
w

riting program
s on the A

pple IIG
S. Y

ou get a sim
ple, easy to use BA

SIC interpreter that is, in
m

any im
portant w

ays, one of the m
ost sophisticated im

plem
entations of BA

SIC ever produced.
There is a second version of the interpreter that executes from

 the popular O
RCA

 program
m

ing
environm

ent, perfect for toolbox program
m

ing or for people w
ho w

ant a m
ore com

plete (although
harder to learn) program

m
ing environm

ent. A
nd, of course, there is a utility that creates

G
Soft BA

SIC applications that w
ill run from

 the Finder, even on com
puters w

here G
Soft BA

SIC
is not installed.

W
hile the G

Soft BA
SIC environm

ent w
as deliberately kept sim

ple, it’s still a cut above the
old A

pplesoft BA
SIC environm

ent. A
fter all, G

Soft BA
SIC is designed to run on the

A
pple IIG

S, not an A
pple II w

ith as little as 16K
 of RA

M
 and 12K

 of RO
M

. W
e had room

 to add
m

any nice features not found in A
pplesoft BA

SIC, like a full screen editor.
G

Soft BA
SIC is the only A

pple IIG
S BA

SIC—
for that m

atter, the only BA
SIC w

e’re aw
are

of on any platform
—

that gives full, natural access to the toolbox. The reason is sim
ple: Toolbox

program
m

ing requires records and pointers. Som
e m

odern BA
SICs support records, but none w

e
are aw

are of support pointers w
ith the natural grace of C or Pascal. G

Soft BA
SIC does.

A
fter purchasing a new

 program
, you w

ould probably like to sit right dow
n at your com

puter
and try it out. W

e encourage you to do just that, and in fact, this m
anual is designed to help you.

Before getting started, though, w
e w

ould like to take som
e tim

e to suggest how
 you should

approach learning to use G
Soft BA

SIC.

A
bout the M

anual
This m

anual is your guide to G
Soft BA

SIC. To m
ake it easy for you to learn about the

system
, this m

anual has been divided into three m
ajor sections. The first part is called the U

ser’s
G

uide. It is a tutorial introduction to the developm
ent environm

ent, show
ing you how

 to create
BA

SIC program
s using G

Soft BA
SIC. The second part is called the Environm

ent Reference
M

anual. It is a w
orking reference to provide you w

ith in-depth inform
ation about the developm

ent
environm

ent you w
ill use to create G

Soft BA
SIC program

s. Part three is the Language Reference
M

anual. It contains inform
ation about the G

Soft BA
SIC program

m
ing language.

Regardless of your program
m

ing background, w
e recom

m
end reading all of this chapter and

the next, along w
ith any portions of Chapter 3 that interest you. Y

ou should skim
 the m

ajor
headings for the rem

ainder of the book so you know
 w

hat inform
ation is available, and

approxim
ately w

here to find it. Spend som
e tim

e brow
sing as you do this; you’ll find m

any
com

m
ands and features that you probably w

ouldn’t anticipate in a BA
SIC.

W
hile this m

anual w
ill teach you how

 to use G
Soft BA

SIC to w
rite and test program

s, it is
not a program

m
ing tutorial. It is prim

arily a reference m
anual, giving you a com

prehensive guide
to G

Soft BA
SIC in a form

at that m
akes it easy to look up specific inform

ation. Basic concepts

U
ser's G

uide

2 about program
m

ing in G
Soft BA

SIC are necessary to create useful, efficient program
s. If you are

already fam
iliar w

ith program
m

ing in som
e other language, especially another dialect of BA

SIC,
this reference m

anual is probably all you w
ill need to begin w

riting your ow
n program

s. If you are
new

 to BA
SIC, you can start w

ith our Learn to Program
 in G

Soft BASIC course, w
hich is

w
ritten specifically for G

Soft BA
SIC. Y

ou’ll find m
ore details about this course, and several other

books that m
ay be of interest, at the end of this chapter.

O
ther Books and R

eference M
aterials

This section lists a lot of books, but don’t be intim
idated by the list. Y

ou don’t actually need
any of them

 to use G
Soft BA

SIC, and very few
 people w

ill ever use all of them
. This list is here

to give you som
e ideas for further exploration, not as a list of required books!

If you are new
 to BA

SIC, you w
ill need to supplem

ent this m
anual w

ith a good beginner’s
book on the BA

SIC program
m

ing language. A
 com

panion course is available from
 the Byte

W
orks that teaches you the BA

SIC language and som
e basic techniques for program

m
ing. The

book is called Learn to Program
 in G

Soft BASIC, and it has one distinct advantage over any other
BA

SIC program
m

ing book: it is w
ritten specifically for G

Soft BA
SIC running on an A

pple IIG
S.

U
nlike C and Pascal, there is no w

idely accepted language standard or a com
m

on core set of
extensions to a standard language for BA

SIC. That m
akes using general BA

SIC program
m

ing
books tricky, but not im

possible. In general, books that are not w
ritten for a specific dialect of

BA
SIC should be fairly easy to use w

ith G
Soft BA

SIC. Y
ou’ll find m

any such books in your
local library or through on-line bookstores, or by special order from

 local bookstores. The recent
trend for books on bookstore shelves is tow

ards specific im
plem

entations of BA
SIC, though.

M
ost of these books are not suitable for use w

ith G
Soft BA

SIC.
If you w

ould like to learn to w
rite A

pple IIG
S toolbox program

s w
ith w

indow
s and pull dow

n
m

enus, w
e suggest Toolbox Program

m
ing in G

Soft BASIC, w
hich is a com

plete introduction to
the w

orld of toolbox program
m

ing. Y
ou w

ill eventually need a copy of the A
pple IIG

S Toolbox
Reference, volum

es 1 through 3, and Program
m

er’s Reference for System
 6.0.1, but these aren’t

needed right aw
ay. These books do not teach you about the toolbox, but they are essential

references for advanced toolbox program
m

ing. D
epending on the kind of program

m
ing you are

doing, you m
ay also need other reference books. The com

m
on ones are listed below

. Y
ou w

ill also
need som

e w
ay to create resource forks. O

ne w
ay is A

pple’s Rez com
piler, w

hich ships w
ith all

O
RCA

 languages and w
ith Toolbox Program

m
ing in G

Soft BASIC
.

Learn to Program
 in G

Soft BA
SIC

M
ike W

esterfield
Byte W

orks, Inc., A
lbuquerque, N

ew
 M

exico
A

s this m
anual is prepared, this book has not been released, but is planned. It w

ill be based on
an existing introductory program

m
ing course in program

m
ing w

hich has been used by thousands
of people to learn Pascal and C.

C
hapter 1: Introducing G

Soft BASIC3

This introductory BA
SIC program

m
ing course is w

ritten specifically for G
Soft BA

SIC
running on an A

pple IIG
S. It contains hundreds of com

plete program
s as exam

ples, as w
ell as

problem
s w

ith solutions.

Toolbox Program
m

ing in G
Soft BA

SIC
M

ike W
esterfield

Byte W
orks, Inc., A

lbuquerque, N
ew

 M
exico

A
s this m

anual is prepared, this book has not been released, but is planned. It w
ill be based on

an existing introductory program
m

ing course in program
m

ing w
hich has been used by thousands

of people to learn toolbox program
m

ing in Pascal and C.
This is the only self-paced course available for program

m
ing the A

pple IIG
S toolbox. U

nlike
the toolbox reference m

anuals, this is a course that teaches you how
 to w

rite program
s, not a

catalog of the various toolbox calls available on the A
pple IIG

S. It includes four disks filled w
ith

toolbox source code, as w
ell as an abridged toolbox reference m

anual, so you w
on’t have to buy all

of the toolbox reference m
anuals right aw

ay. It also com
es w

ith A
pple’s Rez com

piler and the full
version of the O

RCA
 shell.

Celestial BA
SIC: A

stronom
y O

n Y
our Com

puter
Eric Burgess
Sybex, Berkeley, CA

, 1982
This is one of m

y favorite program
m

ing books of all tim
e. If you’re at all interested in

astronom
y, it’s w

orth the effort to find a copy of this classic book. It has a great collection of
sim

ple BA
SIC program

s that perform
 a w

ide variety of calculations, like planet positions, m
oon

phases, dates for Easter, and so forth.

BA
SIC Com

puter G
am

es
D

avid H
. A

hl, Ed.
W

orkm
an Publishing, N

ew
 Y

ork, 1978
A

n am
azingly diverse collection of short BA

SIC gam
es. This old book is w

orth chasing
dow

n, too.

Technical Introduction to the A
pple II GS

A
pple Com

puter
A

ddison-W
esley Publishing Com

pany, Inc., Reading, M
assachusetts

A
 good basic reference source for the A

pple IIG
S.

U
ser's G

uide

4 A
pple II GS

H
ardw

are Reference
A

pple II GS Firm
w

are Reference
A

pple Com
puter

A
ddison-W

esley Publishing Com
pany, Inc. Reading, M

assachusetts
These m

anuals provide inform
ation on how

 the A
pple IIG

S w
orks.

A
pple II GS Toolbox Reference: V

olum
e I

A
pple II GS Toolbox Reference: V

olum
e II

A
pple II GS Toolbox Reference: V

olum
e III

A
pple Com

puter
A

ddison-W
esley Publishing Com

pany, Inc., Reading, M
assachusetts

These volum
es provide essential inform

ation on how
 the tools w

ork—
the param

eters you need
to set up and pass, the calls that are available, etc. Y

ou m
ust have these books to use the

A
pple IIG

S toolbox effectively.

Program
m

er’s Reference for System
 6.0.1

A
pple Com

puter
Byte W

orks, Inc., A
lbuquerque, N

ew
 M

exico
The first three volum

es of the toolbox reference m
anual cover the A

pple IIG
S toolbox up

through System
 5. This book covers the new

 features added to the toolbox and G
S/O

S in
System

 6.

A
pple II GS G

S/O
S Reference

A
pple Com

puter
A

ddison-W
esley Publishing Com

pany, Inc., Reading, M
assachusetts

This m
anual provides inform

ation on the underlying disk operating system
. Y

ou w
ill need

this reference if you w
ant to bypass G

Soft BA
SIC’s build-in file handling com

m
ands. Y

ou m
ight

w
ant to do that for greater efficiency, m

ore control, or to access file and disk handling features that
are not built into G

Soft BA
SIC.

O
R

C
A

/M : A
 M

acro A
ssem

bler for the A
pple II GS

M
ike W

esterfield and Phil M
ontoya

Byte W
orks, Inc., A

lbuquerque, N
M

O
RCA

/M
 is the standard m

acro assem
bler for the A

pple IIG
S. W

hile you cannot m
ix other

languages directly w
ith G

Soft BA
SIC, you can call user tools, know

n as libraries, from
G

Soft BA
SIC. O

RCA
/M

 is the ideal choice for w
riting user tools.

5

C
hapter 2 – G

etting Started

This chapter describes the three m
ajor com

ponents of G
Soft BA

SIC, helping you decide
w

hich environm
ent you w

ant to use. It also describes installing and starting G
Soft BA

SIC.

Setting U
p G

Soft B
A

SIC

B
ackups

A
s w

ith any program
, the first step you should take is to m

ake a backup copy of the original
disks. To do this, you w

ill need tw
o blank disks and a copy program

—
A

pple’s Finder w
ill do the

job, or you can use any other copy program
 if you have a personal favorite. If you are unfam

iliar
w

ith copying disks, refer to the docum
entation that cam

e w
ith your com

puter.
A

s alw
ays, copies are for your personal use only. U

sing the copies for any purpose besides
backing up your program

 is a violation of federal copyright law
s. If you w

ill be using
G

Soft BA
SIC in a classroom

 or w
ork situation w

here m
ore than one copy is needed, please

contact the Byte W
orks, Inc. for details on our licensing policies.

R
egistration

From
 tim

e to tim
e, w

e m
ake im

provem
ents to G

Soft BA
SIC. Y

ou should return your
registration card so w

e can notify you w
hen the softw

are is im
proved. W

e also notify our
custom

ers w
hen w

e release new
 products, often offering substantial discounts to those w

ho already
have one of our program

s.

System
 R

equirem
ents

To use G
Soft BA

SIC, you w
ill need an A

pple IIG
S w

ith at least 1.125M
 of m

em
ory for

RO
M

 3 m
achines, or 1.25M

 of m
em

ory w
ith RO

M
 1 m

achines. Y
ou can actually run

G
Soft BA

SIC w
ith less m

em
ory, but w

e don’t recom
m

end less.
Y

ou w
ill also need at least tw

o disk drives, and at least one of those m
ust be a 3.5” disk drive.

To use all of the features and utilities included w
ith G

Soft BA
SIC, you w

ill need a second 800K
floppy disk drive or a hard drive w

ith 1.5M
 of free space.

The M
akeRuntim

e utility requires System
 6.0 or System

 6.0.1. G
Soft BA

SIC itself can be
used w

ith System
 5.0.4, although w

e recom
m

end System
 6.0.1. Program

s w
ritten in

G
Soft BA

SIC require System
 5.0.4 or better, although they obviously need a later operating

system
 if the program

 itself m
akes calls that only exist in the later O

/S.

U
ser's G

uide

6

G
Soft BA

SIC supports color m
onitors, printers and accelerator cards, but does not require

them
.

R
unning

G
Soft B

A
SIC

Y
ou do not need to do any initialization to use G

Soft BA
SIC. A

fter booting your com
puter,

insert the disk labeled G
Soft BASIC

 in your 3.5” disk drive and run G
Soft.Sys16. A

fter a few
m

om
ents you w

ill be in the G
Soft BA

SIC shell, ready to w
rite program

s. If you’re already
fam

iliar w
ith A

pplesoft BA
SIC, you’ll be able to w

rite program
s im

m
ediately—

but be sure and
scan the m

anual, because there’s a lot m
ore to G

Soft BA
SIC!

U
sing G

Soft B
A

SIC
 from

 Floppy D
isks

If you’re a bare-bones m
inim

alist, you can actually run G
Soft BA

SIC from
 a single 3.5”

floppy disk. H
ere’s w

hat you need to do:

•
M

ake a copy of the system
 disk that you use now

 to boot your com
puter.

•
Erase the Finder, ProD

O
S 8, the tools, control panels and fonts from

 this copy. The
specific files to delete from

 the System
 6.0.1 boot disk are show

n below
; this list w

ill be
slightly different for other version of the operating system

. For directories, leave the
directory intact, but delete the contents.

Finder
P8CDevs:
desk.accs:ControlPanel
Tools:
Fonts:

•
Copy G

Soft.Sys16 from
 the G

Soft BASIC
 disk to your boot disk.

This gives you a disk that w
ill boot directly into G

Soft BA
SIC. It leaves plenty of room

 for
your program

s.
Y

ou’ll probably w
ant to copy the full screen editor to your disk, too. It’s not essential—

you
can enter program

s w
ith line num

bers w
ithout it—

but a full screen editor is alm
ost too nice to

consider doing w
ithout. To add the full screen editor, copy the folder nam

ed Shell and all its
contents to your boot disk.

Finally, you m
ight w

ant to copy the file G
SoftTools.gst from

 the G
Soft BASIC

 disk. This
gives you access to the A

pple IIG
S toolbox. Y

ou m
ay not w

ant to w
rite toolbox program

s, but
Q

uickD
raw

 II is nice even for sim
ple graphics program

s.

C
hapter 2: G

etting Started7

The disk you’ve just built is a perfect system
 for w

riting short program
s. If you added the tool

interface file, G
SoftTools.gst, you can w

ork through Learn to Program
 in G

Soft BASIC w
ith this

disk.

Installing G
Soft BA

SIC
 on a H

ard D
isk

If you have a hard disk, you should install G
Soft BA

SIC on your hard disk. It w
ill run faster,

and you w
on’t have to look for utilities on the second disk.

Start by running the Installer from
 the G

Soft BASIC
 disk. There are four installer scripts:

G
Soft B

A
SIC

U
se this option if you do not have any other O

RCA
 languages. This installs all of

G
Soft BA

SIC and the utilities that are not designed to run under the O
RCA

 shell.

G
Soft B

A
SIC

for

O
R

C
A

M
any people already ow

n an O
RCA

 program
m

ing language or another product that includes
an O

RCA
 com

patible shell. W
hile G

Soft BA
SIC does not com

e w
ith a copy of the O

RCA
 shell,

you can install it in an O
RCA

 com
patible shell if you already have one.

U
se this option if you have any O

RCA
 language w

ith a version num
ber of 2.0 or greater.

This option installs all of the G
Soft BA

SIC utilities designed to run under the O
RCA

 shell.
Installing G

Soft BA
SIC changes your SysCm

nd and SysTabs files. These files are com
m

only
custom

ized as you add languages and utilities. The files supplied w
ith G

Soft BA
SIC contain

appropriate com
m

and and tab settings for O
RCA

/M
, O

RCA
/Pascal, O

RCA
/C, O

RCA
/M

odula-1
and O

RCA
/Integer BA

SIC, as w
ell as G

Soft BA
SIC. Including com

m
and and tab settings for

languages you do not ow
n does not cause problem

s, but installing this file could w
ipe out any

custom
 changes you have m

ade. If you have m
ade changes, m

ake a copy of your SysCm
nd and

SysTabs file before installing G
Soft BA

SIC. A
fter Installing G

Soft BA
SIC, replace your original

files, then m
ake the follow

ing changes by hand.
 A

dd these lines to your O
RCA

:Shell:SysCm
nd file, placing them

 in alphabetical order
com

pared to the existing entries:

BASIC *L 260 GSoft BASIC
COMPILETOOL U GSoft BASIC Tool Compiler

Y
ou’ll also need a new

 tab line in the O
RCA

:Shell:SysTabs file. Each language uses three
lines. The easiest w

ay to create the three lines for G
Soft BA

SIC is to start by copying the three
existing lines for language 4. Because the last line is long, it w

ill look like four lines on the
screen. The lines you need to copy w

ill look like this:

U
ser's G

uide

8

410011001
000000001000000010000000100000001000000010000000100000001000000010000000
100000001000000010000000100000001000000010000000100000001000000010000000
100000001000000010000000100000001000000010000000100000001000000010000000
100000001000002

A
fter copying these lines, paste them

 in your SysTabs file at the proper location for language
num

ber 260. The language num
ber is the first line of the three line set, or 4 in the sam

ple you see
above. Change the language num

ber to 260 and save the file.
If you are using an older version of O

RCA
, the second line m

ay have few
er characters on the

second line—
10011001 in the exam

ple. Y
ou can use the shorter version you see in your existing

SysTabs file or add all of the characters you see in the exam
ple; it w

on’t m
atter at all to the

existing editor.

G
Soft B

A
SIC

 for O
R

C
A

 and Finder

This option installs both of the versions of G
Soft BA

SIC described above. U
se this option if

you w
ant to use G

Soft BA
SIC from

 the Finder and from
 the O

RCA
 shell.

G
Soft.Sys16, the version of G

Soft BA
SIC that runs from

 the Finder, is installed in the
O

RCA
 folder. This saves a little space, since the editor, sam

ples, and som
e utilities are not

installed tw
ice. Y

ou should still m
odify the SysCm

nd and SysTabs files as described above.

.PR
IN

T
E

R

D
river

This installs the .PRIN
TER driver, a G

S/O
S driver and accom

panying Init, CD
ev and CD

A
that allow

s you to print to any standard text printer from
 G

Soft BA
SIC. Install this driver for all

versions of G
Soft BA

SIC. See Chapter 4 for a description of the driver.

T
he T

hree W
orlds of G

Soft B
A

SIC

T
he G

Soft B
A

SIC
 Shell

This m
anual describes using G

Soft BA
SIC from

 the G
Soft BA

SIC shell, a com
plete, self

contained program
m

ing environm
ent that launches directly from

 the Finder. It’s essentially the
classic A

pplesoft BA
SIC program

m
ing environm

ent on steroids. M
ost of the fam

iliar old
com

m
ands are there, along w

ith som
e nice new

 ones, like the full screen editor.
Incidentally, shell is the nam

e for a program
 that lets you type com

m
ands like CA

TA
LO

G
,

then carries them
 out.

This is a great program
m

ing environm
ent for hacking out quick solutions to problem

s,
learning to program

, and w
riting m

id-sized text and graphics program
s. It starts to fall a little short

C
hapter 2: G

etting Started9

if you decide to w
rite desktop program

s, m
ostly because you need som

e w
ay to create resource

forks, and you can’t do that from
 w

ithin the G
Soft BA

SIC shell.

U
sing G

Soft B
A

SIC
 from

 the O
R

C
A

 Shell

The O
RCA

 program
m

ing languages ship w
ith a m

uch m
ore advanced shell. There are three

advantages of this shell over the G
Soft BA

SIC shell. First, the O
RCA

 shell supports A
pple’s Rez

com
piler, w

hich is one w
ay to create resource forks for desktop program

s. The second advantage is
that the O

RCA
 shell doesn’t reform

at your program
s like the G

Soft BA
SIC shell. (Som

e people
m

ay not consider that an advantage!) The program
 is saved in an O

RCA
 SRC file, w

hich saves the
source code as A

SCII characters; these source files are left in exactly the form
at you type them

.
Finally, if your program

 needs user tools, you can develop the user tool and the G
Soft BA

SIC
application from

 the O
RCA

 shell.
There are several disadvantages, though. First, the O

RCA
 shell is larger, so it needs m

ore
RA

M
 and disk space. It’s also harder to learn to use, m

ostly because of the sheer num
ber of

com
m

ands and features. G
Soft BA

SIC program
s start slow

er, because program
s are stored as plain

A
SCII files, w

hich m
ust be converted to G

Soft BA
SIC files before they can be executed. This

conversion process m
ore than doubles the am

ount of m
em

ory required, too.
O

n balance, w
e recom

m
end using the G

Soft BA
SIC shell for m

ost G
Soft BA

SIC
program

m
ing. Sw

itch to the O
RCA

 shell for extrem
ely large program

s, toolbox program
s, or

program
s that need user tools.

The O
RCA

 shell ships w
ith O

RCA
/M

, O
RCA

/C, O
RCA

/Pascal, O
RCA

/M
odula-2 and

Toolbox Program
m

ing in G
Soft BASIC

.

C
reating G

Soft BA
SIC

 Program
s that R

un From
 the Finder

Y
ou m

ay run m
ost, if not all, of your program

s directly from
 the G

Soft BA
SIC shell, and

never feel the need to launch them
 directly from

 the Finder. The M
akeRuntim

e utility lets you
convert the program

 to a form
 that w

ill launch from
 the Finder, though.

Converting the program
 to run from

 the Finder adds about 90K
 to the size of the disk file. The

RA
M

 used to run the program
 actually drops, but it’s not a significant difference. These program

s
can also run on com

puters w
here G

Soft BA
SIC is not installed.

Program
s converted to run from

 the Finder can’t be changed. Y
ou need to w

rite and change
program

s from
 w

ithin one of the tw
o program

m
ing environm

ents described above.

11

C
hapter 3 – Program

m
ing on the A

pple IIG
S

The A
pple IIG

S is a very flexible m
achine. W

ith it, you can w
rite program

s in a traditional
text environm

ent, in a high-resolution graphics environm
ent, or in a M

acintosh-style desktop
environm

ent. G
Soft BA

SIC lets you w
rite program

s for all of these environm
ents.

In this chapter, w
e w

ill look at each of the program
m

ing environm
ents in turn, exam

ining
how

 you use G
Soft BA

SIC to w
rite program

s, w
hat tools and libraries are available, and w

hat
your program

s can do in each of the environm
ents. This chapter assum

es you are typing and
running the program

s as you go.

T
ext Program

s
Text program

s are by far the easiest kind of program
s to w

rite. A
s an exam

ple, w
e’ll create a

sim
ple text program

 to show
 how

 m
any paym

ents w
ill be needed to pay off a loan for any given

interest rate, loan am
ount, and paym

ent. The variables are placed at the top of the program
 as

constants, so there is no input.
This is actually the first tim

e w
e have created a program

 from
 scratch in this m

anual, so w
e

w
ill go over the steps involved fairly carefully. If you aren’t in the G

Soft BA
SIC program

m
ing

environm
ent, start it now

 by launching G
Soft.Sys16 from

 the Finder. Y
ou’ll see a header and a }

character follow
ed by the cursor; from

 here you can enter various com
m

ands. The com
m

ands are
described in Chapter 5, but w

e’ll go over all of the ones you w
ill use as w

e w
rite the program

.
Start by typing ED

IT and pressing the return key. This puts you into the G
Soft BA

SIC full
screen editor. Type in the program

 show
n below

. The basic com
m

ands in the editor are pretty
sim

ilar to m
ost A

pple IIG
S text based editors, so you m

ay not have any trouble using it. If you
need to look up a specific editor com

m
and, glance through Chapter 6. Be sure and give Com

m
and-

? a try—
this displays an on-line help screen w

ith com
m

on com
m

ands.
Spacing and letter case generally aren’t too critical. G

Soft BA
SIC w

ill reform
at the program

and convert identifiers to uppercase w
hen you exit the editor. A

lso, all of the lines that start w
ith

an exclam
ation point are com

m
ents; you can skip them

 if you’d like. The sam
e is true of the D

IM
statem

ents w
hich end w

ith a colon and an exclam
ation point. The colon lets you add a new

statem
ent to the sam

e physical line, som
ething this program

 uses to describe how
 the variables are

used. Y
ou can leave off everything from

 the colon to the end of the line.
W

ith those exceptions, though, be sure to type the program
 exactly as you see it, especially if

you are new
 to program

m
ing. BA

SIC is flexible w
hen it reads your program

. but until you know
w

hat changes are allow
ed, stick w

ith form
atting that you know

 w
orks!

A
lthough the point of this exam

ple is to show
 you how

 to type in a program
 from

 scratch,
it’s only fair to point out that the follow

ing exam
ple is also on the G

Soft disk in the folder
:G

Soft:Sam
ples:Text.Sam

ples directory. If you have installed G
Soft BA

SIC on a hard disk, the
file is in the Text.Sam

ples folder there, too.

U
ser's G

uide

12

! --
!! Finance
!! This program prints the balance on an
! account for monthly payments, along with the
! total amount paid so far.
!! --
!LOANAMOUNT = 10000.0:! amount of the loan
PAYMENT = 600.0:! monthly payment
INTEREST = 15:! yearly interest (as %)
!DIM BALANCE:! amount left to pay
DIM MONTHLYINTEREST:! multiplier for interest
DIM PAID:! total amount paid
DIM MONTH AS INTEGER :! month number
DIM USE$:! format string
!! set up the initial values
!BALANCE = LOANAMOUNT
PAID = 0
MONTH = 0
MONTHLYINTEREST = 1.0 + INTEREST / 1200.0
!! write out the conditions
!PRINT USING "Payment schedule for a loan of $$####.##";LOANAMOUNT
PRINT USING "with monthly payments of $$##.## at an";PAYMENT
PRINT USING "interest rate of #%.";INTEREST
PRINT
PRINT " month balance amount paid"
PRINT " ----- ------- -----------"
USE$ = " ############## $$#########.## $$#########.##"
!! check for payments that are too small
!IF BALANCE * MONTHLYINTEREST - BALANCE >= PAYMENT THEN
 PRINT "The payment is too small!"

C
hapter 3: Program

m
ing on the Apple IIG

S13

ELSE
 WHILE BALANCE > 0
 ! add in the interest
 BALANCE = BALANCE * MONTHLYINTEREST
 ! make a payment
 IF BALANCE > PAYMENT THEN
 BALANCE = BALANCE - PAYMENT
 PAID = PAID + PAYMENT
 ELSE
 PAID = PAID + BALANCE
 BALANCE = 0
 END IF
 ! update the month number
 MONTH = MONTH + 1
 ! write the new statistics
 PRINT USING USE$;MONTH, BALANCE, PAID
 WEND
END IF

O
nce the program

 is typed in, you should save it to disk. Y
ou m

ay think you saved it w
hen

you left the editor; after all, the editor asked you if you w
anted to save the changes. Y

ou only
saved the w

orking copy G
Soft BA

SIC used, though—
there is no perm

anent copy on disk.
There are three different save com

m
ands; you choose one based on w

hether you w
ant to save

the program
 in the natural form

at for G
Soft BA

SIC, as a text file, or in the natural form
at for

com
piled program

m
ing languages. A

s a general rule, it’s best to save the program
 in

G
Soft BA

SIC’s preferred form
at using the SA

V
E com

m
and. To save your program

 in the sam
e

folder as G
Soft BA

SIC itself, type

SAVE Finance

O
f course, you can use w

hatever file nam
e you prefer. If your disk is a ProD

O
S form

at disk, file
nam

es m
ust start w

ith a letter, and can contain up to 15 characters. The rem
aining characters can

be letters, num
bers or periods.

If you’d like to explore these com
m

ands in m
ore depth, start w

ith Chapter 5. The three save
com

m
ands are SA

V
E, TSA

V
E and SSA

V
E. Y

ou’ll also find details about the file form
ats in

Types of Files U
sed by G

Soft BASIC, near the beginning of the chapter. File N
am

es in Chapter
14 goes into detail about valid file nam

es. These chapters also discuss navigation through the
directory structure of a typical disk, as w

ell as how
 to type full and partial path nam

es. Y
ou can

safely skip all of those details until later, saving your program
s in the sam

e directory as
G

Soft BA
SIC, but even if you don’t look into these topics now

, it’s good to know
 w

here the
inform

ation is w
hen you do need it.

W
ith the program

 safely on a disk, protected from
 all but the m

ost severe accident, it’s tim
e to

run your program
. Type:

RUN

U
ser's G

uide

14 If you typed everything correctly, you’ll see the results scroll across the screen. W
ith the figures

show
n, som

e of the inform
ation w

ill scroll off of the screen; you can change the interest rate, the
size of the paym

ent, or the am
ount of the loan to see the top lines.

If you didn’t type everything correctly you’ll see som
e form

 of error m
essage. Type ED

IT to
get back to the editor, m

ake any necessary changes, leave the editor, then try the program
 again.

Rem
em

ber to SA
V

E occasionally to guard against disaster.
O

ne of the classic interactive com
puter gam

es of all tim
e w

ill serve as our second exam
ple,

giving us a chance to explore text input and accessing the A
pple IIG

S toolbox. In this sim
ple

gam
e, the com

puter w
ill pick a distance to a target, and you pick a firing angle for a cannon. The

com
puter then lets you know

 if you hit the target, or if you m
issed and by how

 m
uch.

! --
!! Artillery
!! This classic interactive text game lets you
! pick the angle of your artillery gun in
! an attempt to knock out the enemy position.
! The computer picks a secret distance. When
! you fire, you will be told how much you
! missed by, and must fire again. The object
! is to hit the target with the fewest shells.
!! --
!BLASTRADIUS = 50.0:! maximum distance from target for a hit
DTR = 0.01745329:! convert from degrees to radians
VELOCITY = 434.6:! muzzle velocity
!! choose a distance to the target
!DISTANCE = RND (1) * 5900.0
!! not done yet...
!DONE = 0
TRIES = 1
!! shoot 'til we hit it
!DO !
 ! get the firing angle
 !
 INPUT "Firing angle: ";ANGLE

C
hapter 3: Program

m
ing on the Apple IIG

S15

 !
 ! compute the muzzle velocity in x, y
 !
 ANGLE = ANGLE * DTR
 VX = COS (ANGLE) * VELOCITY
 VY = SIN (ANGLE) * VELOCITY
 !
 ! find the time of flight
 ! (velocity = acceleration * flightTime, two trips)
 !
 FLIGHTTIME = 2.0 * VY / 32.0
 !
 ! find the distance
 ! (distance = velocity * flightTime)
 !
 X = VX * FLIGHTTIME
 !
 ! see what happened...
 !
 IF ABS (DISTANCE - X) < BLASTRADIUS THEN
 DONE = 1
 PRINT "A hit, after ";TRIES;
 IF TRIES = 1 THEN
 PRINT " try!"
 ELSE
 PRINT " tries!"
 END IF
 SELECT CASE TRIES
 CASE 1
 PRINT "(A lucky shot...)"
 CASE 2
 PRINT "Phenomenal shooting!"
 CASE 3
 PRINT "Good shooting."
 CASE ELSE
 PRINT "Practice makes perfect - try again."
 END SELECT
 ELSE IF DISTANCE > X THEN
 PRINT USING "You were short by # feet.";DISTANCE - X
 ELSE
 PRINT USING "You were over by # feet.";X - DISTANCE
 END IF
 TRIES = TRIES + 1
LOOP WHILE NOT DONE

W
hen you run the program

, you w
ill see a prom

pt for the firing angle follow
ed by a w

hite
box. This w

hite box is the cursor used by interactive text program
s. It lets you know

 that input is
expected by the program

. If you m
ake a m

istake, you can use the delete key to back space over

U
ser's G

uide

16 your input. In fact, you can use all of the line editing com
m

ands available w
hen you are typing

lines in the G
Soft BA

SIC shell. These com
m

ands are sum
m

arized in Chapter 5, The Line Editor.
If you get stuck in the m

iddle of the program
, or just get bored w

ith it, you can stop the
program

 by holding dow
n the control key and pressing C or by holding dow

n the com
m

and key
(the one w

ith the clover shape) and pressing the period key.

C
onsole C

ontrol C
odes

W
hen you are w

riting text program
s that w

ill execute on a text screen, one of the things you
should know

 about are the console control codes. These are special characters that, w
hen w

ritten to
the standard text output device, cause specific actions to be taken. U

sing console control codes,
you can beep the speaker, m

ove the cursor, or even turn the cursor off. The console control codes
are covered in A

ppendix B.
K

eep in m
ind that these console control codes only w

ork w
ith the text screen. Y

ou can w
rite

text to a variety of places, such as printers, the graphics screen, or disk files, but the console
control codes only w

ork w
ith the text display device. There is m

ore than one console, too. The
codes show

n in A
ppendix B apply to the console driver built into G

Soft BA
SIC. If you are

running G
Soft BA

SIC from
 the O

RCA
 shell, or from

 som
e other O

RCA
 com

patible shell, you
should refer to the docum

entation for that shell to find out w
hich console it uses and w

hat control
codes are available.

Stand-A
lone Program

s

So far, our exam
ples have executed from

 G
Soft BA

SIC’s shell, or perhaps you installed
G

Soft BA
SIC in the O

RCA
 shell and executed it from

 there. Either w
ay, the program

 can’t be
used by som

eone w
ho does not ow

n G
Soft BA

SIC.
There is a third version of G

Soft BA
SIC that is designed to run from

 the Finder, but it isn’t
one you can use to w

rite program
s. Instead, you use the M

akeRuntim
e utility, described in the

next chapter, to create an application you can run from
 the Finder using a program

 you’ve already
w

ritten. O
f course, these program

s can also run from
 other program

 launchers, as long as they can
run program

s designed to run from
 A

pple’s Finder.
Y

ou m
ight think that you have to w

rite a program
 w

ith pull dow
n m

enus, w
indow

s, and the
w

hole toolbox interface before it can run from
 the Finder, but that sim

ply isn’t true.
G

Soft BA
SIC runs from

 the Finder, after all, and it uses a text interface. The fact is, you can run
any G

Soft BA
SIC program

 from
 the Finder after attaching the run-tim

e m
odule to the program

w
ith M

akeRuntim
e. The A

rtillery program
 you just typed in is a great program

 to try this w
ith.

There is one, and only one, problem
 you have to keep in m

ind w
hen converting text program

s
to run under the Finder. In a text environm

ent like G
Soft BA

SIC’s shell, you generally end a text
program

 by sim
ply letting it finish, just like our Finance program

 did. That w
orks w

ell in a text
environm

ent, but not from
 the Finder. A

s soon as the program
 finishes, it returns to the Finder,

and you can’t see the text screen anym
ore! If a program

 presents inform
ation and quits, like the

Finance exam
ple, be sure to use a statem

ent like

C
hapter 3: Program

m
ing on the Apple IIG

S17

INPUT "Press the RETURN key to return to the Finder."; A$

at the end of the program
.

G
raphics Program

s
A

 large subset of program
s need to display graphics inform

ation of som
e kind, but aren’t

necessarily w
orth the effort of w

riting a com
plete desktop program

. These include sim
ple fractal

program
s, program

s to display graphs, slide show
 program

s, and so forth. In this book, these
program

s are called graphics program
s.

Y
our First G

raphics Program

W
riting a graphics program

 w
ith G

Soft BA
SIC is really quite easy. In general, all you have

to do is sw
itch to the graphics display w

ith the H
G

R statem
ent and issue Q

uickD
raw

 II
com

m
ands. Q

uickD
raw

 II is the largest and m
ost com

m
only used tool in the A

pple IIG
S toolbox,

so it’s also a good place to get started along the road to w
riting desktop program

s. For extrem
ely

sim
ple tasks, like draw

ing fractals or plotting graphs, you m
ight even be able to get by w

ith the
com

m
ands built into G

Soft BA
SIC. They are described in Chapter 15.

If you w
ant to use the extended graphics com

m
ands available in Q

uickD
raw

 II, you w
ill need

a copy of Apple IIG
S Toolbox Reference , Volum

e 2. This book w
as w

ritten by A
pple Com

puter,
and is published by A

ddison W
esley; reprints are available from

 the Byte W
orks, Inc. W

hile the
toolbox reference m

anual is a reference, and thus not an easy book to read, it is essential that you
have a copy to answ

er your specific questions about the toolbox. This section show
s a couple of

exam
ples so you know

 how
 to create graphics program

s using G
Soft BA

SIC, but there is a lot
m

ore to Q
uickD

raw
 II than you see here.

O
ur first Q

uickD
raw

 II sam
ple, w

hich draw
s spirals on the graphics screen, show

s the
com

m
ands M

O
V

ETO
, w

hich initializes the place w
here Q

uickD
raw

 II w
ill start draw

ing from
(called the pen location), and LIN

ETO
, w

hich draw
s a line from

 the current pen location to the
specified spot, m

oving the pen location in the process.

HGR
THETA = 0.0
R = 100.0
MOVETO (320, 100)
WHILE R > 0.0
 THETA = THETA + 3.1415926535 / 20.0
 LINETO (CINT (COS (THETA) * R * 1.6) + 160, CINT (SIN (THETA) * R) + 100)
 R = R - 0.15
WEND
GET S$

U
ser's G

uide

18

Save the program
 as Spiral, then run it. K

eep in m
ind that the program

 w
aits for you to press

a key after it finishes; this gives you a chance to stare at the pretty picture before it goes aw
ay.

Program
m

ing on the D
esktop

M
ost people w

e talk to w
ant to w

rite program
s that use A

pple’s desktop interface. These
program

s are the ones w
ith m

enu bars, m
ultiple w

indow
s, and the friendly user interface

popularized by the M
acintosh com

puter. If you fall into that group of people, this section w
ill tell

you how
 to get started.

A
nyone w

ho tells you that w
riting desktop program

s is easy, or can be learned by reading a
few

 short paragraphs, or even a chapter or tw
o of a book, is probably a descendent of som

eone w
ho

sold snake oil to your grandm
other to cure her arthritis. It just isn’t so. Learning the A

pple IIG
S

toolbox w
ell enough to w

rite com
m

ercial-quality program
s is every bit as hard as learning a new

program
m

ing language. In effect, that’s exactly w
hat you w

ill be doing. The A
pple IIG

S Toolbox
Reference M

anuals com
e in four large volum

es. M
ost of the pages are devoted to brief descriptions

of the tool calls—
about one call per page. It takes tim

e to learn about all of those calls.
Fortunately, you don’t have to know

 about each and every call to w
rite desktop program

s.

Learning the Toolbox

A
s w

e m
entioned, learning to w

rite desktop program
s takes about the sam

e am
ount of tim

e
and effort as learning to program

 in BA
SIC. If you don’t already know

 how
 to program

 in BA
SIC,

learn BA
SIC first! Concentrate on text and graphics program

s until you have m
astered the

language, and only then m
ove on to desktop program

m
ing.

This doesn’t m
ean that you need to know

 everything there is to know
 about BA

SIC, but you
should feel com

fortable w
riting program

s that are a few
 hundred lines long, and you should

understand how
 to use records and pointers, since the toolbox m

akes heavy use of these features.
There is a com

panion course for G
Soft BA

SIC called Learn to Program
 in G

Soft BASIC. It
teaches you BA

SIC and som
e fundam

ental concepts like sorting, linked lists, and dealing w
ith

files. It’s w
ritten specifically for this language and the A

pple IIG
S; it’s a great place to start. If

you w
ould like m

ore inform
ation about this course, contact the Byte W

orks, Inc.
The toolbox itself is very large. The Apple IIG

S Toolbox Reference M
anual is a three volum

e
set that is basically a catalog of the hundreds of tool calls available to you. These three volum

es
cover the tools up through System

 5.0; the additions in System
 6.0 and 6.0.1 are covered in

Program
m

er’s Reference for System
 6.0.1, available from

 the Byte W
orks. This four-volum

e set is
an essential reference w

hen you are w
riting your ow

n toolbox program
s. If your file input and

output needs are advanced, you m
ay also need to add Apple IIG

S G
S/O

S Reference, available as a
reprint from

 the Byte W
orks, Inc. A

 lot of people have tried to w
rite toolbox program

s w
ithout

these m
anuals. I can’t nam

e a single one that succeeded.
A

 lot of people have been critical of the toolbox reference m
anuals because they do not teach

you to w
rite toolbox program

s, but that’s a lot like being critical of the O
xford English D

ictionary
because it doesn’t teach you how

 to w
rite a book. The toolbox reference m

anuals are a detailed,

C
hapter 3: Program

m
ing on the Apple IIG

S19

technical description of the toolbox, not a course teaching you how
 to use the tools. Toolbox

Program
m

ing in G
Soft BASIC does teach you the toolbox, though. This self-paced course also

includes an abridged toolbox reference m
anual, so you can learn to use the toolbox before you

spend a lot of m
oney buying the four volum

e toolbox reference m
anual. This course is also

available from
 the Byte W

orks, Inc.
A

ll of this is not m
eant to frighten you aw

ay. A
nyone w

ho can learn a program
m

ing language
can learn to w

rite desktop program
s. U

nfortunately, too m
any people approach desktop

program
m

ing w
ith the attitude, fostered by som

e books and m
agazine articles, that they can learn

to w
rite desktop program

s in an evening, or at m
ost a w

eekend. This leads to frustration and
usually failure. If you approach desktop program

m
ing know

ing it w
ill take som

e tim
e, but w

illing
to invest that tim

e, you w
ill succeed.

H
ardw

are R
equirem

ents

M
ost program

m
ing languages use individual tool interface files, one per tool; these interface

files are often plain typed text. This takes a lot of room
, and as a result, you really need a hard

drive to w
rite toolbox program

s w
ith those languages. G

Soft BA
SIC is different. Y

ou can w
rite

toolbox program
s on any com

puter w
ith tw

o 800K
 floppy disk drives—

text program
s are easy to

w
rite on a com

puter w
ith just one 800K

 floppy disk drive. W
e still recom

m
end a hard drive,

though. It m
akes your com

puter boot faster, and gives you lots of w
orkspace.

The biggest problem
 w

ith toolbox program
m

ing using G
Soft BA

SIC is that you need som
e

w
ay to create resource forks. O

ne w
ay to do this is w

ith A
pple’s resource com

piler, w
hich ships

w
ith all of the O

RCA
 languages and w

ith Toolbox Program
m

ing in G
Soft BASIC. The big

problem
 w

ith A
pple’s resource com

piler is that it requires the O
RCA

 shell, so you’re forced to use
this larger, m

ore com
plicated program

m
ing environm

ent. It also com
es w

ith Toolbox
Program

m
ing in G

Soft BASIC
.

The other thing you w
ill need to w

rite any large program
 is m

ore than 1.25M
 of m

em
ory.

Y
ou can squeak by w

ith 1.25M
 of m

em
ory for sm

all toolbox program
s, but you’ll run into

m
em

ory problem
s before long. W

e recom
m

end 2M
 or m

ore of m
em

ory for toolbox program
m

ing.

21

C
hapter 4 – G

Soft BA
SIC

 U
tilities

This chapter describes the various utilities and support tools that com
e w

ith G
Soft BA

SIC.
Y

ou'll probably never use som
e of these utilities, w

hile others w
ill be useful from

 alm
ost your

first program
.

The .PRIN
TER driver is used both by BA

SIC itself and by the program
m

ing environm
ent to

print program
 listings and other pages that only contain text. Y

ou m
ay w

ant to look at the
inform

ation about the .PRIN
TER driver right aw

ay.
M

akeRuntim
e is a utility you’ll probably use eventually. It takes a BA

SIC program
 and

converts it into an executable program
 that launches directly from

 the Finder, even on com
puters

w
here G

Soft BA
SIC is not installed. Y

ou can safely skip it until you have a program
 you w

ant to
convert.

M
ost people w

ill never use Com
pileTool, w

hich is an advanced program
m

er utility used to
create tool interface files for tools and user tools; and only people w

ho already ow
n another O

RCA
language can use the O

RCA
 Shell version of G

Soft BA
SIC. Skip these sections entirely if they

do not apply to you.

Printing W
ith the .PR

IN
TER

 D
river

The operating system
 on the A

pple IIG
S gives you a num

ber of w
ays to w

rite to a printer,
but none of them

 can be used w
ith standard file w

rite com
m

ands, w
hich is the w

ay you w
ould

w
rite text to a printer on m

any other com
puters. O

n the other hand, G
S/O

S does allow
 the

installation of custom
 drivers, and you can use G

S/O
S file output com

m
ands to w

rite to a custom
driver. O

ur solution to the problem
 of providing easy to use text output to a printer is to add a

custom
 driver called .PRIN

TER.
There are tw

o w
ays to use the .PRIN

TER driver from
 G

Soft BA
SIC. Y

ou can print directly
from

 your BA
SIC program

s by opening .PRIN
TER as a file and w

riting text; this m
ethod is

described in detail in Printing, found in Chapter 14. Y
ou can also list files to the printer w

ith the
PR com

m
and, described in Chapter 5. This section describes how

 to install and configure the
printer driver for your particular printer.

Installing .PR
IN

T
E

R

.PRIN
TER is a RA

M
 based driver, so it m

ust be installed on your boot disk before you can
use the driver. There is an installer script on the G

Soft BA
SIC install disk that w

ill copy the
correct file for you.

Environm
ent R

eference M
anual

22 C
onfiguring .PR

IN
T

E
R

A
ll printers are not created equal, so any printer driver m

ust com
e w

ith som
e m

ethod to
configure the driver. By default, our printer driver is designed to handle a serial printer installed in
slot 1. It prints a m

axim
um

 of 80 characters on one line, after w
hich it w

ill force a new
 line, and

put any rem
aining characters on the new

 line. A
fter printing 60 lines a form

 feed is issued to
advance the paper to the start of a new

 page. W
hen a new

 line is needed, the driver prints a single
carriage return character ($0D

). If any of these options are unsuitable for your printer, you can
change them

 using either a CD
ev or a CD

A
. Both of these program

s produce a configuration file
called PInit.O

ptions, w
hich w

ill be placed in your System
 directory, so you need to be sure your

boot disk is in a drive and not w
rite protected w

hen you configure your printer. This file is read by
an init called TextPrinterInit at boot tim

e to configure the text printer driver, w
hich is itself a

G
S/O

S driver called TextPrinter.
The figures show

 the screens you w
ill see w

hen you use the .PRIN
TER CD

ev from
 A

pple’s
Control panel or w

hen you select the .PRIN
TER CD

A
 from

 the CD
A

 m
enu. The options that you

can select are the sam
e for both configuration program

s; these are described below
.

O
ption

D
escription

Slot
This entry is the physical slot w

here your printer is located.
Lines per page

This entry is a single num
ber, telling the printer driver how

 m
any lines

appear on a sheet of paper. M
ost printers print 66 lines on a norm

al
letter-size sheet of paper; it is traditional to print on 60 of those lines
and leave the top and bottom

 3 lines blank to form
 a m

argin. W
hen the

printer driver finishes printing the num
ber of lines you specify, it

issues a form
-feed character ($0C), w

hich causes m
ost printers to skip

to the top of a new
 page.

C
hapter 4: G

Soft BASIC
 U

tilities23

If you set this value to 0, the printer driver w
ill never issue a form

-
feed character.

Colum
ns per line

This option is a single num
ber telling the printer driver how

 m
any

colum
ns are on a sheet of paper. M

ost printers print 80 colum
ns on a

norm
al letter-size sheet of paper. If you use a value of -1, the printer

driver w
ill never split a line. (U

sing the CD
A

 configuration program
,

the value before 0 show
s up as BRA

M
 default; you can use the norm

al
control panel printer configuration page to set the line length to
unlim

ited.) W
hat your printer does w

ith a line that is too long is
som

ething you w
ill have to determ

ine by trial and error.
D

elete LF
Som

e printers need a carriage-return line-feed character sequence to get
to the start of a new

 line, w
hile others only need a carriage-return.

Som
e program

s w
rite a carriage-return line-feed com

bination, w
hile

others only w
rite a carriage-return. (G

Soft BA
SIC w

rites a sim
ple

carriage-return.) This option lets you tell the printer driver to strip a
line-feed character if it com

es right after a carriage-return character,
blocking extra line-feed characters com

ing in from
 program

s that print
both characters.

Y
ou can select three options here: Y

es, N
o, or BRA

M
 D

efault. The
Y

es option strips extra line-feeds, w
hile the N

o option does not. The
BRA

M
 D

efault option tells the printer driver to use w
hatever value is

in the BRA
M

; this is the sam
e value you w

ould have selected using the
printer configuration program

 in the control panel.
A

dd LF
Som

e printers need a carriage-return line-feed character sequence to get
to the start of a new

 line, w
hile others only need a carriage-return. This

option lets you tell the printer driver to add a line-feed character after
any carriage-return character that is printed.

Y
ou can select three options here: Y

es, N
o, or BRA

M
 D

efault. The
Y

es option adds a line-feeds, w
hile the N

o option does not. The BRA
M

D
efault option tells the printer driver to use w

hatever value is in the
BRA

M
; this is the sam

e value you w
ould have selected using the

printer configuration program
 in the control panel.

Turn on M
SB

This line is a flag indicating w
hether the printer driver should set the

m
ost significant bit w

hen w
riting characters to the printer. If this value

is Y
es the printer driver w

ill set the m
ost significant bit on all

characters before sending the characters to the printer. If this value is
N

o, the m
ost significant bit w

ill be cleared before the character is sent
to the printer.

Init string
This option sets a printer initialization string. This string is sent to the
printer w

hen the driver is used for the first tim
e. W

ith m
ost printers and

interface cards there is som
e special code you can use to tell the printer

that the characters that follow
 are special control codes. These codes are

often used to control the character density, num
ber of lines per page,

font, and so forth. This initialization string, sent to the printer by the

Environm
ent R

eference M
anual

24

.PRIN
TER driver the first tim

e the printer is used, is the traditional
w

ay of setting up your favorite defaults.
Y

ou w
ill find m

any cases w
hen you w

ill need to send a control
character to the printer as part of this initialization string. To do that
using the CD

ev configuration program
 precede the character w

ith a tilde
(~) character. For exam

ple, an escape character is actually a control-[, so
you could use ~[to send an escape character to the printer. The printer
driver does not do any error checking w

hen you use the ~ character, it
sim

ply subtracts $40 from
 the A

SCII code for the character that follow
s

the ~ character and sends the result to the printer. For exam
ple, g is not

a control character, but ~g w
ould still send a value, $27, to the printer.

Just type the control character in the norm
al w

ay from
 the CD

A
configuration program

; it w
ill show

 up as an inverse character on the
display.

The m
anual that com

es w
ith your printer should have a list of the

control codes you can use to configure the printer.

The .PRIN
TER driver is a copyrighted program

. A
s an ow

ner of G
Soft BA

SIC, you m
ay

include .PRIN
TER w

ith any program
 you distribute that is w

ritten in G
Soft BA

SIC, so long as
our copyright inform

ation is not rem
oved. There is no licensing fee.

M
akeR

untim
e

The M
akeRuntim

e utility is a very sim
ple program

 that creates a version of your
G

Soft BA
SIC program

 that doesn’t need G
Soft BA

SIC to run.
A

s you develop a program
, w

hether you use the G
Soft BA

SIC shell or the O
RCA

 shell, you
use G

Soft BA
SIC itself, perhaps som

e com
piled tool interface files, and perhaps som

e user tools.
G

Soft BA
SIC is a copyrighted program

 w
hich you cannot upload or give aw

ay, but you m
ay w

ant
to distribute your program

. The M
akeRuntim

e utility m
akes this possible. It places your

G
Soft BA

SIC program
, a special version of the G

Soft BA
SIC interpreter know

n as the
G

Soft BA
SIC Runtim

e M
odule, and any tool or library interfaces your program

 uses into a single
executable file. This file is an S16 program

, suitable for execution from
 A

pple’s Finder or any
other program

 launcher that launches S16 program
s.

The process is so sim
ple that M

akeRuntim
e m

ay be confusing at first because there are so few
options! W

hen you run M
akeRuntim

e from
 the Finder you w

ill see a standard A
pple IIG

S open
dialog. Select any G

Soft BA
SIC program

, either a tokenized file like the ones you norm
ally create

w
ith the G

Soft BA
SIC shell or an O

RCA
 source file, and open the file. A

fter the program
 loads

you w
ill see a standard A

pple IIG
S save dialog. Type the program

 nam
e, pick the destination

folder, and press Save. A
fter a few

 m
om

ents you’ll have a G
Soft BA

SIC program
 you can run

from
 the Finder. O

nce the program
 is saved you’ll get another open dialog, giving you a chance to

convert another program
. This process continues until you press Cancel.

C
hapter 4: G

Soft BASIC
 U

tilities25

O
nce you’ve pressed Cancel, you’re in a very sim

ple desktop application. Y
ou can convert

m
ore program

s by selecting M
ake Runtim

e from
 the File m

enu, use desk accessories, check the
version of M

akeRuntim
e from

 the A
bout box, or quit the program

.

W
hat M

akeR
untim

e D
oes

M
akeRuntim

e creates an S16 program
 that can be executed from

 pretty m
uch any program

launcher. There are several pieces that go into this com
pleted application file.

The first piece is your G
Soft BA

SIC program
 itself. If it starts out as an A

SCII file, it is
tokenized. The tokenized source file is placed in the resource fork of the com

pleted application file.
This is stored as resource type $7FFF, resource ID

 $00000001.
Y

our program
 m

ight m
ake use of tool calls; G

S/O
S calls; calls to the Talking Tools tool set;

or calls to user tools, also know
n as libraries. M

akeRuntim
e scans your program

, creating a
catalog of all of the interfaces needed, then w

rites a single special interface file to the resource fork.
This is an abbreviated version of the com

plete header files contained in the various .gst files. This
abbreviated version only contains the interfaces used by your program

, and only contains the parts
of the interfaces your program

 needs w
hen it runs. These are stored as resource type $7FFF,

resource ID
 $00000002.

Y
our program

 m
ight use resources of it’s ow

n. A
ny resources used by your program

 are
copied from

 your program
’s resource fork to the resource fork of the application file. Since the

G
Soft BA

SIC program
 is stored in the resource fork as resource type $7FFF, ID

 $00000001; and
the tool interfaces are stored in resource type $7FFF, ID

 $00000002, you should avoid that
com

bination for any of your ow
n resources. In general, avoid using any resource w

ith a resource
ID

 of $7FFF in your G
Soft BA

SIC program
s.

The last piece that your program
 needs is G

Soft BA
SIC itself, or at least enough of

G
Soft BA

SIC to execute your program
. M

akeRuntim
e adds a special version of G

Soft BA
SIC

know
n as the G

Soft BA
SIC Runtim

e M
odule to the data fork of your application file. The

original copy of the G
Soft BA

SIC Runtim
e M

odule is im
bedded in M

akeRuntim
e itself; it is

copied to each of your application files.
The finished file w

ill run from
 the Finder. If your program

 w
orked from

 the G
Soft BA

SIC
shell or from

 the O
RCA

 shell it should also w
ork from

 the Finder—
there are no additional

requirem
ents.

Things That C
an G

o W
rong

There are a few
 things that can go w

rong as you convert your G
Soft BA

SIC program
 w

ith
M

akeRuntim
e. M

ost of these are the obvious problem
s that can go w

rong w
ith any program

—
out

of m
em

ory errors, disk full errors, or disk input or output errors. A
ll of these are rare, they are

flagged by appropriate error m
essages, and as an experienced com

puter user, you already know
 w

hat
to do about them

.
There is one error that is unique to M

akeRuntim
e, though. If your program

 needs tool
interface files, M

akeRuntim
e needs to find the originals. It looks in the sam

e folders as
G

Soft BA
SIC, exam

ining the O
RCA

 libraries folder, the folder containing M
akeRuntim

e, and the

Environm
ent R

eference M
anual

26 folder containing your G
Soft BA

SIC program
. Y

ou need to m
ake sure the .gst files used by your

program
 are in at least one of these locations w

hen you use M
akeRuntim

e. The easiest w
ay to do

this is to leave M
akeRuntim

e in the sam
e folder as G

Soft.Sys16 if you are using the
G

Soft BA
SIC shell, or the sam

e folder as O
RCA

.Sys16 of you are using the O
RCA

 shell. A
lso,

if you are using the O
RCA

 shell, be sure you run M
akeRuntim

e from
 the O

RCA
 shell and not the

Finder—
that w

ay the O
RCA

 libraries prefix is properly set w
hen M

akeRuntim
e executes.

M
akeRuntim

e w
ill display an error dialog w

ith the m
essage “Interface for tool $00, call $00

not found” if it can’t find a tool, user tool or G
S/O

S interface for a call used in your program
. The

$00 fields are filled in w
ith the appropriate tool or G

S/O
S call num

bers, and the m
essage changes

slightly to identify G
S/O

S calls and user tools. That’s your cue that you need to m
ake sure all of

the interface files are available. The error m
essage even tells you w

hich tool interface is m
issing,

although you have to identify the m
issing .gst file by tool num

ber, not by the file nam
e. A

fter all,
M

akeRuntim
e couldn’t find the file, to it doesn’t know

 the nam
e of the file.

Including L
ibraries w

ith G
Soft B

A
SIC

 Program
s

If your program
 m

akes calls to a library (also called a user tool), those libraries are required for
your program

 to function. If you distribute your program
, be sure to send the library files w

ith the
program

. For exam
ple, if your program

 m
akes calls to the G

am
e Paddle Tool, you m

ust include
the file U

serTool001 from
 the *:System

:Tools: folder, and if your program
 m

akes calls to the
Tim

e Tool, you m
ust include the file U

serTool002. Tell the people w
ho use the program

 that
these files m

ust be placed in the Tools folder of their System
 folder, and that the disk m

ust be
available w

hen your program
 runs; better yet, send along an installer that puts all of the files in

the correct location.

L
icensing

The libraries contained in U
serTool001 and U

serTool002, as w
ell as the G

Soft BA
SIC

Runtim
e M

odule, are Copyright 1998 by the Byte W
orks, Inc. A

s an ow
ner of G

Soft BA
SIC, the

Byte W
orks, Inc. grants you a royalty free license to distribute these tw

o libraries and program
s

that have the G
Soft BA

SIC Runtim
e M

odule attached, so long as the G
Soft BA

SIC Runtim
e

M
odule is not m

odified in any w
ay. The source code for the tw

o libraries is included w
ith

G
Soft BA

SIC; you m
ay distribute m

odified versions of these libraries so long as the Byte W
orks,

Inc. copyright inform
ation is not rem

oved.
A

s a condition of this royalty free license, any docum
entation, disks, or about boxes w

here
copyright inform

ation is norm
ally displayed should bear the statem

ent

Portions copyright 1998, Byte W
orks, Inc. A

ll rights reserved.

This royalty free license is lim
ited to these tw

o files and the G
Soft BA

SIC Runtim
e M

odule.
N

o other files or docum
entation m

ay be distributed in any w
ay w

ithout the express w
ritten

perm
ission of the Byte W

orks, Inc.

C
hapter 4: G

Soft BASIC
 U

tilities27

C
om

pileT
ool

Before describing this utility, there are tw
o caveats.

First, the average BA
SIC program

m
er does not need to use or understand Com

pileTool. It is
used by relatively advanced program

m
ers w

ho need to create interface files for user tools, or w
ho

have som
e reason to m

odify the tool interface files that ship w
ith G

Soft BA
SIC.

Second, and partly due to the first, this section is w
ritten for advanced program

m
ers. M

ost of
this m

anual is w
ritten w

ith the beginning or interm
ediate program

m
er in m

ind. The w
riter w

orked
hard to m

ake it easy to read, accessible, and to provide lots of exam
ples. This section is w

ritten for
the advanced program

m
er. A

n advanced program
m

er w
riting user tools already has a pretty good

idea w
hat this section is all about, and can guess m

any of the details. U
nlike a beginning or

interm
ediate program

m
er, an advanced program

m
er needs a concise technical description that is

easy to scan for details, and that’s how
 the description of Com

pileTool is w
ritten. If you are a

beginning or interm
ediate program

m
er and you really need to use Com

pileTool, expect to spend a
little m

ore tim
e reading the m

aterial carefully and experim
enting than you need for a com

parable
num

ber of pages in the rest of this book.

W
hat C

om
pileTool D

oes

G
Soft BA

SIC program
s can m

ake tool calls, so they need to know
 w

hat tool calls are
available, w

hat param
eters to pass, and how

 to pass those param
eters. The function of a tool

interface file is to describe the tools to a language so it know
s how

 to m
ake those tool calls. Tool

interface files serve this purpose; they are typed just like program
s.

O
ne of the m

ost tim
e consum

ing parts of com
piling a program

 in C or Pascal that uses tool
calls is processing the tool interface files. Rather than force G

Soft BA
SIC to process these text

interface files each tim
e it starts, w

e use Com
pileTool to predigest the interface files, w

riting them
in a form

 that G
Soft BA

SIC can load very quickly. Com
pileTool w

rites a com
piled tool interface

file w
ith a file type of $5E and an auxiliary file type of $8007.

For details on how
 G

Soft BA
SIC searches for the tool interface files, see The G

Soft BASIC
Toolbox Interface in Chapter 19.

C
om

m
and Line Interface

Com
pileTool runs from

 the O
RCA

 shell. It m
ight seem

 odd to create a utility for
G

Soft BA
SIC that can't run from

 the Finder or from
 the G

Soft BA
SIC shell, but the reason is

straight-forw
ard. The only com

m
on use for this tool is to create interface files for user tools. Y

ou
can't create a user tool from

 an interpreted language like G
Soft BA

SIC; it m
ust be done from

som
e other language, usually assem

bly language. A
 program

m
er w

riting a user tool w
ill probably

w
ant to create the interfaces in the sam

e environm
ent as the user tool itself, so Com

pileTool w
as

designed to w
ork from

 the O
RCA

 shell, w
here the assem

blers and com
pilers w

ork.
The syntax for Com

pileTool is:

Environm
ent R

eference M
anual

28

COMPILETOOL [-L] [-P] [-V] filename

The flags can be coded in any order. They are:

flag
use

L
W

rites the tool interface file to standard out as the file is com
piled.

P
W

rites progress inform
ation as the file is com

piled.
V

W
rites the version num

ber and copyright m
essage.

f
i
l
e
n
a
m
e is the nam

e of the text tool interface file. It can be a TX
T or SRC file, and if it is

an SRC file, the language stam
p does not m

atter. By convention, the nam
e of a tool interface file

ends in .int, but this is not required.
The output file nam

e is based on f
i
l
e
n
a
m
e. If there is a dot in the file nam

e, the last dot and
everything after it is rem

oved, then .gst (G
Soft Tool) is added to the nam

e. For exam
ple,

COMPILETOOL GSoftTools.int

w
ill create an output file nam

ed G
SoftTools.gst. The output file has a file type of $5E, w

hich
prints as D

V
U

 in catalog com
m

ands. The auxiliary file type is $8007.
Com

pileTool w
rites any error m

essages to the console beneath the line that caused the error,
w

ith a pointer to the offending token.

The Syntax of Tool Interface Files

This section describes the syntax for tool interface files. The first section gives an overview
that describes the various parts of the tool interface file. It assum

es you already know
G

Soft BA
SIC. N

ext is a concise sum
m

ary of the syntax, presented as m
odified BN

F syntax
charts. The last section describes the differences betw

een tool interface files and G
Soft BA

SIC
program

s.
Exam

ples are alw
ays helpful. The tool interface file G

SoftTools.int, located in
:G

Soft.Extras:Libraries:G
SoftBA

SIC and the corresponding folder on your hard drive if you have
installed G

Soft BA
SIC, is the tool interface file for A

pple's tools, G
S/O

S, the O
RCA

 shell, and
Talking Tools. Refer to that file for extensive exam

ples.

Structure of a T
ool Interface File

Tool interface files are a series of constant, type and tool declarations. Com
m

ents m
ay be

added at any point in the tool interface file.

C
hapter 4: G

Soft BASIC
 U

tilities29

C
om

m
ents

Com
m

ents start w
ith the sem

icolon character and extend to the end of the current line.

const maxint = 32767 ; maximum positive integer

Identifiers and Types

Identifiers start w
ith a letter or underscore, w

hich m
ay be follow

ed by other letters, digits, or
underscore characters—

but unlike BA
SIC, you cannot include a type character. Types are alw

ays
given explicitly by a type statem

ent, not assum
ed from

 a type character appended to the identifier.
W

hile Com
pileTool does not use type characters as part of the identifier, they do still have a

use. Type characters can be used as a substitute for a type nam
e anyw

here the type nam
e is

allow
ed. For exam

ple, these declarations are com
pletely equivalent:

type char as byte
type char as ~

The type characters and their equivalent type generally m
atch G

Soft BA
SIC, but there is one

addition. The com
plete list of available types is

type
character

BYTE
~

INTEGER
%

LONG
&

SIN
G

LE
!

DOUBLE
#

STRIN
G

$
UNIV

?

U
N

IV
 is a new

 type, used to indicate a four byte typeless value. A
 U

N
IV

 record field or
param

eter is type com
patible w

ith any four byte value, including LO
N

G
; SIN

G
LE; any pointer;

any four byte record; and even a string, w
hich is treated as a pointer to the first character of the

string. IN
TEG

ER and BY
TE values can also be assigned to U

N
IV

 record fields and passed as U
N

IV
param

eters; they are converted to LO
N

G
 values.

Constants

Constants assign a fixed value to a nam
e. IN

TEG
ER and LO

N
G

 constants are supported;
SIN

G
LE, D

O
U

BLE and STRIN
G

 constants are not. Identifiers declared as constants can be used
both in the tool interface file and in G

Soft BA
SIC program

s, and have the sam
e affect as typing

the num
ber itself.

Environm
ent R

eference M
anual

30

H
exadecim

al constants are allow
ed, both in CO

N
ST declarations and in expressions

throughout the tool com
piler. A

s in G
Soft BA

SIC, a hexadecim
al constant w

ith five or m
ore

digits is a LO
N

G
 value, w

hile a constant w
ith four or few

er digits is an IN
TEG

ER.

const keyboard = $00C000 ; This value is 49152; it is a LONG
const keyboard2 = $C000 ; This value is -16384; it is an INTEGER

N
am

ed Types

There are tw
o kinds of type declarations. The first assigns a nam

e to a sim
ple type or a pointer

to a sim
ple type.

U
nlike G

Soft BA
SIC, array types are allow

ed—
but in the tool com

piler, arrays are lim
ited to

a single subscript.
This series of declarations from

 the G
SoftTools.int file show

 how
 these rules apply in actual

type declarations.

type char as byte
type pString(256) as char
type pStringPtr as pointer to pString

Records

Record types generally w
ork like they do in G

Soft BA
SIC. Y

ou can substitute type characters
for type nam

es, and arrays are lim
ited to a single subscript. W

ith those exceptions, record types are
com

patible.

Tool D
eclarations

Tool declarations are essentially the first line of a SU
B or FU

N
CTIO

N
 w

ith a tool num
ber

added in front of the declaration. H
ere's an exam

ple from
 the G

SoftTools.int file:

Tool $04, $63 SUB PaintArc ((Rect), %, %)

The tool declaration starts w
ith the reserved w

ord TO
O

L, and is follow
ed by tw

o values
separated by a com

m
a. The first is the tool num

ber; Q
uickD

raw
 II is tool num

ber 4. The second
num

ber is the tool call num
ber. W

hen the tool is called from
 the G

Soft BA
SIC program

,
G

Soft BA
SIC w

ill place any required param
eters on the stack and do a JSL to $E10000, the m

ain
tool entry vector.

Three of the four differences betw
een G

Soft BA
SIC declarations and tool interface files are

im
m

ediately apparent in this exam
ple. The first has already been m

entioned; type characters can be
substituted for type nam

es, so %
 can be used instead of the longer IN

TEG
ER.

N
am

es are not needed for tool param
eters, since there is no body of the subroutine w

here the
nam

es can be put to use. A
s a result, param

eter nam
es are neither required nor allow

ed. A
S is not

needed to separate the param
eter nam

e from
 the type, so it is also om

itted.

C
hapter 4: G

Soft BASIC
 U

tilities31

The third m
ajor difference is the w

ay pass by value and pass by reference is handled. In
BA

SIC, the calling expression determ
ines w

hether a value is passed by value or by reference. If the
types are identical and the calling expression passes an l-value, the param

eter is passed by value; if
the types are not identical, or the calling expression uses any form

 of an expression, the param
eter

is passed by reference. The sam
e param

eter can be passed by value on one call, and by reference on
another. Toolbox calls don't w

ork that w
ay. Param

eters passed by reference m
ust alw

ays be passed
as a pointer to the value, w

hile param
eters passed by value m

ust alw
ays be placed on the calling

stack as a value. A
s a result, tool declarations m

ust have a w
ay of describing w

hether a param
eter

is passed by reference or by value in the declaration itself. Parentheses around the param
eter type

indicate a param
eter is passed by reference; G

Soft BA
SIC w

ill alw
ays place the address of a value

on the stack. Param
eter types that are not surrounded by parentheses are alw

ays passed by value,
even if the call uses an l-value w

ith an exactly m
atching type for the param

eter.
There are tw

o special cases. Records passed by value are still passed by placing a pointer to
the first byte of the record on the stack, unless the record contains exactly four bytes. In that case,
the record value is pushed on the calling stack. This behavior m

im
ics the w

ay A
pple w

rote the
existing toolbox calls. Strings are passed as a pointer to the first character of a null term

inated
string. Procedures in user tools m

ust not change the length of the string.
The last difference betw

een tool interface file declarations and G
Soft BA

SIC has to do w
ith

FU
N

CTIO
N

 declarations. Y
ou m

ust specify the return type of a FU
N

CTIO
N

 explicitly, as in

TOOL $04, $52 FUNCTION NotEmptyRect ((Rect)) as Boolean

U
ser Tool D

eclarations

U
ser tool declarations follow

 the sam
e rules as tool declarations, but start w

ith U
SERTO

O
L

rather than TO
O

L. W
hen G

Soft BA
SIC calls a user tool, it does a JSL to $E10008, the m

ain
entry vector for user tools.

G
S/O

S D
eclarations

G
S/O

S declarations also follow
 the sam

e rules as tool declarations. G
S/O

S declarations start
w

ith the w
ord G

SO
S instead of TO

O
L. G

S/O
S call num

bers are tw
o bytes long; the least

significant byte is listed first, follow
ed by the m

ost significant byte. For exam
ple, the call num

ber
for O

penG
S is $2010; the declaration looks like this:

GSOS $10, $20 SUB OpenGS ((openOSDCB))

G
Soft BA

SIC expects that all G
S/O

S calls w
ill pass a single param

eter by reference, and
enforces that restriction. The param

eter is pushed onto the stack and the call is m
ade by a JSL to

the G
S/O

S entry vector at $E100A
8.

Environm
ent R

eference M
anual

32 O
RCA

 Shell D
eclarations

The O
RCA

 shell shares the G
S/O

S entry point and calling conventions. O
RCA

 shell calls are
declared as if the O

RCA
 shell is an extension to G

S/O
S.

GSOS $49, $01 SUB InitWildcardGS ((initWildcardDCBGS))

B
N

F For T
ool Interface Files

The com
plete BN

F for tool interface files is show
n below

. The individual statem
ents are listed

in alphabetical order. The gram
m

ar starts at tool-interface.
Com

m
ents start w

ith the sem
icolon character and extend to the end of the physical line. The

sem
icolon w

as used instead of the exclam
ation point because the exclam

ation point is also used as
the type character for SIN

G
LE values.

array-subscript ::= '(' integer ')'

as-type ::= [POINTER TO] type-name

const-declaration ::= CONST identifier '=' ['-'] integer

decimal-integer ::= ['0'..'9']+

field-declaration ::= identifier [array-subscript] AS as-type

gsos-declaration ::= GSOS tool-number sub-or-function

hexadecimal-integer ::= '$' ['A'..'F' | 'a'..'f' | '0'..'9']+

identifier ::= letter [letter | '0'..'9']*

integer ::= hexadecimal-integer | decimal-integer

letter ::= 'a'..'z' | 'A'..'Z' | '_'

record-type ::=
 TYPE identifier
 [record-variant | field-declaration]*
 END TYPE

parameter ::=
 '(' as-type ')'
 | as-type

parameter-list ::= '(' parameter [',' parameter]* ')'

record-variant ::= CASE (identifier | integer)

C
hapter 4: G

Soft BASIC
 U

tilities33

simple-type ::= TYPE identifier [array-subscript] AS as-type

sub-or-function ::=
 SUB identifier parameter-list
 | FUNCTION identifier parameter-list AS as-type

tool-declaration ::= TOOL tool-number sub-or-function

tool-interface ::= [
 type-declaration
 | const-declaration
 | tool-declaration
 | usertool-declaration
 | gsos-declaration]*

tool-number ::= integer ',' integer

type-character ::= '~' | '%' | '&' | '!' | '#' | '$' | '?'

type-declaration ::= simple-type | record-type

type-name ::= BYTE | INTEGER | LONG | SINGLE | DOUBLE | STRING
 | UNIV | identifier | type-character

usertool-declaration ::= USERTOOL tool-number sub-or-function

Sum
m

ary of D
ifferences from

 G
Soft B

A
SIC

The toolbox interfaces are defined for use in G
Soft BA

SIC, so it m
akes sense that toolbox

interfaces look a lot like BA
SIC. A

ctually, though, the tw
o serve different purposes, and despite

obvious sim
ilarities, they are difference languages. This section outlines the differences betw

een
G

Soft BA
SIC and tool interface files, serving as a quick reference for program

m
ers fam

iliar w
ith

both.O
ther than the obvious difference that a tool file has declarations but no executing statem

ents,
the differences are:

•
Strings and floating-point values are not allow

ed in tool interface files.
•

Com
m

ents start w
ith the sem

icolon character in tool interface files, and w
ith REM

 or an
exclam

ation point in G
Soft BA

SIC program
s. Com

m
ents can start on the sam

e line as a
declaration in a tool interface file, but m

ust start on a fresh line or after a colon
continuation character in G

Soft BA
SIC.

•
A

rrays in tool interface files are lim
ited to one subscript.

•
A

rray types are allow
ed in tool interface files, but not in G

Soft BA
SIC program

s.

Environm
ent R

eference M
anual

34

•
Types are not assum

ed based on the nam
e of a variable in tool interface files, as they are

in G
Soft BA

SIC program
s. Type characters are not allow

ed as part of a nam
e in tool

interface files.
•

Type characters can be substituted for type nam
es in tool interface files; %

 has the sam
e

m
eaning as IN

TEG
ER.

•
The U

N
IV

 type, a four byte type com
patible w

ith any other four byte entity, is allow
ed

in tool interface files, but not in G
Soft BA

SIC program
s.

•
TO

O
L, U

SERTO
O

L or G
SO

S precedes procedure declarations in a tool interface file.
These are follow

ed by the tool num
ber and tool call num

ber, or the G
S/O

S call num
ber

split into tw
o bytes.

•
Param

eters are given as a type in tool interface files, and as a param
eter nam

e optionally
follow

ed by a type in G
Soft BA

SIC program
s.

•
Param

eters passed by reference are enclosed in parentheses in tool interface files. In
G

Soft BA
SIC program

s, the w
ay the param

eter is passed by the caller determ
ines if it is

passed by reference or by value.
•

Function return types are required in tool interface files; function return types are assum
ed

from
 the function nam

e if the return type is not given in G
Soft BA

SIC program
s.

O
R

C
A

 Shell G
Soft B

A
SIC

The O
RCA

 shell version of G
Soft BA

SIC installs and runs from
 any O

RCA
 2.0 or later

shell, or from
 environm

ents like G
N

O
 and A

PW
 2.0 or greater that are com

patible w
ith the

O
RCA

 shell. O
nce installed, G

Soft BA
SIC w

orks alm
ost exactly like any other O

RCA
 language.

The O
RCA

 shell ships w
ith O

RCA
/M

, O
RCA

/Pascal, O
RCA

/C, O
RCA

/M
odula-2 and

Toolbox Program
m

ing in G
Soft BASIC. It is docum

ented in those books, so that docum
entation

is not duplicated here. The rem
ainder of this section describes the unique features of G

Soft BA
SIC

w
hen used from

 the O
RCA

 shell, w
hat the installer does, and docum

ents a utility that converts
G

Soft BA
SIC tokenized files to SRC files you can use from

 the O
RCA

 shell.
For a discussion of the advantages and disadvantages of the O

RCA
 shell version of

G
Soft BA

SIC as com
pared to the version that is described in this m

anual, see The Three W
orlds

of G
Soft BASIC

 in C
hapter 2.

U
sing G

Soft B
A

SIC
 from

 the O
R

C
A

 Shell

W
ith G

Soft BA
SIC installed in the O

RCA
 shell, you can enter BA

SIC program
s w

ith the
O

RCA
 editor just as you do for any other language. Be sure to set the language type for the file to

BA
SIC, either by typing BA

SIC just before you edit a new
 file, or by using the O

RCA
 shell’s

CH
A

N
G

E com
m

and to set the language type of an existing file.
O

nce you have created a program
, use the RU

N
 com

m
and to execute it. For exam

ple, if you
have created a file nam

ed H
ello.bas, you w

ould execute the program
 w

ith the com
m

and

C
hapter 4: G

Soft BASIC
 U

tilities35

run hello.bas

Since G
Soft BA

SIC is an interpreter, there are no separate com
pile, link and execute steps.

Y
ou use the RU

N
 com

m
and each tim

e you w
ant to execute the program

.
W

hile it isn’t required, w
e recom

m
end appending .bas to the end of all G

Soft BA
SIC source

files. This convention conform
s to the nam

ing conventions used in the O
RCA

 shell, allow
ing dot

prefixes for partial com
piles and m

ulti-lingual com
piles if a G

Soft BA
SIC com

patible com
piler is

ever m
ade available.

The D
eToke U

tility

M
ost program

s w
ritten w

ith G
Soft BA

SIC are saved as tokenized BA
SIC program

s. The
O

RCA
 editor can’t read these files. The D

eToke utility gives you an easy w
ay to convert the

tokenized files used by the G
Soft BA

SIC shell to the source files used by the O
RCA

 shell. It is
designed so it is fairly easy to convert large num

bers of files w
ith a single com

m
and.

The D
eToke utility accepts one or m

ore input files. Each nam
e can include w

ild cards, in
w

hich case all m
atching files are converted. Since the utility is designed to convert large num

bers
of files at once, accepting m

any source files, it form
s its ow

n output file nam
e. The output file

nam
e is form

ed by stripping any suffix from
 the original file (a suffix starts w

ith the last period in
the nam

e and continues to the end of the nam
e), then appending .bas to the source file nam

e. If the
resulting nam

e w
ould exceed 15 characters, it is shortened.

For exam
ple, if there are tw

o tokenized BA
SIC files w

ith these nam
es

prog.tok
longprogramname

in your folder and you convert them
 to source files using the com

m
and

detoke =prog=

the output files w
ill be

prog.bas
longprogram.bas

Since D
eToke is designed to convert large num

bers of files in a single pass, it does not
com

plain w
hen one of the input files is not a tokenized G

Soft BA
SIC program

. In fact, you can
safely convert all of the program

s in a folder that contains G
Soft BA

SIC program
s m

ixed w
ith

other files using the com
m

and

detoke =

Environm
ent R

eference M
anual

36

There are tw
o com

m
and line flags, each of w

hich m
ust be used before the first file nam

e. They
m

ay be used in any order, so long as they precede the file nam
es.

The -v flag prints version and copyright inform
ation. U

se this flag if you need to check the
version num

ber for the D
eToke utility.

The -p flag prints progress inform
ation. U

se this flag if you w
ould like a list of the files

D
eToke exam

ines. This list show
s w

hich files w
ere converted and w

hich w
ere skipped because

they w
ere not G

Soft BA
SIC tokenized source files.

For exam
ple, to see the copyright inform

ation and get a com
plete list of the files processed,

you could use the com
m

and

detoke -v -p =

Installing G
Soft BA

SIC
 in the O

R
C

A
 Shell

Y
ou should norm

ally install G
Soft BA

SIC using the installer that com
es w

ith it. This
process is described in Installing G

Soft BASIC
 on a H

ard D
isk in Chapter 1. This detailed

description of the installation process is here for those of you that w
ant all the details, those w

ho
m

ay be installing G
Soft BA

SIC in an O
RCA

 com
patible shell, and those w

ho w
ant to custom

ize
the installation.

A
ssum

ing you already have the O
RCA

 shell installed and w
orking, there are several other files

you w
ill w

ant to install or m
odify to use G

Soft BA
SIC. In all cases these descriptions assum

e
you have installed O

RCA
 in a folder nam

ed O
RCA

, and give partial path nam
es based on that

folder.

:G
Soft.E

xtras:L
anguages:B

A
SIC

This is the G
Soft BA

SIC interpreter itself. It m
ust be installed in the languages folder. In a

typical installation of O
RCA

, this w
ill be in the O

RCA
:Languages: folder.

:G
Soft:Shell:SysC

m
nd

The SysCm
nd file is a catalog of all of the com

m
ands, languages and utilities in your

installation of O
RCA

. Y
ou w

ill need to add tw
o lines to this file, w

hich is located at
O

RCA
:Shell:SysCm

nd. These lines should be inserted in alphabetical order. U
se the sam

e spacing
you see in the existing com

m
ands in the file.

BASIC *L 260 GSoft BASIC
DETOKE *U GSoft BASIC tokenized file converter

:G
Soft:Shell:SysT

abs

The SysTabs file contains default tab lines and default editor settings for each program
m

ing
language installed in the O

RCA
 shell. Y

ou should insert the follow
ing lines in the file, located at

O
R

C
A

:Shell:SysTabs.

C
hapter 4: G

Soft BASIC
 U

tilities37

Proper order is im
portant. Each language uses three lines, although line w

rapping m
ay m

ake
it look like there are m

ore that three lines, as it does in this m
anual. The third line contains the tab

stops, and m
ust be a single line, unbroken by line feeds. The first line contains the language

num
ber, and it is im

portant that the three line sets of inform
ation be in num

erical order by
language num

ber.

260
10011001
000000100000001000000010000000100000001000000010000000100000001000000010000

0001000000010000000100000001000000010000000100000001000000010000000100000001000
0000100000001000000010000000100000001000000010000000100000001000000010000000100
0000010000000100000002

Y
ou can custom

ize these lines so the editor suits your personal preferences. See Setting Editor
D

efaults in Chapter 6 for details.

:G
Soft.E

xtras:L
ibraries:G

SoftD
efs:

G
Soft BA

SIC com
es w

ith several tool interface files. The exact num
ber of files m

ay change
in the future, so the best policy is to copy all of the files you find in this folder on the
G

Soft BA
SIC disk into the O

RCA
:Libraries:G

SoftD
efs folder.

A
s this m

anual is w
ritten, the files w

e ship w
ith G

Soft BA
SIC are:

G
SoftTools.gst

This file contains the interfaces for A
pple’s toolbox calls, G

S/O
S, the

O
RCA

 shell, and Talking Tools. A
ll of these are discussed in detail in

various parts of this m
anual; see the index for details.

U
ser001.gst

This is the interface for the G
am

e Paddle Library, a custom
 library supplied

w
ith G

Soft BA
SIC that supports gam

e paddles and joysticks.
U

ser002.gst
This is the interface for the Tim

e Library, a custom
 library supplied w

ith
G

Soft BA
SIC that supplies tim

e and date m
anipulation subroutines.

G
Soft BA

SIC w
ill w

ork w
ithout these files, but you w

on’t be able to use the tools and
libraries they represent unless the files are installed.

:G
Soft.E

xtras:System
:T

ools:

G
Soft BA

SIC libraries are im
plem

ented as user tools. A
s this m

anual is w
ritten, there are

tw
o of them

, but this num
ber m

ay increase. A
s w

ith the tool interface files, the best policy is to
copy all of the files you find in the G

Soft.Extras:System
:Tools folder into the corresponding file

on your boot disk, *:System
:Tools.

The tw
o files that ship w

ith G
Soft BA

SIC are:

U
serTool001

This is the executable code for the G
am

e Paddle Library. This file m
ust be

present if your program
s use any of the gam

e paddle procedures.

Environm
ent R

eference M
anual

38

U
serTool002

This is the executable code for the Tim
e Library. This file m

ust be present
if your program

s use any of the Tim
e Library procedures.

K
eep in m

ind that these files are also needed by anyone w
ho is running your program

s. W
e

grant a royalty free license to distribute these files w
ith any program

 w
ritten in G

Soft BA
SIC, but

it is up to you to m
ake sure they are included w

ith your program
!

:G
Soft.E

xtras:U
tilities:D

eT
oke

The D
eToke utility, described earlier in this chapter, is used to convert G

Soft BA
SIC

tokenized files to O
RCA

 SRC files. It should be installed in O
RCA

:U
tilities, and the changes

described for the SysTabs file m
ust also be m

ade.
This utility is not required by G

Soft BA
SIC, and it also doesn’t depend on G

Soft BA
SIC.

W
ithout it, though, you w

ill have to use the G
Soft BA

SIC shell to convert tokenized files to a
form

at you can use from
 the O

RCA
 shell.

:G
Soft.E

xtras:U
tilities:H

elp:D
eT

oke

The help file for the D
eToke utility should be installed in O

RCA
:U

tilities:H
elp.

39

C
hapter 5 - The C

om
m

and Processor

There are three versions of G
Soft BA

SIC, tw
o of w

hich can be used to w
rite program

s. O
ne

of these runs from
 any O

RCA
 com

patible shell, and one runs directly from
 the Finder. This

chapter describes the com
m

ands used w
ith the Finder version of G

Soft BA
SIC.

In general you can think of this version of G
Soft BA

SIC as a souped up im
plem

entation of
the A

pplesoft BA
SIC program

m
ing environm

ent. It has som
e pow

erful new
 com

m
ands, but the

com
m

ands you learned w
ith A

pplesoft BA
SIC generally w

ork just like they alw
ays did.

The third version of G
Soft BA

SIC is used to run program
s directly from

 the Finder. Y
ou

can’t w
rite program

s w
ith this version, just run them

. The program
 used to create these

G
Soft BA

SIC program
s is called M

akeRuntim
e. It is covered in Chapter 4, G

Soft BASIC
U

tilities.

The Line Editor
W

hen you enter the Finder version of G
Soft BA

SIC, you’re in a text based shell. This shell
lets you type com

m
ands like CA

TA
LO

G
 to catalog a disk or ED

IT to use the full screen editor to
edit a file. It also lets you enter program

s directly from
 the keyboard if you are w

illing to use line
num

bers.
In addition to the obvious keys used to type characters, there are several editing com

m
ands

available as you type a line. Som
e allow

 you to position the cursor in the m
iddle of the line. It

doesn’t m
atter if the cursor is at the end of the line or not—

w
hen you press RR

EETTUU
RR

NN or EENN
TTEERR,

the entire line is processed.
The editing keys are:

Environm
ent R

eference M
anual

40

key
action

LL
EE

FFTT
--AA

RR
RR

OO
WW

The cursor w
ill m

ove to the left. If the cursor is already in the first
character position on the line, the key is ignored.

RR
IIGG

HH
TT

--AA
RR

RR
OO

WW
The cursor w

ill m
ove to the right. If the cursor is already positioned

just to the right of the last typed character (w
hich m

ay be a space), the
key is ignored.

ddeelleettee
D

eletes the character to the left of the cursor, m
oving the cursor left. If

the cursor starts in the first character position on the line, the key is
ignored.

rreettuurrnn or eenntteerr
Executes the typed com

m
and.

eesscc or cclleeaarr
D

eletes all characters in the line.


X
 or 

x
D

eletes all characters in the line. These keys are generally used for the
cut com

m
and on the A

pple IIG
S. The closest equivalent in the line

editor is deleting all of the characters.


Z or 
z

D
eletes all characters in the line. These keys are generally used for the

undo com
m

and on the A
pple IIG

S. The closest equivalent in the line
editor is deleting all of the characters.


F or 

f
D

eletes the character under the cursor, m
oving the rem

aining characters
in the line left one position. The key is ignored if the cursor is just past
the last typed character.


Y

 or 
y

D
eletes characters from

 the cursor to the end of the line.


> or 
.

The cursor m
oves to the end of the line, just past the last typed

character. N
ew

 characters w
ill appear at the end of the line.


< or 

,
The cursor m

oves to the first position in the line.


LL
EE

FFTT
--AA

RR
RR

OO
WW

The cursor m
oves left one w

ord.


RR
IIGG

HH
TT

--AA
RR

RR
OO

WW
The cursor m

oves right one w
ord.


E or 

e
Toggles the insert m

ode. If the cursor is in insert m
ode, new

 characters
are inserted, pushing existing characters from

 the cursor to the end of
the line right one position. In overstrike m

ode, typed characters replace
the character under the cursor. The default is overstrike m

ode.

File N
am

es
M

any of the com
m

ands described later in this chapter use file nam
es. File nam

es in
G

Soft BA
SIC follow

 standard G
S/O

S conventions.
File nam

es are discussed in detail in File Nam
es, found in Chapter 14.

C
hapter 5: The C

om
m

and Processor

41

T
ypes of Files U

sed by G
Soft B

A
SIC

Source Files

G
Soft BA

SIC can read four file types and w
rite three different types of files as BA

SIC
program

s. Both the LO
A

D
 com

m
and and ED

IT com
m

and w
ill load any of the four supported file

types as the active program
. There are three versions of the save com

m
and, SA

V
E, SSA

V
E and

TSA
V

E, used to save the program
 in the w

orkspace in one of the three supported file types.

G
Soft B

A
SIC

T

okenized
Files

The m
ost natural w

ay for G
Soft BA

SIC to deal w
ith a file is the sam

e w
ay the file is stored

in m
em

ory: as a tokenized file.
Tokenized files have a file type of $A

F and an auxiliary file type of $0104. In som
e utilities,

you w
ill see the file type listed as TO

K
, for tokenized source files.

The disadvantage to tokenized source files is that they can only be read by G
Soft BA

SIC
itself. O

n the other hand, they are shorter than an equivalent text file, load faster, and save faster.
The SA

V
E com

m
and saves a G

Soft BA
SIC program

 as a TO
K

 file. U
se this com

m
and w

hen
you intend to use the Finder version of G

Soft BA
SIC described in this chapter.

The form
at for tokenized source files is described in detail in A

ppendix F, Im
plem

entation
D

etails.

T
ext Files and Source Files

There are tw
o supported file types that are essentially the sam

e inside. Both store the file as
A

SCII characters, w
ith carriage return characters (CH

R$(13)) at the end of each line.
The first of these file types is the generic A

pple IIG
S text file. Text files have a file type of

$04. The auxiliary file type is not used by m
ost program

s. In m
ost utilities, you w

ill see this file
type listed as TX

T. Text files can be read and w
ritten by practically any A

pple II program
 that

edits text in any form
.

The second file type is the SRC file, used in program
m

ing environm
ents like O

RCA
. SRC

files have the sam
e internal form

at as TX
T files, but use the auxiliary file type to indicate w

hich
language should be used to process a file. G

Soft BA
SIC can read any source file, and w

ill attem
pt

to tokenize w
hat it reads as a BA

SIC program
. It w

rites SRC files w
ith a file type of $B0, listed

as SRC by m
ost utilities that show

 a file type, and w
ith an auxiliary file type of $0104.

Program
m

ing environm
ents like O

RCA
 that support m

ultiple languages w
ill display BA

SIC for
the auxiliary file type.

The TSA
V

E com
m

and saves a G
Soft BA

SIC program
 as a TX

T file. U
se TX

T files w
hen

you need to read the program
 w

ith som
e other text processing utility, or w

hen you w
ant to convert

a G
Soft BA

SIC program
 to A

pplesoft BA
SIC.

The SSA
V

E com
m

and saves a G
Soft BA

SIC program
 as an SRC file w

ith an auxiliary file
type of $0104. U

se this com
m

and if you w
ant to save a program

 in a form
at that can be used by

Environm
ent R

eference M
anual

42 the shell version of G
Soft BA

SIC. See The Three W
orlds of G

Soft BASIC in Chapter 2 for an in
depth look at how

 the shell version of G
Soft BA

SIC uses SRC files.

A
pplesoft B

A
SIC

Files

G
Soft BA

SIC can read A
pplesoft BA

SIC program
s, but cannot w

rite them
 directly.

G
Soft BA

SIC is sim
ilar to A

pplesoft BA
SIC, but it is not a true superset of

A
pplesoft BA

SIC. A
pplesoft BA

SIC is tied directly to the eight bit A
pple II architecture in

several im
portant w

ays that could not be ported to the sixteen bit environm
ent of the A

pple IIG
S

using G
S/O

S. In addition, G
Soft BA

SIC has m
any com

m
ands that are not supported in

A
pplesoft BA

SIC, and som
e, like D

EF FN
, that have im

portant new
 features.

A
t the sam

e tim
e, a natural use for G

Soft BA
SIC is porting older eight bit program

s to the
faster, m

ore pow
erful w

orld of G
S/O

S. That’s w
hy G

Soft BA
SIC lets you load A

pplesoft BA
SIC

program
s. If features are found that don’t exist under G

Soft BA
SIC, or that are suspect, the old

line is flagged w
ith a com

m
ent that tells you to exam

ine the line for possible changes. The actual
com

m
ent varies w

ith the com
m

and, but you can find them
 all by searching the file for the

characters >>>. That’s easy to do from
 the G

Soft BA
SIC text editor. See the ED

IT com
m

and,
below

, for details.
The sam

e problem
 exists in reverse. A

pplesoft BA
SIC can’t detect conflicts w

ith
G

Soft BA
SIC if the file is saved as a tokenized A

pplesoft BA
SIC file, so you don’t have that

option. Y
ou can save a G

Soft BA
SIC program

 as a TX
T file, though, and im

port it to
A

pplesoft BA
SIC. That gives A

pplesoft BA
SIC a chance to scan the file, m

aking sure it
understands all of the com

m
ands.

See A
ppendix E for m

ore details on com
patibility betw

een A
pplesoft BA

SIC and
G

Soft B
A

SIC
.

E
ntering B

A
SIC

 Program
s

The A
ctive Program

G
Soft BA

SIC alw
ays has one program

 that is the active, or current, program
. This program

is stored in an area of m
em

ory referred to in this m
anual as the w

orkspace or program
 buffer.

O
nly one program

 is active at a tim
e. This is the program

 that is edited, executed, saved and
so forth. Y

ou can delete this program
, em

ptying the w
orkspace, w

ith the N
EW

 com
m

and. Y
ou can

also load a new
 program

 into the w
orkspace using the LO

A
D

 com
m

and, by using the ED
IT

com
m

and w
ith a file nam

e, or by entering a com
pletely new

 program
.

C
hapter 5: The C

om
m

and Processor

43

Entering Program
s From

 the C
om

m
and Line

A
ny line that starts w

ith a num
ber is treated as a new

 G
Soft BA

SIC program
 line, and is

entered in the current program
. The line is inserted in the program

 in num
eric order, replacing any

existing line w
ith the sam

e line num
ber.

For exam
ple, the com

m
ands

NEW
10 FOR I = 1 TO 10
20 PRINT J
30 NEXT
20 PRINT I

create the program

10 FOR I = 1 TO 10
20 PRINT I
30 NEXT

W
hile this is a com

fortable w
ay to hack out short program

s, the full screen editor you invoke
w

ith the ED
IT com

m
and is generally a better w

ay to create and edit program
s. It also doesn’t

require line num
bers.

Typing a line num
ber w

ith nothing after it deletes an existing line w
ith the sam

e line num
ber.

If no m
atching line is found, the program

 doesn’t change. For exam
ple, typing

20

changes the sam
ple program

 to

10 FOR I = 1 TO 10
30 NEXT

There is a restriction on this feature. Line num
bers are optional in G

Soft BA
SIC. If the

current program
 has even one line that does not have a line num

ber, you can’t enter new
 lines

directly from
 the com

m
and line.

Executing BA
SIC

 C
om

m
ands

If you type a line that does not start w
ith a line num

ber and is not one of the com
m

ands listed
in the Com

m
and Reference, below

, G
Soft BA

SIC tries to execute the com
m

and as if it w
ere a line

in a BA
SIC program

.

Environm
ent R

eference M
anual

44

There are m
any uses for this feature, but one of the m

ost pow
erful is debugging. A

fter
stopping a program

 w
ith STO

P, you can interrogate the values of variables, or even change their
values. The program

 can be restarted w
ith CO

N
T.

O
f course, the other com

m
on use for this feature is to experim

ent w
ith com

m
ands, or even do

useful w
ork w

ith one-liners. A
fter all,

PRINT $0201

is a pretty convenient hexadecim
al to decim

al converter!

C
om

m
and R

eference

B
ye

B
Y
EExits G

Soft B
A

SIC
.

If you have edited the program
 in the w

orkspace since the last tim
e the program

 w
as saved,

you w
ill get a prom

pt asking if you are sure you w
ant to exit G

Soft BA
SIC.

C
atalog

C
A
T

[

p
a
t
h
n
a
m
e

]

C
A
T
A
L
O
G

[

p
a
t
h
n
a
m
e

]

Catalogs a directory.
If no path nam

e is given, the current directory is cataloged. If given, the path nam
e can be a

full or partial path nam
e, the nam

e of a volum
e, or the nam

e of a device.
The abbreviation CA

T can be used instead of the full nam
e of CA

TA
LO

G
. They do exactly

the sam
e thing.

The files are listed, along w
ith inform

ation about the files, in a tabular form
at. The listing of

files starts w
ith a header labeling the colum

ns. The nam
es used in the header, along w

ith the
m

eaning for the item
s in that colum

n, are:

C
hapter 5: The C

om
m

and Processor

45

nam
e

m
eaning

N
am

e
The file nam

e for the file.
Type

The type of the file. This is show
n as a three letter type identifier. The types that

are of interest to G
Soft BA

SIC program
m

ers are show
n later in the description

of CA
TA

LO
G

.
Blocks

The num
ber of blocks used by the file. This show

s how
 m

uch disk space is used
by the file, not the num

ber of bytes used by the file in m
em

ory. Each disk block
uses 512 bytes on the disk, w

hich is one-half of a kilobyte.
M

odified
The last date and tim

e the file w
as changed.

Created
The date and tim

e the file w
as created.

A
ccess

The access flags for the file. See the description of access flags later in this
section for details.

Subtype
The auxiliary file type for the file. This is show

n as a hexadecim
al value.

File types are stored as a single byte, but it m
akes m

ore sense to see them
 as a three letter

abbreviation. The table below
 show

s the three letter designation used by the various file types that
are used in G

Soft BA
SIC. See File Type N

otes, a technical note w
ritten by A

pple Com
puter and

published by Byte W
orks, for a com

plete list of file types and inform
ation about the internal

form
at of m

any of the file types.

N
am

e
H

ex
U

se
TX

T
$04

A
SCII Text. See Text Files and Source Files, earlier in this

chapter.
BIN

$06
Binary files, often used as input and output by G

Soft BA
SIC. See

Binary Files in Chapter 14.
D

IR
$0F

D
irectories, w

hich contain other files and directories. See CREA
TE

and PREFIX
, later in this chapter; and M

K
D

IR and CH
D

IR in
Chapter 14.

D
V

U
$5E

D
evelopm

ent U
tilities, w

hich contain inform
ation used by

program
m

ing tools. The form
at varies w

idely, depending on w
hich

tool created the file. G
Soft BA

SIC tool interface files have this file
type, along w

ith an auxiliary file type of $8007.
TO

K
$A

F
G

Soft BA
SIC tokenized source file.

SR
C

$B0
Program

 source file. See Text Files and Source Files, earlier in this
chapter.

S16
$B3

Program
s that can be launched from

 the Finder or executed
im

m
ediately upon booting the com

puter. See Creating
G

Soft BASIC
 Program

s that Run From
 the Finder in Chapter 2.

BA
S

$FC
A

pplesoft BA
SIC source file. See Applesoft BASIC

 Files, earlier
in this chapter.

Environm
ent R

eference M
anual

46

A
ccess flags indicate how

 a file can be used. They are listed as an uppercase letter if the
privilege is set, and a space if it is not.

Y
ou can enable and disable som

e of these flags w
ith LO

CK
 and U

N
LO

CK
, described later in

this chapter.
The various access flags and their m

eanings are:

flag
m

eaning
D

D
elete. W

hen set, the file can be deleted. Y
ou can clear this flag w

ith LO
CK

,
and set it w

ith U
N

LO
CK

.
N

Renam
e. W

hen set, the file can be renam
ed. Y

ou can clear this flag w
ith LO

CK
,

and set it w
ith U

N
LO

CK
.

B
Backup. W

hen set, the file has not been saved by a backup utility since the last
tim

e it w
as m

odified.
W

W
rite. W

hen set, the file can be changed. Y
ou can clear this flag w

ith LO
CK

,
and set it w

ith U
N

LO
CK

.
R

Read. W
hen set, the file can be read.

Y
ou can pause in the m

iddle of a long list of files by pressing the space bar. Press the space
bar again to continue. U

se eesscc or 
. to abort the list of files.

A
fter all of the files are listed, the CA

TA
LO

G
 com

m
and prints a trailer that tells how

 m
any

blocks on the disk are used, how
 m

any are free, and the total num
ber of blocks on the disk.

C
opy

C
O
P
Y

f
r
o
m

t
o

Copy a file from
 one location to another.

Y
ou can use full or partial path nam

es for either file. For exam
ple,

COPY :MYDISK:MYPROGRAMS:PROGRAM PROGRAM

copies the file PRO
G

RA
M

 from
 the directory :M

Y
D

ISK
:M

Y
PRO

G
RA

M
 to the current directory.

A
 full path nam

e can also be used as the destination.
If the source file nam

e and destination file nam
e are the sam

e, as in the exam
ple above, you

can om
it the last file nam

e. The com
m

and

COPY :MYDISK:MYPROGRAMS:PROGRAM

does exactly the sam
e thing as the first exam

ple.

C
hapter 5: The C

om
m

and Processor

47

C
reate

C
R
E
A
T
E

p
a
t
h
n
a
m
e

Creates a new
 directory.

Y
ou can create a directory w

ith a full or partial path nam
e. The m

ost com
m

on w
ay to create a

directory is in the current directory, though. The com
m

and

CREATE NewFolder

creates a new
 directory called N

ew
Folder in the current directory.

D
E

B
U

G

D
E
B
U
G

[

l
i
n
e
n
u
m
b
e
r

|

f
i
l
e
n
a
m
e

]

Runs a program
, w

ith the sam
e options as the RU

N
 com

m
and. The difference is that D

EBU
G

enters an O
RCA

 com
patible debugger (like O

RCA
/D

ebugger or Splat!), breaking on the first line
executed.

O
nce inside the debugger, you can step or trace through the G

Soft BA
SIC program

, exam
ine

variables, and carry out any other activity the debugger supports.
D

o not use this com
m

and unless an O
R

C
A

 com
patible debugger is installed! O

R
C

A
com

patible debuggers w
ork by intercepting the 65816 CO

P instruction. There is no w
ay for

G
Soft BA

SIC to tell if a debugger is installed or not, so it w
ill issue the CO

P instruction w
hether

or not a debugger is actually present. If there is no debugger installed, this causes the com
puter to

crash. W
hile this does no actual harm

, the only w
ay to recover is to reboot.

D
el

D
E
L

s
t
a
r
t

[

'
,
'

e
n
d

]

D
elete a single line or a range of lines.

The D
EL com

m
and cannot be used w

ith program
s that do not use line num

bers on every line.

D
elete

D
E
L
E
T
E

f
i
l
e
n
a
m
e

D
eletes the nam

ed file. The file nam
e can be a file nam

e, partial path nam
e, or full path nam

e.
The file can be a directory. A

fter checking to be sure the user really w
ants to delete the

directory and its contents, all files in the directory and the directory itself are deleted.

Environm
ent R

eference M
anual

48 E
dit

E
D
I
T

[

f
i
l
e
n
a
m
e

]

Enters an O
RCA

 com
patible editor, displaying the program

 in m
em

ory. If a file nam
e is

given, the file is loaded and edited exactly as if the com
m

ands

LOAD filename
EDIT

w
ere used.

The editor should be installed in a directory nam
ed Shell. This directory should be in the sam

e
directory as the G

Soft BA
SIC application. Placing G

Soft BA
SIC in the sam

e directory w
ith

O
RCA

.Sys16 in an existing O
RCA

/M
 environm

ent w
ill satisfy all editor requirem

ents for both
G

Soft BA
SIC and the O

RCA
 shell.

See Chapter 6 for a com
plete description of the full screen editor that com

es w
ith

G
Soft B

A
SIC

.

L
ist

L
I
S
T

[

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

[

l
i
n
e
-
n
u
m
b
e
r

]

]

]

Lists the entire program
, a single line, or a range of lines. See PR for a w

ay to print the file
to a printer.

To list the entire program
 use the LIST com

m
and w

ith no param
eters. Y

ou can use this
version of the LIST com

m
and w

ith program
s that do not use line num

bers.
Y

ou can pause in the m
iddle of a long listing by pressing the space bar. Press the space bar

again to continue. U
se eesscc or 

. to abort the listing.
If you use a single line num

ber, LIST lists that line from
 the program

. If there is no line w
ith

the given line num
ber, LIST does nothing.

If you use tw
o line num

bers separated by a com
m

a, LIST lists all of the lines w
hose line

num
ber is greater than or equal to the first num

ber, and less than or equal to the second. If there are
no lines in the given range, LIST does nothing.

For exam
ple,

LIST 100, 400

lists all of the lines from
 line 100 to line 400.

Y
ou can om

it the first line num
ber, in w

hich case LIST lists all of the lines w
hose line

num
ber is less than or equal to the second param

eter. For exam
ple,

LIST , 400

C
hapter 5: The C

om
m

and Processor

49

lists all of the lines from
 the start of the program

 to line 400. O
m

itting the second num
ber, but

including the com
m

a, lists all of the lines greater than or equal to the first line num
ber. For

exam
ple,

LIST 100,

lists all of the lines from
 line 100 to the end of the program

.
Y

ou can use LIST to list program
s that do not have line num

bers on each line, but the entire
program

 is alw
ays listed. In general, you should use the full screen editor to view

 program
s that do

not use line num
bers on each line.

L
oad

L
O
A
D

f
i
l
e
n
a
m
e

Load a program
 from

 disk.
The program

 m
ay be a G

Soft BA
SIC tokenized file, a TX

T file, a BA
SIC SRC file or an

A
pplesoft BA

SIC file.
If the file is a TX

T or SRC file, it is handled alm
ost as if the N

EW
 com

m
and w

as used, then
each of the lines in the file w

as typed in turn. The single difference is that lines w
ith no line

num
ber are accepted.
A

pplesoft BA
SIC program

s are loaded and converted to G
Soft BA

SIC program
s, w

ith
com

m
ent lines added after any line that m

ay cause a problem
 in G

Soft BA
SIC or G

S/O
S. Search

for the characters >>>, w
hich appear at the start of all of these com

m
ents.

L
ock

L
O
C
K

f
i
l
e
n
a
m
e

Locks a file. Locked files cannot be renam
ed, deleted, or w

ritten to.

M
ove

M
O
V
E

f
r
o
m

t
o

M
ove a file from

 one location to another.
M

ove w
orks exactly like a CO

PY
 com

m
and follow

ed by a D
ELETE com

m
and that deletes the

original file.

Environm
ent R

eference M
anual

50 N
ew

N
E
WThe program

 in the w
orkspace is deleted.

Prefix

P
R
E
F
I
X

[

p
a
t
h
n
a
m
e

]

Changes the default prefix (G
S/O

S prefix num
ber 8) to the given path nam

e.
If no prefix is given, the current value for the prefix is show

n.
There is one special nam

e. A
 path nam

e consisting of tw
o periods, as in

PREFIX ..

m
oves up one directory level. For exam

ple, assum
ing disks and folders w

ith the appropriate nam
es

exist, the com
m

ands

PREFIX :MyDisk:GSoft:Samples
PREFIX ..
PREFIX

prints the current prefix, w
hich is

:MyDisk:Gsoft:

Y
ou can use CA

TA
LO

G
 after PREFIX

 if you aren’t sure that you arrived at the proper spot.

P
R

P
R

[

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

[

l
i
n
e
-
n
u
m
b
e
r

]

]

]

The PR com
m

and w
orks exactly like LIST, but the program

 listing is sent to the printer
instead of the text screen. The .PRIN

TER driver described in Chapter 4 m
ust be installed for this

com
m

and to w
ork.

See LIST for a description of the param
eters.

C
hapter 5: The C

om
m

and Processor

51

R
enam

e

R
E
N
A
M
E

o
l
d

n
e
w

Renam
e a file.

Y
ou can use full or partial path nam

es, but REN
A

M
E w

ill not m
ove a file, so any path

nam
es used m

ust m
atch.

REN
A

M
E can be used to change the case of a file nam

e. For exam
ple, if a file is nam

ed
M

Y
PRO

G
, but you w

ould like to see M
yProg w

hen you catalog a disk, use the com
m

and

RENAME MyProg MyProg

The letter case of the first nam
e doesn’t m

atter, since it is only used to find the file to renam
e, and

file nam
e m

atching is case insensitive. The case of the second nam
e is used for the new

 file nam
e.

It is preserved, show
ing up w

hen you catalog the directory containing the file.

R
enum

ber

R
E
N
U
M
B
E
R

f
i
r
s
t

'
,
'

s
t
e
p

[

'
,
'

s
t
a
r
t

[

'
,
'

e
n
d

]

]

Renum
ber a program

.
The param

eters identify the lines to renum
ber and the w

ay to renum
ber the file.

param
eter

m
eaning

f
i
r
s
t

First line num
ber to use.

s
t
e
p

Increm
ent betw

een new
 line num

bers.
s
t
a
r
t

First line to renum
ber.

e
n
d

Last line to renum
ber.

REN
U

M
BER is generally used to update the line num

bers in a program
 that has been edited,

inserting m
any lines in one part of the program

. Y
ou could run out of available line num

bers in
the part of the program

 you are editing, or you m
ight w

ant to renum
ber the program

 for aesthetic
reasons. For a m

ore esoteric exam
ple, consider the short program

Environm
ent R

eference M
anual

52

 1000 DIM FLAGS%(8190)
 2000 PRINT "10 iterations"
 2010 FOR ITER = 1 TO 10
 2020 COUNT = 0
 2030 FOR I = 0 TO 8190
 2040 FLAGS%(I) = 1
 2050 NEXT I
 2060 FOR I = 0 TO 8190
 2070 IF NOT FLAGS%(I) THEN 2160
 2080 PRIME = I + I + 3
 2090 PRINT PRIME
 2100 K = I + PRIME
 2110 IF K > 8190 GOTO 2150
 2120 FLAGS%(K) = 0
 2130 K = K + PRIME
 2140 GOTO 2110
 2150 COUNT = COUNT + 1
 2160 NEXT I
 2165 NEXT ITER
 2170 PRINT COUNT;" primes"

This is a classic benchm
ark for com

puters. It finds all of the prim
e num

bers from
 3 to 8190. This

particular version w
ill run from

 either A
pplesoft BA

SIC or G
Soft BA

SIC. Traditionally, line
2090 is rem

oved before tim
ing the program

.
The am

ount of tim
e it takes to handle a long line num

ber is actually longer than the tim
e it

takes to handle a short one. Renum
bering the program

 w
ith the com

m
and

RENUMBER 1, 1

created a com
pacted program

 w
hose first line num

ber is 1, w
ith line num

bers that increm
ent by 1.

H
ere’s the renum

bered program
:

 1 DIM FLAGS%(8190)
 2 PRINT "10 iterations"
 3 FOR ITER = 1 TO 10
 4 COUNT = 0
 5 FOR I = 0 TO 8190
 6 FLAGS%(I) = 1
 7 NEXT I
 8 FOR I = 0 TO 8190
 9 IF NOT FLAGS%(I) THEN 17
 10 PRIME = I + I + 3
 11 K = I + PRIME
 12 IF K > 8190 GOTO 16
 13 FLAGS%(K) = 0
 14 K = K + PRIME
 15 GOTO 12
 16 COUNT = COUNT + 1
 17 NEXT I

C
hapter 5: The C

om
m

and Processor

53

 18 NEXT ITER
 19 PRINT COUNT;" primes"

This program
 actually runs about 2%

 faster than the original. That’s not a very big
im

provem
ent, but it does show

 how
 REN

U
M

BER w
orks!

Y
ou can get an even bigger savings by converting the program

 com
pletely to G

Soft BA
SIC,

taking advantage of all its features. H
ere’s the sam

e program
 fully converted to G

Soft BA
SIC.

DIM FLAGS%(8190)
PRINT "10 iterations"
FOR ITER% = 1 TO 10
 COUNT% = 0
 FOR I% = 0 TO 8190
 FLAGS%(I%) = 1
 NEXT I%
 FOR I% = 0 TO 8190
 IF FLAGS%(I%) THEN
 PRIME% = I% + I% + 3
 K% = I% + PRIME%
 WHILE K% <= 8190
 FLAGS%(K%) = 0
 K% = K% + PRIME%
 WEND
 COUNT% = COUNT% + 1
 END IF
 NEXT I%
NEXT ITER%
PRINT COUNT%;" primes"

This program
 runs about 14%

 faster than the original. The biggest saving com
es from

 using
integers throughout the program

 rather than floating-point num
bers.

Just for com
parison, the original program

 runs in about 2/3 the tim
e it takes the sam

e
program

 to run under A
pplesoft BA

SIC. The fully converted program
 runs in about 57%

 of the
tim

e—
alm

ost tw
ice as fast as A

pplesoft BA
SIC.

There is one possible error you can encounter w
ith the REN

U
M

BER com
m

and. If the last
renum

bered line is larger than the first subsequent line that is not renum
bered, or if REN

U
M

BER
w

ould create a line num
ber greater than 65535, the renum

ber com
m

and fails. It prints an error
m

essage and refuses to renum
ber the program

. Y
ou can generate this error from

 the original prim
e

num
ber sam

ple w
ith the com

m
and

RENUMBER 2000, 100, 2000, 2100

This com
m

and attem
pts to renum

ber the lines from
 2000 to 2100 beginning w

ith line num
ber

2000 and increm
enting by 100. If this com

m
and w

ere carried out, line 2100 w
ould be renum

bered
as line 3000. Since the line right after the original line 2100 is num

bered 2110, this com
m

and
w

ould create a program
 w

ith overlapping lines, so the com
m

and aborts rather than dem
olishing

your program
.

Environm
ent R

eference M
anual

54

This com
m

and m
ay be used w

ith program
s that contain lines w

ithout line num
bers, but you

cannot use start and end line num
bers unless the entire program

 is num
bered. In short, if the

program
 doesn’t start w

ith all lines num
bered, you have to renum

ber the entire program
. A

lso,
REN

U
M

BER w
ill not renum

ber line num
ber uses correctly if the program

 has duplicate line
num

bers. For exam
ple, the program

 GOTO 100
 DATA 10
 100 READ J
 FOR I = 1 TO J
 CALL P
 NEXT
 END

 SUB P
 GOTO 100
 DATA I, II, III
 100 FOR I = 1 TO 3
 READ J$
 PRINT J$
 NEXT
 END

should not be renum
bered. It is a legal G

Soft BA
SIC program

, and w
ill w

ork correctly as show
n.

W
hen the program

 is renum
bered, though, the tw

o line num
bers w

ill be changed, but the line
num

bers used in the G
O

TO
 statem

ents w
ill both point to the sam

e line. Before renum
bering a

program
 like this one, rem

ove duplicate line num
bers m

anually. Y
ou don’t have to insure that the

line num
bers are in order, but you do need to insure that all line num

bers are unique before you
renum

ber a program
.

O
f course, in this particular exam

ple, the program
 w

ould w
ork if you left the G

O
TO

statem
ents and line num

bers out.

R
un

R
U
N

[

l
i
n
e
-
n
u
m
b
e
r

|

f
i
l
e
n
a
m
e

]

Run a program
.

If a num
ber is supplied as a param

eter, program
 execution starts at that line.

If a file nam
e is supplied as a param

eter, the file is loaded and executed. The file m
ay be a

G
Soft BA

SIC tokenized file, a TX
T file, a BA

SIC SRC file or an A
pplesoft BA

SIC file.
The RU

N
 com

m
and clears the variable space before the program

 begins execution. A
ny old

values, types and D
EF FN

 declarations are erased. If you w
ould like to execute the program

w
ithout erasing existing values, use the G

O
TO

 statem
ent to jum

p into the program
 at a specific

spot.

C
hapter 5: The C

om
m

and Processor

55

Save

S
A
V
E

f
i
l
e
n
a
m
e

Save a program
 to disk as a G

Soft BA
SIC tokenized file.

The resulting file can be executed from
 the shell version of G

Soft BA
SIC, and it can be used

as input to the M
akeRuntim

e utility.
See A

ppendix F for details about the file form
at.

SSave

S
S
A
V
E

f
i
l
e
n
a
m
e

Save a program
 to disk as an O

RCA
 SRC file.

The file has a file type of $B0 (show
n as SRC by the CA

TA
LO

G
 com

m
and) and an auxiliary

file type of $0104. See Text Files and Source Files, earlier in this chapter, for a discussion of this
file type.

T
Save

T
S
A
V
E

f
i
l
e
n
a
m
e

Save a program
 to disk as a generic A

SCII text file.
The file has a file type of $04 (show

n as TX
T by the CA

TA
LO

G
 com

m
and). See Text Files

and Source Files, earlier in this chapter, for a discussion of this file type.

U
nlock

U
N
L
O
C
K

f
i
l
e
n
a
m
e

U
nlocks a file locked w

ith the LO
CK

 com
m

and. Locked files cannot be renam
ed, deleted, or

w
ritten to.

57

C
hapter 6 – The Text Editor

G
Soft BA

SIC’s ED
IT com

m
and opens the current program

 using any O
RCA

 com
patible

editor. This chapter describes the O
RCA

 editor, w
hich ships w

ith G
Soft BA

SIC. The O
RCA

editor allow
s you to w

rite and edit source and text files.
The first section describes briefly how

 the O
RCA

 editor w
orks w

ith G
Soft BA

SIC interpreted
files. The second section in this chapter, “M

odes,” describes the different m
odes in w

hich the editor
can operate. The third section, “M

acros,” describes how
 to create and use editor m

acros, w
hich

allow
 you to execute a string of editor com

m
ands w

ith a single keystroke. The fourth section,
“U

sing Editor D
ialogs,” gives a general overview

 of how
 the m

ouse and keyboard are used to
m

anipulate dialogs. The next section, “Com
m

ands,” describes each editor com
m

and and gives the
key or key com

bination assigned to the com
m

and. The last section, “Setting Editor D
efaults,”

describes how
 to set the defaults for editor m

odes and tab settings for each language.

H
ow

 Text Editors W
ork W

ith G
Soft BA

SIC
 Tokenized

FilesW
hen you use G

Soft BA
SIC’s environm

ent to w
rite and execute program

s, the program
 you

are w
orking on is stored in a tokenized form

. Tokenizing a program
 is a process that converts

com
m

on w
ords, like PRIN

T, into single byte quantities. A
s a result, the program

 is m
uch sm

aller
than a standard text representation of the file, and it runs faster than w

ould be possible if the
program

 w
as not tokenized. The space savings are actually dram

atic—
tokenized files are generally

sm
aller than a com

piled version of the sam
e program

. G
Soft BA

SIC’s SA
V

E com
m

and saves the
file in this tokenized form

, too.
These tokens are converted back to text w

henever you list or edit a program
. Editing a

program
 w

ith any editor becom
es a m

ulti-step process. First G
Soft BA

SIC converts the tokenized
file to A

SCII text. This text is actually saved in a scratch file called SysBA
SICTem

p; this file is
stored in the current default directory. It’s this scratch file that the O

RCA
 editor actually edits. Y

ou
w

ill see this nam
e at the bottom

 of your edit screen. A
fter you finish editing the file, the editor

saves the results back to the scratch file, and G
Soft BA

SIC loads the result just as if you used the
LO

A
D

 com
m

and.
A

ll of this is fairly transparent, but it explains tw
o points you should keep in m

ind.
First, the file you type is converted to tokens. In the process, all identifiers are converted to

uppercase letters and extra spaces are rem
oved. W

hen the program
 is converted from

 tokenized form
to A

SCII text spaces are inserted to m
ake the program

 m
ore readable. Y

ou don’t have any control
over this process. If you are picky about the w

ay you form
at a program

, this can be annoying—
the

only alternative is to use a standard O
RCA

 com
patible program

m
ing environm

ent, installing
G

Soft BA
SIC as a standard language. O

n the other hand, since G
Soft BA

SIC w
ill form

at your
program

 in a reasonable w
ay, it frees you from

 keeping the text pretty as you type it in the editor.
N

o m
atter how

 sloppy your spacing and indenting m
ight be, G

Soft BA
SIC w

ill clean it up.

Environm
ent R

eference M
anual

58

The second point is that you can edit other text files w
hile in the editor. The O

RCA
 editor

doesn’t know
 how

 to edit a tokenized BA
SIC file, but it can load any files you save using the

TSA
V

E com
m

and. If you have BA
SIC subroutines that you w

ant to use in different program
s,

save them
 w

ith the TSA
V

E com
m

and so you can load them
 into the editor w

hile you are editing
your program

.

M
odes
The behavior of the O

RCA
 editor depends on the settings of several m

odes, as follow
s:

•
Insert.

•
Escape.

•
A

uto Indent.
•

Text Selection.
•

H
idden Characters.

M
ost of these m

odes have tw
o possible states; you can toggle betw

een the states w
hile in the

editor. The default for these m
odes can be changed by changing flags in the SysTabs file; this is

described later in this chapter, in the section Setting Editor D
efaults. A

ll of these m
odes are

described in this section.

Insert

W
hen you first start the editor, it is in over strike m

ode; in this m
ode the characters you type

replace any characters the cursor is on. In insert m
ode, any characters you type are inserted at the

left of the cursor; the character the cursor is on and any characters to the right of the cursor are
m

oved to the right.
The m

axim
um

 num
ber of characters the O

RCA
 editor w

ill display on a single line is 255
characters, and this length can be reduced by appropriate settings in the tab line. If you insert
enough characters to create a line longer than 255 characters, the line is w

rapped and displayed as
m

ore than one line. K
eep in m

ind that m
ost languages lim

it the num
ber of characters on a single

source line to 255 characters, and m
ay ignore any extra characters or treat them

 as if they w
ere on a

new
 line.
To enter or leave the insert m

ode, type 
E. W

hen you are in insert m
ode, the cursor w

ill be
an underscore character that alternates w

ith the character in the file. In over strike m
ode, the cursor

is a blinking box that changes the underlying character betw
een an inverse character (black on

w
hite) and a norm

al character (w
hite on black).

C
hapter 6: The Text Editor

59

E
scape

W
hen you press the EESSCC key, the editor enters the escape m

ode. For the m
ost part, the escape

m
ode w

orks like the norm
al edit m

ode. The principle difference is that the num
ber keys allow

 you
to enter repeat counts, rather than entering num

bers into the file. A
fter entering a repeat count, a

com
m

and w
ill execute that num

ber of tim
es.

For exam
ple, the 

B com
m

and inserts a blank line in the file. If you w
ould like to enter fifty

blank lines, you w
ould enter the escape m

ode, type 50
B, and leave the escape m

ode by typing
the EESSCC key a second tim

e.
In the norm

al editor m
ode, 

 follow
ed by a num

ber key m
oves to various places in the file.

In escape m
ode, the 

 key m
odifier allow

s you to type num
bers.

The only other difference betw
een the tw

o m
odes is the w

ay CCTTRRLL_ w
orks. This key is used

prim
arily in m

acros. If you are in the editor m
ode, CCTTRRLL_ places you in escape m

ode. If you are
in escape m

ode, it does nothing. In edit m
ode, 

CCTTRRLL_ does nothing; in escape m
ode, it returns

you to edit m
ode. This lets you quickly get into the m

ode you need to be in at the start of an editor
m

acro, regardless of the m
ode you are in w

hen the m
acro is executed.

The rem
ainder of this chapter describes the standard edit m

ode.

A
uto Indent

Y
ou can set the editor so that RR

EETTUU
RR

NN m
oves the cursor to the first colum

n of the next line,
or so that it follow

s indentations already set in the text. If the editor is set to put the cursor on
colum

n 1 w
hen you press RR

EETTUU
RR

NN then changing this m
ode causes the editor to put the cursor

on the first non-space character in the next line; if the line is blank, then the cursor is placed under
the first non-space character in the first non-blank line above the cursor. The first m

ode is
generally best for line-oriented languages, like assem

bly language. The second is handy for block-
structured languages like G

Soft BA
SIC.

To change the return m
ode, type 

RR
EETTUU

RR
NN.

Select T
ext

Y
ou can use the m

ouse or the keyboard to select text in the O
RCA

 editor. This section deals
w

ith the keyboard selection m
echanism

; see U
sing the M

ouse, later in this chapter, for
inform

ation about selecting text w
ith the m

ouse.
The Cut, Copy, D

elete and Block Shift com
m

ands require that you first select a block of text.
The O

RCA
 editor has tw

o m
odes for selecting text: line-oriented and character-oriented selects. A

s
you m

ove the cursor in line-oriented select m
ode, text or code is m

arked a line at a tim
e. In the

character-oriented select m
ode, you can start and end the m

arked block at any character. Line-
oriented select m

ode is the default for assem
bly language; for text files and m

ost high-level
languages, character-oriented select m

ode is the default.
W

hile in either select m
ode, the follow

ing cursor-m
ovem

ent com
m

ands are active:

Environm
ent R

eference M
anual

60

•
bottom

 of screen
•

top of screen
•

cursor dow
n

•
cursor up

•
start of line

•
screen m

oves

In addition, w
hile in character-oriented select m

ode, the follow
ing cursor-m

ovem
ent com

m
ands

are active:

•
cursor left

•
cursor right

•
end of line

•
tab

•
tab left

•
w

ord right
•

w
ord left

A
s you m

ove the cursor, the text betw
een the original cursor position and the final cursor

position is m
arked (in inverse characters). Press RR

EETTUU
RR

NN to com
plete the selection of text. Press

the EESSCC key to abort the operation, leave select m
ode, and return to norm

al editing.
To sw

itch betw
een character-oriented and line-oriented selection w

hile in the editor, type
CC

TT
RR

LL


x.

H
idden C

haracters

There are cases w
here line w

rapping or tab fields m
ay be confusing. Is there really a new

 line,
or w

as the line w
rapped? D

o those eight blanks represent eight spaces, a tab, or som
e com

bination
of spaces and tabs? To answ

er these questions, the editor has an alternate display m
ode that show

s
hidden characters. To enter this m

ode, type 
=; you leave the m

ode the sam
e w

ay. W
hile you are

in the hidden character m
ode, end of line characters are displayed as the m

ouse text return character.
Tabs are displayed as a right arrow

 w
here the tab character is located, follow

ed by spaces until the
next tab stop.

M
acros
Y

ou can define up to 26 m
acros for the O

RCA
 editor, one for each letter on the keyboard. A

m
acro allow

s you to substitute a single keystroke for up to 128 predefined keystrokes. A
 m

acro
can contain both editor com

m
ands and text, and can call other m

acros.

C
hapter 6: The Text Editor

61

To create a m
acro, press 

EESSCC. The current m
acro definitions for A

 to J appear on the screen.
The LLEEFFTT--AA

RR
RR

OO
WW

 and RR
IIGG

HH
TT--AA

RR
RR

OO
WW

 keys can be used to sw
itch betw

een the three pages of
m

acro definitions. To replace a definition, press the key that corresponds to that m
acro, then type

in the new
 m

acro definition. Y
ou m

ust be able to see a m
acro to replace it - use the left and right

arrow
 keys to get the correct page. Press OO

PPTTIIOO
NN EESSCC to term

inate the m
acro definition. Y

ou can
include CC

TTRR
LLkey com

binations, 
key com

binations, OO
PPTTIIOO

NN
key com

binations, and the
RR

EETTUU
RR

NN, EENN
TTEERR, EESSCC, and arrow

 keys. The follow
ing conventions are used to display

keystrokes in m
acros:

K
ey

W
hat Y

ou See
CC

TTRR
LLkey

The uppercase character key is show
n in inverse.


key

A
n inverse A

 follow
ed by key (for exam

ple, A
K

)
OO

PPTTIIOO
NN

key
A

n inverse B follow
ed by key (for exam

ple, BK
)

EE
SS

CC
A

n inverse left bracket (CC
TTRR

LL [).
RR

EE
TT

UU
RR

NN
A

n inverse M
 (CC

TTRR
LL M

).
EE

NN
TT

EE
RR

A
n inverse J (CCTTRRLL J).

UU
PP--AA

RR
RR

OO
WW

A
n inverse K

 (CCTTRRLL K
).

DD
OO

WW
NN

--AA
RR

RR
OO

WW
A

n inverse J (CCTTRRLL J).
LL

EE
FFTT

--AA
RR

RR
OO

WW
A

n inverse H
 (CCTTRRLL H

).
RR

IIGG
HH

TT
--AA

RR
RR

OO
WW

A
n inverse U

 (CCTTRRLL U
).

DD
EE

LL
EE

TT
EE

A
 block

Each 
key com

bination or OO
PPTTIIOO

NNkey com
bination counts as tw

o keystrokes in a m
acro

definition. A
lthough an 

key com
bination looks (in the m

acro definition) like a CC
TTRR

LL A
follow

ed by key, and an OO
PPTTIIOO

NN
key com

bination looks like a CCTTRRLL B follow
ed by key, you

cannot enter CCTTRRLL A
 w

hen you w
ant an 

 or CCTTRRLL B w
hen you w

ant an OO
PPTTIIOO

NN key.
If you m

ake a m
istake typing a m

acro definition you can back up w
ith option-DD

EELLEETTEE. If
you w

ish to retype the m
acro definition, press OO

PPTTIIOO
NN EESSCC to term

inate the definition, press the
letter key for the m

acro you w
ant to define, and begin over. W

hen you are finished entering
m

acros, press OO
PPTTIIOO

NN EESSCC to term
inate the last option definition, then press OO

PPTTIIOO
NN to end

m
acro entry. If you have entered any new

 m
acro definitions, a dialog w

ill appear asking if you
w

ant to save the m
acros to disk; select O

K
 to save the new

 m
acro definitions, and Cancel to return

to the editor. If you select Cancel, the m
acros you have entered w

ill rem
ain in effect until you

leave the editor.
M

acros are saved on disk in the file SY
SEM

A
C in the shell prefix. If you are using the

G
Soft BA

SIC environm
ent, the shell prefix is located in the sam

e directory as G
Soft.SY

S16.
To execute a m

acro, hold dow
n OO

PPTTIIOO
NN and press the key corresponding to that m

acro.

Environm
ent R

eference M
anual

62 U
sing E

ditor D
ialogs

The text editor m
akes use of a num

ber of dialogs for operations like entering search strings,
selecting a file to open, and inform

ing you of error conditions. The w
ay you select options, enter

text, and execute com
m

ands in these dialogs is the sam
e for all of them

.
Figure 6.1 show

s the Search and Replace dialog, one of the m
ost com

prehensive of all of the
editor’s dialogs, and one that happens to illustrate m

any of the controls used in dialogs.

Figure 6.1

The first item
 in this dialog is an edit line control that lets you enter a string. W

hen the dialog
first appears, the cursor is at the beginning of this line. Y

ou can use any of the line editing
com

m
ands from

 throughout the O
RCA

 program
m

ing environm
ent to enter and edit a string in this

edit line control; these line editing com
m

ands are sum
m

arized in the table below
.

C
hapter 6: The Text Editor

63

com
m

and
com

m
and nam

e and effect
LL

EE
FFTT

--AA
RR

RR
OO

WW
cursor left - The cursor w

ill m
ove to the left.

RR
IIGG

HH
TT

--AA
RR

RR
OO

WW
cursor right - The cursor w

ill m
ove to the right.


> or 

.
end of line - The cursor w

ill m
ove to the right-hand end of the string.


< or 

,
start of line - The cursor w

ill m
ove to the left-hand end of the string.


Y

 or CC
TTRR

LLY
delete to end of line - D

eletes characters from
 the cursor to the end

of the line.


Z or CC
TTRR

LLZ
undo - Resets the string to the starting string.

EESSCC or CC
TTRR

LLX
exit - Stops string entry, leaving the dialog w

ithout changing the
default string or executing the com

m
and.


E or CC

TTRR
LLE

toggle insert m
ode - Sw

itches betw
een insert and over strike m

ode.
The dialog starts out in the sam

e m
ode as the editor, but sw

itching the
m

ode in the dialog does not change the m
ode in the editor.

DD
EE

LL
EE

TT
EE

delete character left - D
eletes the character to the left of the cursor,

m
oving the cursor left.

The Search and Replace dialog has tw
o edit line item

s; you can m
ove betw

een them
 using the

TTAA
BB key. Y

ou m
ay also need to enter a tab character in a string, either to search specifically for a

string that contains an im
bedded tab character, or to place a tab character in a string that w

ill
replace the string once it is found. To enter a tab character in an edit line string, use 

TTAA
BB. W

hile
only one space w

ill appear in the edit line control, this space does represent a tab character.
Four options appear below

 the edit line controls. Each of these options is preceded by an 
character and a num

ber. Pressing 
x, w

here x is the num
ber, selects the option, and causes a check

m
ark to appear to the left of the option. Repeating the operation deselects the option, rem

oving
the check m

ark. Y
ou can also select and deselect options by using the m

ouse to position the cursor
over the item

, anyw
here on the line from

 the 
 character to the last character in the label, and

clicking.
A

t the bottom
 of the dialog is a pair of buttons; som

e dialogs have m
ore than tw

o, w
hile

som
e have only one. These buttons cause som

e action to occur. In general, all but one of these
buttons w

ill have an 
 character and a num

ber to the left of the button. Y
ou can select a button in

one of several w
ays: by clicking on the button w

ith the m
ouse, by pressing the RR

EETTUU
RR

NN key (for
the default button, w

hich is the one w
ithout an 

 character), by pressing 
x, or by pressing the

first letter of the label on the button. (For dialogs w
ith an edit line item

, the last option is not
available.)

O
nce an action is selected by pressing a button, the dialog w

ill vanish and the action w
ill be

carried out.

Environm
ent R

eference M
anual

64

Figure 6.2

Figure 6.2 show
s the O

pen dialog. This dialog contains a list control, used to display a list of
files and directories.

Y
ou can scroll through the list by clicking on the arrow

s w
ith the m

ouse, dragging the thum
b

w
ith the m

ouse (the thum
b is the space in the gray area betw

een the up and dow
n arrow

s), clicking
in the gray area above or below

 the thum
b, or by using the up and dow

n arrow
 keys.

If there are any files in the list, one w
ill alw

ays be selected. For com
m

ands like O
pen that

require a file nam
e you w

ill be able to select any file in the list; for com
m

ands like N
ew

 that
present the file list so you know

 w
hat file nam

es are already in use, only directories can be
selected. Y

ou can change w
hich file is selected by clicking on another file or by using the up or

dow
n arrow

 keys. If you click on the selected nam
e w

hile a directory is selected, the directory is
opened. If you click on a selected file nam

e, the file is opened.

U
sing the M

ouse
A

ll of the features of the editor can be used w
ithout a m

ouse, but the m
ouse can also be used

for a num
ber of functions. If you prefer not to use a m

ouse, sim
ply ignore it. Y

ou can even
disconnect the m

ouse, and the O
RCA

 editor w
ill perform

 perfectly as a keyboard-based editor.
The m

ost com
m

on use for the m
ouse is m

oving the cursor and selecting text. To position the
cursor anyw

here on the screen, m
ove the m

ouse. A
s soon as the m

ouse is m
oved, an arrow

 w
ill

appear on the screen; position this arrow
 w

here you w
ould like to position the cursor and click.

Several editor com
m

ands require you to select som
e text. Y

ou can select the text before using
the com

m
and by clicking to start a selection, then dragging the m

ouse w
hile holding dow

n the
button w

hile you m
ove to the other end of the selection. U

nlike keyboard selection, m
ouse

selections are alw
ays done in character select m

ode. Y
ou can also select w

ords by double-clicking
to start the selection, or lines by triple clicking to start the selection. Finally, if you drag the
m

ouse off of the screen w
hile selecting text, the editor w

ill start to scroll one line at a tim
e.

The m
ouse can also be used to select dialog buttons, change dialog options, and scroll list

item
s in a dialog. See U

sing Editor D
ialogs in this chapter for details.

C
hapter 6: The Text Editor

65

C
om

m
and D

escriptions
This section describes the functions that can be perform

ed w
ith editor com

m
ands. The key

assignm
ents for each com

m
and are show

n w
ith the com

m
and description.

Screen-m
ovem

ent descriptions in this m
anual are based on the direction the display screen

m
oves through the file, not the direction the lines appear to m

ove on the screen. For exam
ple, if a

com
m

and description says that the screen scrolls dow
n one line, it m

eans that the lines on the
screen m

ove up one line, and the next line in the file becom
es the bottom

 line on the screen.

CC
TTRR

LL@
A

bout
Show

s the current version num
ber and copyright for the editor. Press any key or click the

m
ouse button to get rid of the A

bout dialog.

CC
TTRR

LLG
B

eep the Speaker
The A

SCII control character BEL ($07) is sent to the output device. N
orm

ally, this causes the
speaker to beep.


, or 

<
B

eginning of L
ine

The cursor is placed in colum
n one of the current line.


DD

OO
WW

NN
--AA

RR
RR

OO
WW

B
ottom

 of Screen / Page D
ow

n
The cursor m

oves to the last visible line on the screen, preserving the cursor’s horizontal
position. If the cursor is already at the bottom

 of the screen, the screen scrolls dow
n tw

enty-tw
o

lines.

CC
TTRR

LLC or 
C

C
opy

W
hen you execute the Copy com

m
and, the editor enters select m

ode, as discussed in the
section Select Text in this chapter. U

se cursor-m
ovem

ent or screen-scroll com
m

ands to m
ark a

block of text (all other com
m

ands are ignored), then press RREETTUU
RRNN. The selected text is w

ritten
to the file SY

STEM
P in the w

ork prefix. (To cancel the Copy operation w
ithout w

riting the block
to SY

STEM
P, press EESSCC instead of RR

EETTUU
RR

NN.) U
se the Paste com

m
and to place the copied

m
aterial at another position in the file.

CC
TTRR

LLW
 or 

W
C

lose
Closes the active file. If the file has been changed since the last update, a dialog w

ill appear,
giving you a chance to abort the close, save the changes, or close the file w

ithout saving the
changes. If the active file is the only open file, the editor exits after closing the file; if there are
other open files, the editor selects the next file to becom

e the active file.

DD
OO

WW
NN

--AA
RR

RR
OO

WW
C

ursor D
ow

n
The cursor is m

oved dow
n one line, preserving its horizontal position. If it is on the last line

of the screen, the screen scrolls dow
n one line.

Environm
ent R

eference M
anual

66 LL
EE

FFTT
--AA

RR
RR

OO
WW

C
ursor L

eft
The cursor is m

oved left one colum
n. If it is in colum

n one, the com
m

and is ignored.

RR
IIGG

HH
TT

--AA
RR

RR
OO

WW
C

ursor R
ight

The cursor is m
oved right one colum

n. If it is on the end-of-line m
arker (usually colum

n 80),
the com

m
and is ignored.

UU
PP--AA

RR
RR

OO
WW

C
ursor U

p
The cursor is m

oved up one line, preserving its horizontal position. If it is on the first line of
the screen, the screen scrolls up one line. If the cursor is on the first line of the file, the com

m
and

is ignored.

CC
TTRR

LLX
 or 

X
C

ut
W

hen you execute the Cut com
m

and, the editor enters select m
ode, as discussed in the section

Select Text in this chapter. U
se cursor-m

ovem
ent or screen-scroll com

m
ands to m

ark a block of
text (all other com

m
ands are ignored), then press RREETTUU

RRNN. The selected text is w
ritten to the file

SY
STEM

P in the w
ork prefix, and deleted from

 the file. (To cancel the Cut operation w
ithout

cutting the block from
 the file, press EESSCC instead of RR

EETTUU
RR

NN). U
se the Paste com

m
and to place

the cut text at another location in the file.


EE

SS
CC

D
efine M

acros
The editor enters the m

acro definition m
ode. Press OO

PPTTIIOO
NN EESSCC to term

inate a definition,
and OO

PPTTIIOO
NN to term

inate m
acro definition m

ode. The m
acro definition process is described in the

section M
acros in this chapter.


DD

EE
LL

EE
TT

EE
D

elete
W

hen you execute the delete com
m

and, the editor enters select m
ode, as discussed in the

section Select Text in this chapter. U
se any of the cursor m

ovem
ent or screen-scroll com

m
ands to

m
ark a block of text (all other com

m
ands are ignored), then press RREETTUU

RRNN. The selected text is
deleted from

 the file. (To cancel the delete operation w
ithout deleting the block from

 the file, press
EESSCC instead of RR

EETTUU
RR

NN
.)

CC
TTRR

LLF or 
F

D
elete C

haracter
The character that the cursor is on is deleted and put in the U

ndo buffer (see the description of
the U

ndo com
m

and). Characters to the right of the cursor are m
oved one colum

n to the left to fill
in the gap.

DD
EELLEETTEE or CC

TTRR
LLD

D
elete C

haracter L
eft

The character to the left of the cursor is deleted, and the character that the cursor is on, as w
ell

as the rest of the line to the right of the cursor, are m
oved 1 colum

n to the left to fill in the gap. If
the cursor is in colum

n one and the over strike m
ode is active, no action is taken. If the cursor is

in colum
n one and the insert m

ode is active, then the line the cursor is on is appended to the line

C
hapter 6: The Text Editor

67

above and the cursor rem
ains on the character it w

as on before the delete. D
eleted characters are put

in the undo buffer.


T or CC

TTRR
LLT

D
elete

L
ine

The line that the cursor is on is deleted, and the follow
ing lines are m

oved up one line to fill
in the space. The deleted line is put in the U

ndo buffer (see the description of the U
ndo com

m
and).

CC
TTRR

LLY
 or 

Y
D

elete to E
O

L
The character that the cursor is on, and all those to the right of the cursor to the end of the

line, are deleted and put in the U
ndo buffer (see the description of the U

ndo com
m

and).


G

D
elete W

ord
W

hen you execute the delete w
ord com

m
and, the cursor is m

oved to the beginning of the w
ord

it is on, then delete character com
m

ands are executed for as long as the cursor is on a non-space
character, then for as long as the cursor is on a space. This com

m
and thus deletes the w

ord plus all
spaces up to the beginning of the next w

ord. If the cursor is on a space, that space and all
follow

ing spaces are deleted, up to the start of the next w
ord. A

ll deleted characters, including
spaces, are put in the U

ndo buffer (see the description of the U
ndo com

m
and).


. or 

>
End of Line

If the last colum
n on the line is not blank, the cursor m

oves to the last colum
n. If the last

colum
n is blank, then the cursor m

oves to the right of the last non-space character in the line. If
the entire line is blank, the cursor is placed in colum

n one.


? or 

/
H

elp
D

isplays the help file, w
hich contains a short sum

m
ary of editor com

m
ands. U

se EESSCC to
return to the file being edited.

The help file is a text file called SY
SH

ELP, found in the shell prefix. Since it is a text file,
you can m

odify it as desired.


B or CC

TTRR
LLB

Insert L
ine

A
 blank line is inserted at the cursor position, and the line the cursor w

as on and the lines
below

 it are scrolled dow
n to m

ake room
. The cursor rem

ains in the sam
e horizontal position on

the screen.


SSPPAA

CC
EE

BB
AA

RR
Insert Space

A
 space is inserted at the cursor position. Characters from

 the cursor to the end of the line are
m

oved right to m
ake room

. A
ny character in colum

n 255 on the line is lost. The cursor rem
ains in

the sam
e position on the screen. N

ote that the Insert Space com
m

and can extend a line past the
end-of-line m

arker.

Environm
ent R

eference M
anual

68 CC
TTRR

LLN
 or 

N
N

ew
A

 dialog like the one show
n in Figure 6.3 appears. Y

ou need to enter a nam
e for the new

 file.
A

fter entering a nam
e, the editor w

ill open an em
pty file using one of the ten available file buffers.

The file’s location on disk w
ill be determ

ined by the directory show
ing in the dialog’s list box.

W
hile the N

ew
 com

m
and requires selecting a file nam

e, no file is actually created until you
save the file w

ith the Save com
m

and.

Figure 6.3

CC
TTRR

LLO
 or 

O
O

pen
The editor can edit up to ten files at one tim

e. W
hen the open com

m
and is used, the editor

m
oves to the first available file buffer, then brings up the dialog show

n in Figure 6.4. If there are
no em

pty file buffers, the editor beeps, and the com
m

and is aborted.

Figure 6.4

Selecting D
isk brings up a second dialog that show

s a list of the disks available. Selecting
one changes the list of files to a list of the files on the selected disk.

C
hapter 6: The Text Editor

69

W
hen you use the open button, if the selected file in the file list is a TX

T or SRC file, the
file is opened. G

Soft BA
SIC tokenized files saved w

ith the SA
V

E com
m

and cannot be opened
w

ith the open com
m

and, but G
Soft BA

SIC files saved w
ith the SSA

V
E com

m
and are SRC files,

and those saved w
ith the TSA

V
E com

m
and are TX

T files, and both TX
T and SRC files can be

opened. If a directory is selected, the directory is opened, and the file list changes to show
 the files

inside the directory. Y
ou can also open a file by first selecting a file, then clicking on it w

ith the
m

ouse.
If a directory is open, the close button closes the directory, show

ing the list of files that
contains the directory. Y

ou can also close a directory by clicking on the path nam
e show

n above
the file list. If the file list w

as created from
 the root volum

e of a disk, the close button does
nothing.

The cancel button leaves the open dialog w
ithout opening a file.

For inform
ation on how

 to use the various controls in the dialog, see U
sing Editor D

ialogs in
this chapter.

CC
TTRR

LLV
 or 

V
Paste

The contents of the SY
STEM

P file are copied to the current cursor position. If the editor is in
line-oriented select m

ode the line the cursor is on and all subsequent lines are m
oved dow

n to m
ake

room
 for the new

 m
aterial. If the editor is in character-oriented select m

ode the m
aterial is copied at

the cursor colum
n. If enough characters are inserted to m

ake the line longer than 255 characters,
the excess characters are lost.

CC
TTRR

LLQ
 or 

Q
Q

uit
The quit com

m
and leaves the editor. If any file has been changed since the last tim

e it w
as

saved to disk, each of the files, in turn, w
ill be m

ade the active file, and the follow
ing dialog w

ill
appear:

Figure 6.5

If you select Y
es, the file is saved just as if the Save com

m
and had been used. If you select

N
o, the file is closed w

ithout saving any changes that have been m
ade. Selecting Cancel leaves

you in the editor w
ith the active file still open, but if several files had been opened, som

e of them
m

ay have been closed before the Cancel operation took affect.

CC
TTRR

LLR or 
R

R
em

ove
B

lanks
If the cursor is on a blank line, that line and all subsequent blank lines up to the next non-

blank line are rem
oved. If the cursor is not on a blank line, the com

m
and is ignored.

Environm
ent R

eference M
anual

70 1 to 32767
R

epeat C
ount

W
hen in escape m

ode, you can enter a repeat count (any num
ber from

 1 to 32767)
im

m
ediately before a com

m
and, and the com

m
and is repeated as m

any tim
es as you specify (or as

m
any tim

es as is possible, w
hichever com

es first). Escape m
ode is described in the section M

odes
in this chapter.

RR
EE

TT
UU

RR
NN

R
eturn

The RREETTUU
RRNN key w

orks in one of tw
o w

ays, depending on the setting of the auto-indent
m

ode toggle: 1) to m
ove the cursor to colum

n one of the next line; or 2) to place the cursor on the
first non-space character in the next line, or, if the line is blank, beneath the first non-space
character in the first non-blank line on the screen above the cursor. If the cursor is on the last line
on the screen, the screen scrolls dow

n one line.
If the editor is in insert m

ode, the RR
EETTUU

RR
NN key w

ill also split the line at the cursor position.

CC
TTRR

LLA
 or 

A
Save A

s
The Save A

s com
m

and lets you change the nam
e of the active file, saving it to a new

 file
nam

e or to the sam
e nam

e in a new
 file directory. W

hen you use this com
m

and, this dialog w
ill

appear:

Figure 6.6

Selecting D
isk brings up a second dialog that show

s a list of the disks available. Selecting
one changes the list of files to a list of the files on the selected disk.

W
hen you use the O

pen button, the selected directory is opened. W
hile using this com

m
and,

you cannot select any files from
 the list; only directories can be selected.

If a directory is open, the close button closes the directory, show
ing the list of files that

contains the directory. Y
ou can also close a directory by clicking on the path nam

e show
n above

the file list. If the file list w
as created from

 the root volum
e of a disk, the close button does

nothing.
The cancel button leaves the open dialog w

ithout opening a file.

C
hapter 6: The Text Editor

71

The Save button saves the file, using the file nam
e show

n in the edit line item
 labeled “File

N
am

e.” Y
ou can also save the file by pressing the RR

EETTUU
RR

NN key.
For inform

ation on how
 to use the various controls in the dialog, see U

sing Editor D
ialogs in

this chapter.

CC
TTRR

LLS or 
S

Save
The active file (the one you can see) is saved to disk.


-1 to 

-9
Screen

M
oves

The file is divided by the editor into 8 approxim
ately equal sections. The screen-m

ove
com

m
ands m

ove the file to a boundary betw
een one of these sections. The com

m
and 

1 jum
ps to

the first character in the file, and 
9 jum

ps to the last character in the file. The other seven 
n

com
m

ands cause screen jum
ps to evenly spaced interm

ediate points in the file.


}

Scroll D
ow

n O
ne L

ine
The editor m

oves dow
n one line in the file, causing all of the lines on the screen to m

ove up
one line. The cursor rem

ains in the sam
e position on the screen. Scrolling can continue past the

last line in the file.


]

Scroll D
ow

n O
ne Page

The screen scrolls dow
n tw

enty-tw
o lines. Scrolling can continue past the last line in the file.


{

Scroll U
p O

ne L
ine

The editor m
oves up one line in the file, causing all of the lines on the screen to m

ove dow
n

one line. The cursor rem
ains in the sam

e position on the screen. If the first line of the file is
already displayed on the screen, the com

m
and is ignored.


[

Scroll U
p O

ne Page
The screen scrolls up tw

enty-tw
o lines. If the top line on the screen is less than one screen’s

height from
 the beginning of the file, the screen scrolls to the beginning of the file.


L

Search D
ow

n
This com

m
and allow

s you to search through a file for a character or string of characters. W
hen

you execute this com
m

and, this dialog appears:

Environm
ent R

eference M
anual

72

Figure 6.7

If you have previously entered a search string, the previous string appears after the prom
pt as a

default. Type in the string for w
hich you w

ish to search, and press RR
EETTUU

RR
NN. The cursor w

ill be
m

oved to the first character of the first occurrence of the search string after the old cursor position.
If there are no occurrences of the search string betw

een the old cursor position and the end of the
file, an alert w

ill show
 up stating that the string w

as not found; pressing any key w
ill get rid of

the alert.
By default, string searches are case insensitive, m

ust be an exact m
atch in term

s of blanks and
tabs, and w

ill m
atch any target string in the file, even if it is a subset of a larger w

ord. A
ll of these

defaults can be changed, so w
e w

ill look at w
hat they m

ean in term
s of how

 changing the defaults
affects the w

ay string searches w
ork.

W
hen you look at a line like

100 PRINT "Hello, world."

w
ithout using the hidden characters m

ode, it is im
possible to tell if the spaces betw

een the various
fields are caused by a series of space characters, tw

o tabs, or perhaps even a space character or tw
o

follow
ed by a tab. This is an im

portant distinction, since searching for
100<space><space><space><space>PRIN

T w
on’t find the line if the 100 and PRIN

T are actually
separated by a tab character, and searching for 100<tab>PRIN

T w
on’t find the line if the fields are

separated by three spaces. If you select the “w
hite space com

pares equal” option, though, the editor
w

ill find any string w
here 100 and PRIN

T are separated by any com
bination of spaces and tabs,

w
hether you use spaces, tabs, or som

e com
bination in the search string you type.

By default, if you search for print, the editor w
ill also find PRIN

T, since string searches are
case insensitive. Selecting the “case sensitive” option m

akes the string search case sensitive, so
that the capitalization becom

es significant. W
ith this option turned on, searching for PRIN

T
w

ould not find print.
Som

etim
es w

hen you search for a string, you w
ant to find any occurrence of the string, even

if it is im
bedded in som

e larger w
ord. For exam

ple, if you are scanning your program
 for places

w
here it handles spaces, you m

ight enter a string like “space”. Y
ou w

ould w
ant the editor to find

the w
ord w

hitespace, though, and norm
ally it w

ould. If you are trying to scan through a source file
looking for all of the places w

here you used the variable i, though, you don’t w
ant the editor to

stop four tim
es on the w

ord M
ississippi. In that case, you can select the “w

hole w
ord” option, and

the editor w
ill only stop if it finds the letter i, and there is no other letter, num

ber, or underscore

C
hapter 6: The Text Editor

73

character on either side of the letter. These rules m
atch the w

ay languages deal w
ith identifiers, so

you can use this option to search for specific variable nam
es – even a short, com

m
on one like i.

This com
m

and searches from
 the cursor position tow

ards the end of the file. For a sim
ilar

com
m

and that searches back tow
ards the start of the file, see the Search U

p com
m

and.
For a com

plete description of how
 to use the m

ouse or keyboard to set options and m
ove

through the dialog, see the section U
sing Editor D

ialogs in this chapter.
O

nce a search string has been entered, you m
ay w

ant to search for another occurrence of the
sam

e string. O
RCA

 ships w
ith tw

o built-in editor m
acros that can do this w

ith a single keystroke,
w

ithout bringing up the dialog. To search forw
ard, use the option-L m

acro; to search back, use the
option-K

 m
acro.


K

Search U
p

This com
m

and operates exactly like Search D
ow

n, except that the editor looks for the search
string starting at the cursor and proceeding tow

ard the beginning of the file. The search stops at the
beginning of the file; to search betw

een the current cursor location and the end of the file, use the
Search D

ow
n com

m
and.


J

Search and R
eplace D

ow
n

This com
m

and allow
s you to search through a file for a character or string of characters, and to

replace the search string w
ith a replacem

ent string. W
hen you execute this com

m
and, the

follow
ing dialog w

ill appear on the screen:

Figure 6.8

The search string, the first three options, and the buttons w
ork just as they do for string

searches; for a description of these, see the Search D
ow

n com
m

and. The replace string is the target
string that w

ill replace the search string each tim
e it is found. By default, w

hen you use this
com

m
and, each tim

e the search string is found in the file you w
ill see this dialog:

Environm
ent R

eference M
anual

74

Figure 6.9

If you select the Replace option, the search string is replaced by the replace string, and the
editor scans forw

ard for the next occurrence of the search string. Choosing Skip causes the editor to
skip ahead to the next occurrence of the search string w

ithout replacing the occurrence that is
displayed. Cancel stops the search and replace process.

If you use the “replace all” option, the editor starts at the top of the file and replaces each and
every occurrence of the search string w

ith the target string. O
n large files, this can take quite a bit

of tim
e. To stop the process, press 

. (open-apple period). W
hile the search and replace is going

on, you can see a spinner at the bottom
 right corner of the screen, show

ing you that the editor is
still alive and w

ell.


H

Search and R
eplace U

p
This com

m
and operates exactly like Search and Replace D

ow
n, except that the editor looks for

the search string starting at the cursor and proceeding tow
ard the beginning of the file. The search

stops at the beginning of the file; to search betw
een the current cursor location and the end of the

file, use the Search and Replace D
ow

n com
m

and. If you use the “replace all” option, this
com

m
and w

orks exactly the sam
e w

ay the Search and Replace D
ow

n com
m

and does w
hen it uses

the sam
e option.

option--
Select

File
The editor can edit up to ten files at one tim

e. W
hen you use this com

m
and, a dialog appears

show
ing the nam

es of the ten files in m
em

ory. Y
ou can then m

ove to one of the files by pressing
option-n, w

here n is one of the file num
bers. Y

ou can exit the dialog w
ithout sw

itching files by
pressing EESSCC or RR

EETTUU
RR

NN
.

See also the Sw
itch Files com

m
and.

option-TTAA
BB

Set and C
lear Tabs

If there is a tab stop in the sam
e colum

n as the cursor, it is cleared; if there is no tab stop in
the cursor colum

n, one is set.

option-[
Shift

L
eft

If this com
m

and is issued w
hen no text is selected, you enter the text selection m

ode. Pressing
RR

EETTUU
RR

NN leaves text selection m
ode.

A
t any tim

e w
hile text is selected, using the com

m
and shifts all of the selected text left one

character. This is done by scanning the text, one line at a tim
e, and rem

oving a space right before
the first character on each line that is not a space or tab. If the character to be rem

oved is a tab
character, it is first replaced by an equivalent num

ber of spaces. If there are no spaces or tabs at the
start of the line, the line is skipped.

C
hapter 6: The Text Editor

75

If a large am
ount of text is selected, this com

m
and m

ay take a lot of tim
e. W

hile the editor is
w

orking, you w
ill see a spinner at the bottom

 right of the screen; this lets you know
 the editor is

still processing text. Y
ou can stop the operation by pressing 

., but this w
ill leave the selected

text partially shifted.

option-]
Shift

R
ight

If this com
m

and is issued w
hen no text is selected, you enter the text selection m

ode. Pressing
RR

EETTUU
RR

NN leaves text selection m
ode.

A
t any tim

e w
hile text is selected, using the com

m
and shifts all of the selected text right one

character. This is done by scanning the text, one line at a tim
e, and adding a space right before the

first character on each line that is not a space or tab. If this leaves the non-space character on a tab
stop, the spaces are collected and replaced w

ith a tab character. If a blank line is encountered, no
action is taken.

If a large am
ount of text is selected, this com

m
and m

ay take a lot of tim
e. W

hile the editor is
w

orking, you w
ill see a spinner at the bottom

 right of the screen; this lets you know
 the editor is

still processing text. Y
ou can stop the operation by pressing 

., but this w
ill leave the selected

text partially shifted.

option-n
Sw

itch
Files

The editor can edit up to ten files at one tim
e. Each of these files is num

bered, starting from
 0

and proceeding to 9. The num
bers are assigned as the files are opened from

 the com
m

and line. To
m

ove from
 one file to the next, press option-n, w

here n is a num
eric key.

W
hen you sw

itch files, the original file is not changed in any w
ay. W

hen you return to the
file, the cursor and display w

ill be in the sam
e place, the undo buffer w

ill still be active, and so
forth. The only actions that are not particular to a specific file buffer are those involving the
clipboard – Cut, Copy and Paste all use the sam

e clipboard, so you can m
ove chunks of text from

one file to another.
See also the Select File com

m
and.

TT
AA

BB
T

ab
In insert m

ode, or w
hen in over strike m

ode and the next tab stop is past the last character in
the line, this com

m
and inserts a tab character in the source file and m

oves to the end of the tab
field. If you are in the over strike m

ode and the next tab stop is not past the last character on the
line, the Tab com

m
and w

orks like a cursor m
ovem

ent com
m

and, m
oving the cursor forw

ard to the
next tab stop.

Som
e languages and utilities do not w

ork w
ell (or at all) w

ith tab stops. If you are using one
of these languages, you can tell the editor to insert spaces instead of tab characters; see the section
Setting Editor D

efaults, later in this chapter, to find out how
 this is done.


TT

AA
BB

T
ab L

eft
The cursor is m

oved to the previous tab stop, or to the beginning of the line if there are no
m

ore tab stops to the left of the cursor. This com
m

and does not enter any characters in the file.

Environm
ent R

eference M
anual

76 
RR

EE
TT

UU
RR

NN
T

oggle A
uto Indent M

ode
If the editor is set to put the cursor on colum

n one w
hen you press RR

EETTUU
RR

NN, it is changed to
put the cursor on the first non-space character; if set to the first non-space character, it is changed
to put the cursor on colum

n one. A
uto-indent m

ode is described in the section M
odes in this

chapter.

EE
SS

CC
T

oggle E
scape M

ode
If the editor is in the edit m

ode, it is put in escape m
ode; if it is in escape m

ode, it is put in
edit m

ode. W
hen you are in escape m

ode, pressing any character not specifically assigned to an
escape-m

ode com
m

and returns you to edit m
ode. Escape and edit m

odes are described in the section
M

odes in this chapter.
W

hen in escape m
ode, 

CCTTRRLL_ w
ill return you to edit m

ode. In edit m
ode the com

m
and has

no effect. From
 edit m

ode, CCTTRRLL_ w
ill place you in escape m

ode, but the com
m

and has no effect
in escape m

ode. These com
m

ands are m
ost useful in an editor m

acro, w
here you do not know

 w
hat

m
ode you are in on entry.

CC
TTRR

LLE or 
E

T
oggle Insert M

ode
If insert m

ode is active, the editor is changed to over strike m
ode. If over strike m

ode is active,
the editor is changed to insert m

ode. Insert and over strike m
odes are described in the section M

odes
in this chapter.

CC
TT

RR
LL


X
T

oggle Select M
ode

If the editor is set to select text for the Cut, Copy, and D
elete com

m
ands in units of one line,

it is changed to use individual characters instead; if it is set to character-oriented selects, it is
toggled to use w

hole lines. See the section M
odes in this chapter for m

ore inform
ation on select

m
ode.


UU

PP--AA
RR

RR
OO

WW
Top of Screen / Page U

p
The cursor m

oves to the first visible line on the screen, preserving the cursor’s horizontal
position. If the cursor is already at the top of the screen, the screen scrolls up tw

enty-tw
o lines. If

the cursor is at the top of the screen and less than tw
enty-tw

o lines from
 the beginning of the file,

then the screen scrolls to the beginning of the file.

CC
TTRR

LLZ or 
Z

U
ndo D

elete
The last operation that changed the text in the current edit file is reversed, leaving the edit file

in the previous state. Saving the file em
pties the undo buffer, so you cannot undo changes m

ade
before the last tim

e the file w
as saved.

The undo operation acts like a stack, so once the last operation is undone, you can undo the
one before that, and so on, right back to the point w

here the file w
as loaded or the point w

here the
file w

as saved the last tim
e.

C
hapter 6: The Text Editor

77


LL

EE
FFTT

--AA
RR

RR
OO

WW
W

ord Left
The cursor is m

oved to the beginning of the next non-blank sequence of characters to the left
of its current position. If there are no m

ore w
ords on the line, the cursor is m

oved to the last w
ord

in the previous line or, if it is blank, to the last w
ord in the first non-blank line preceding the

cursor.


RR

IIGG
HH

TT
--AA

RR
RR

OO
WW

W
ord R

ight
The cursor is m

oved to the start of the next non-blank sequence of characters to the right of its
current position. If there are no m

ore w
ords on the line, the cursor is m

oved to the first w
ord in the

next non-blank line.

Setting E
ditor D

efaults
W

hen you start the O
RCA

 editor, it reads the file nam
ed SysTabs (located in the shell prefix),

w
hich contains the default settings for tab stops, return m

ode, insert m
ode, tab m

ode, and select
m

ode. The SysTabs file is an A
SCII text file that you can edit w

ith the O
RCA

 editor.
Each language recognized by O

RCA
 is assigned a language num

ber. The SysTabs file has
three lines associated w

ith each language:

1.
The language num

ber.
2.

The default settings for the various m
odes.

3.
The default tab and end-of-line-m

ark settings.

The first line of each set of lines in the SysTabs file specifies the language that the next tw
o

lines apply to. O
RCA

 languages can have num
bers from

 0 to 32767 (decim
al). The language

num
ber m

ust start in the first colum
n; leading zeros are perm

itted and are not significant, but
leading spaces are not allow

ed.
The second line of each set of lines in the SysTabs file sets the defaults for various editor

m
odes, as follow

s:

1.
If the first colum

n contains a zero, pressing RR
EETTUU

RR
NN in the editor causes the cursor to

go to colum
n one in the next line; if it’s a one, pressing RR

EETTUU
RR

NN sends the cursor to
the first non-space character in the next line (or, if the line is blank, beneath the first non-
space character in the first non-blank line on the screen above the cursor).

2.
If the second character is zero, the editor is set to line-oriented selects; if one, it is set to
character-oriented selects.

3.
This flag is not used by the current version of the O

RCA
 editor. It should be set to 0.

4.
The fourth character is used by the O

RCA
/D

esktop editor, and is used to set the default
cursor m

ode. A
 zero w

ill cause the editor to start in over strike m
ode; a one causes the

editor to start in insert m
ode.

Environm
ent R

eference M
anual

78

5.
If the fifth character is a 1, the editor inserts a tab character in the source file w

hen the
Tab com

m
and is used to tab to a tab stop. If the character is a 0, the editor inserts an

appropriate num
ber of spaces, instead.

6.
If the sixth character is a 0, the editor w

ill start in over strike m
ode; if it is a 1, the editor

starts in insert m
ode. U

sing a separate flag for the text based editor (this one) and the
desktop editor (see the fourth flag) lets you enter one m

ode in the desktop editor, and a
different m

ode in the text based editor.
7.

The seventh character is used by the O
RCA

/D
esktop editor to indicate if a file uses the

old or new
 style of im

bedded debug character. G
Soft BA

SIC doesn’t use either one.
8.

If the eighth character is a 0, the editor saves the cursor position, tab stops and these
flags.

The third line of each set of lines in the SysTabs file sets default tab stops. There are 255
zeros and ones, representing the 255 character positions available on the edit line. The ones
indicate the positions of the tab stops. A

 tw
o in any colum

n of this line sets the end of the line; if
the characters extend past this m

arker, the line is w
rapped. The colum

n containing the tw
o then

replaces the default end-of-line colum
n (the default right m

argin) w
hen the editor is set to that

language.
For exam

ple, the follow
ing lines define the defaults for G

Soft BA
SIC:

260
10011001
000000100000001000000010000000100000001000000010000000100000001000000010000

0001000000010000000100000001000000010000000100000001000000010000000100000001000
0000100000001000000010000000100000001000000010000000100000001000000010000000100
0000010000000100000002

The last line continues on for a total of 255 characters, so it is too long to show
 on one line

in this m
anual.

If no defaults are specified for a language (that is, there are no lines in the SysTabs file for that
language), then the editor assum

es the follow
ing defaults:

•
RR

EETTUU
RR

NN sends the cursor to colum
n one.

•
Line-oriented selects.

•
W

ord w
rapping starts in colum

n 80.
•

There is a tab stop every eighth colum
n.

•
The editor starts in over strike m

ode.
•

Tab characters are inserted to create tabbed text.

N
ote that you can change tabs and editing m

odes w
hile in the editor.

79

C
hapter 7 – Program

 Sym
bols

BA
SIC program

s are m
ade up of a series of program

 sym
bols called tokens. Tokens are the

w
ords used to w

rite a program
. They consist of identifiers, sym

bols, and constants. These tokens
form

 lines, w
hich are also a fundam

ental part of the BA
SIC language—

som
e com

m
ands, like

SU
B, m

ust appear at the start of a line; m
ost com

m
ands are restricted to appearing on a single

line; and som
e com

m
ands cannot have anything follow

ing them
 on a line.

Identifiers
Identifiers in BA

SIC start w
ith an alphabetic character or underscore and are follow

ed by zero
or m

ore alphabetic characters, num
eric characters, or underscores. The last character in the identifier

is an optional type character. BA
SIC is a case insensitive language, w

hich m
eans that the

identifiers m
atrix and M

atrix are the sam
e identifier.

Because G
Soft BA

SIC is interpreted, the program
 is converted to a m

ore efficient internal
storage form

at than plain A
SCII text. In the process, all identifiers are converted to uppercase

letters. There is nothing preventing you from
 m

aintaining the program
 as a text file, especially if

you use the version of G
Soft BA

SIC that runs from
 the O

RCA
 shell, but there is no w

ay to stop
this conversion to uppercase letters.

G
Soft BA

SIC im
poses a lim

it of 255 characters on the length of any single identifier.
Type characters indicate the default data type for the identifier. If no type character is used, the

default type is single-precision real. Y
ou can override the default type using the D

IM
 statem

ent.
The type character, if it appears at all, becom

es a part of the identifier. For exam
ple, R and R!

both default to a data type of single-precision real, but they are different identifiers, and cannot be
used interchangeably.

The type characters and their equivalent BA
SIC data types are show

n in the table blow
. The

internal form
ats for the data types are described in detail in the next chapter.

Character
Type

~
BY

TE
%

IN
TEG

ER
&

LO
N

G
!

SIN
G

LE
#

D
O

U
BLE

$
STRIN

G

Language R
eference M

anual

80

Som
e exam

ples of legal BA
SIC identifiers are show

n below
. They each represent a different

identifier.M
A

IN
A

RRA
Y

m
y_var

S$
I%

B~
_subroutine

X
1

_
D

#
L&

R!

R
eserved W

ords
Reserved w

ords are identifiers that have special m
eaning in BA

SIC. A
 reserved w

ord can only
be used for the m

eaning that BA
SIC assigns to it, except that reserved w

ords can appear in
com

m
ents or string constants. The reserved w

ords in BA
SIC are show

n below
.

A
B
S

A
L
L
O
C
A
T
E

A
N
D

A
P
P
E
N
D

A
S

A
S
C

A
T

A
T
N

B
I
N
A
R
Y

B
R
E
A
K

B
Y
T
E

C
A
L
L
C
A
S
E

C
D
B
L

C
H
D
I
R

C
H
R
$

C
I
N
T

C
L
E
A
R

C
L
N
G
C
L
O
S
E

C
O
N
T

C
O
S

C
S
R
L
I
N

C
S
N
G

C
U
R
D
I
R
$

D
A
T
A
D
E
F

D
I
M

D
I
R
$

D
I
S
P
O
S
E

D
O

D
O
U
B
L
E

E
L
S
E
E
N
D

E
O
F

E
R
L

E
R
R

E
R
R
O
R

E
X
P

F
N

F
O
R

F
R
E

F
U
N
C
T
I
O
N

G
E
T

G
O
S
U
B

G
O
T
O
G
S
O
S

H
C
O
L
O
R
=

H
G
R

H
O
M
E

H
P
L
O
T

H
T
A
B

I
F

I
N
P
U
T

I
N
T

I
N
T
E
G
E
R

I
N
V
E
R
S
E

K
I
L
L

L
E
F
T
$

L
E
N

L
E
T

L
I
N
E

L
O
A
D
L
I
B
R
A
R
Y

L
O
C

L
O
F

L
O
G

L
O
N
G

L
O
O
P

M
I
D
$

M
K
D
I
R

M
O
U
S
E
T
E
X
T

N
A
M
E

N
E
X
T

N
I
L

N
O
R
M
A
L

N
O
T

O
N

O
N
E
R
R

O
P
E
N

O
R

O
U
T
P
U
T

P
E
E
K

P
O
I
N
T
E
R

P
O
K
E

P
O
P

P
O
S

P
R
I
N
T

P
U
T

R
A
N
D
O
M

R
E
A
D

R
E
M

R
E
S
T
O
R
E

R
E
S
U
M
E

R
E
T
U
R
N

R
I
G
H
T
$

R
M
D
I
R

R
N
D

S
E
E
K

S
E
L
E
C
T

S
E
T
M
E
M

S
G
N

S
I
N

S
I
N
G
L
E

S
I
Z
E
O
F

S
P
C

S
P
E
E
D
=

S
Q
R

S
T
E
P

S
T
O
P

S
T
R
$

S
T
R
I
N
G

S
U
B

T
A
B

T
A
N

T
C
P

T
E
X
T

T
H
E
N

T
O

T
O
O
L

T
O
O
L
E
R
R
O
R

T
Y
P
E

U
N
L
O
A
D
L
I
B
R
A
R
Y

U
N
T
I
L

L
I
B
R
A
R
Y

U
S
I
N
G

V
A
L

V
T
A
B

W
A
I
T

W
E
N
D

W
H
I
L
E

R
eserved Sym

bols
Reserved sym

bols are the punctuation of the BA
SIC language. Reserved sym

bols are used as
m

athem
atical operators, for form

ing array subscripts and param
eter lists, for separating statem

ents,
and so forth. W

ith som
e restrictions, reserved sym

bols can also be used in com
m

ents and string
constants. See the sections below

 for details.
The reserved sym

bols in BA
SIC are:

C
hapter 7: Program

 Sym
bols81

!
:

+
-

*
/

<
>

=
@

(
)

#
,

C
onstants

Constants are used to place num
bers and strings into the source code of the program

. Each
kind of constant has its ow

n unique form
at, so they are discussed separately.

D
ecim

al Integers

D
ecim

al integers com
e in tw

o sizes, referred to as integer and long integer.
Integers consist of one to five digits. The num

ber represented m
ust range from

 0 to 32767.
Y

ou m
ay use a leading - character to form

 a negative num
ber, although the - character and the

num
ber are technically tw

o separate tokens. In practice, this technical distinction is not im
portant.

If the num
ber exceeds 32767, the num

ber becom
es a long integer. Long integer constants can

range from
 32768 to 2147483647.

The table below
 show

s som
e exam

ples of legal decim
al constants.

0
5
8

3
2
7
6
7

3
2
7
6
8

4
0
0
0
0
0

H
exadecim

al Integers

H
exadecim

al num
bers are integers represented in base sixteen, rather than the m

ore fam
iliar

base ten. H
exadecim

al num
bers are m

ade up of the digits 0 to 9 and the letters a to f or A
 to F. In

BA
SIC, hexadecim

al num
bers are distinguished from

 decim
al num

bers by a leading $ character.
A

s w
ith decim

al integers, hexadecim
al integers can be long or short. A

ny hexadecim
al

constant w
ith 5 or m

ore digits—
even if those digits are zero—

is a long integer constant.
H

exadecim
al constants w

ith four or less digits are integer constants.
Integers and long integers are stored in tw

o’s com
plem

ent notation, so hexadecim
al constants

can be negative. A
ny value w

ith the m
ost significant bit set is a negative num

ber.
If you are not fam

iliar w
ith hexadecim

al notation and tw
o’s com

plem
ent notation you can find

out m
ore in m

ost assem
bly language books and m

any general com
puter science books.

The table below
 show

s som
e legal hexadecim

al constants, along w
ith their decim

al equivalent
and the kind of integer created.

Language R
eference M

anual

82

hexadecim
al

decim
al

size
$0

0
integer

$00000
0

long
$000A

10
integer

$0010
16

integer
$8000

-32768
integer

$08000
32768

long
$7FFF

32767
integer

$7FFFFFFF
2147483647

long
$FFFF

-1
integer

R
eal N

um
bers

Floating-point constants are used to represent num
bers that do not have an integral value, or

that cannot be represented using an integer because they are too large or too sm
all. The general

form
at is a sequence of digits, follow

ed by a decim
al point, follow

ed by another sequence of digits,
and an exponent, as in

3.14159e-14

The exponent can start w
ith either an uppercase E, or a low

ercase e, as show
n.

The form
at for floating-point constants can vary quite a bit from

 this general form
. Y

ou can
leave out the digit sequence before or after the decim

al point, as in 1.e10 or .1e10. In fact, you can
leave off the exponent, too, as in 1. or .1. Y

ou m
ust have either an exponent or a decim

al point,
but if you specify an exponent, you can om

it the decim
al point, as in 12e40.

String C
onstants

String constants consist of any sequence of characters except the end of line or the quote
character, enclosed in quote characters.

Internally, strings are represented as a sequence of bytes, one for each character in the string,
follow

ed by a term
inating null byte. (A

 null byte has a value of zero.) The value of each byte is
the ordinal value for the character, as specified by the A

SCII character set, described in A
ppendix

C
.

H
ere are som

e legal string constants:

"Hello, world."
""" "

C
hapter 7: Program

 Sym
bols83

W
hite Space
W

hite space characters consist of the characters created by the space bar and tab key.
W

hite space characters can appear betw
een any tw

o tokens, but m
ay not be used betw

een the
characters of a token. The interpreter strips w

hitespace characters from
 your program

 as it converts
it to internal, tokenized form

, and prints w
hite space characters betw

een tokens w
hen you list or

edit the program
. Y

ou have no control over w
here these w

hitespace characters are placed, other than
m

aintaining a copy of your program
 as an A

SCII file.

C
om

m
ents

!

a
n
y
-
a
s
c
i
i
-
c
h
a
r
a
c
t
e
r
s

R
E
M

a
n
y
-
a
s
c
i
i
-
c
h
a
r
a
c
t
e
r
s

Technically, com
m

ents in BA
SIC are a statem

ent that is executed at run tim
e. The statem

ent
skips to the start of the next line, ignoring any characters that appear after the com

m
ent com

m
and.

G
Soft BA

SIC allow
s absolutely any character to appear betw

een the com
m

ent character and the
end of the line, although the editor effectively lim

its the allow
ed characters to those available on

the keyboard.
There are tw

o distinct com
m

ent com
m

ands in G
Soft BA

SIC. REM
 is an alm

ost universal
com

m
ent com

m
and in im

plem
entations of BA

SIC. The ! character is less com
m

on, but not
unusual. Both of these w

ork the sam
e w

ay, and are equivalent in all respects.

85

C
hapter 8 – Types of D

ata

This chapter describes those BA
SIC data types w

hich are built into the language. The next
chapter covers derived and user-defined data types.

Som
e of the inform

ation in this chapter deals w
ith the w

ay inform
ation is stored internally in

the m
em

ory of the com
puter. This inform

ation is provided for very advanced program
m

ers w
ho

need to w
rite assem

bly language subroutines that w
ill deal w

ith BA
SIC data, or w

ho need to do
strange and dangerous tricks w

ith the data to w
ork w

ith the m
achine at the hardw

are level. Y
ou do

not need to understand this inform
ation to use G

Soft BA
SIC for norm

al BA
SIC program

m
ing. If

it does not m
ake sense to you, or if you w

ill not be using the inform
ation, sim

ply ignore it.

Integers
G

Soft BA
SIC supports three different types of integers, BY

TE, IN
TEG

ER and LO
N

G
.

Integers defined as BY
TE are the sm

allest. BY
TE values require one byte of storage. The

allow
ed values range from

 0 to 255. By default, identifiers ending w
ith the character ~ are defined

as BY
TE integers.

IN
TEG

ER variables require tw
o bytes of storage. IN

TEG
ER values can range from

 -32768 to
32767. By default, identifiers ending w

ith the character %
 are defined as IN

TEG
ER variables.

Integers defined as LO
N

G
 require four bytes of storage. LO

N
G

 values range from
 -

2147483648 to 2147483647. By default, identifiers ending w
ith the character &

 are defined as
LO

N
G

 variables.
Internally, all integers are represented as binary values. N

egative integers are represented as
tw

o’s com
plem

ent num
bers. A

ll of the integers that occupy m
ore than one byte of storage are

stored w
ith the least significant byte first, proceeding to the m

ost significant byte. This is the
natural byte order for the 65816 processor used in the A

pple IIG
S.

It is likely that there w
ill be versions of G

Soft BA
SIC for other platform

s, and m
any,

including the M
acintosh, use a different byte order for integer values. If you w

rite program
s that

m
ake assum

ptions about the byte order for integers, your program
 w

ill not execute properly on
som

e other com
puters.

R
eals

G
Soft BA

SIC supports tw
o storage form

ats for real num
bers.

SIN
G

LE num
bers are stored in the IEEE floating point num

ber form
at, w

ith the least
significant byte first. They require four bytes of storage. SIN

G
LE values are accurate to seven

decim
al digits, and allow

 exponents w
ith a range of about 1e-38 to 1e38. By default, identifiers

ending w
ith the character ! or w

ithout a type character are defined as SIN
G

LE variables.

Language R
eference M

anual

86

D
O

U
BLE num

bers require eight bytes of storage each. They are stored least significant byte
first, using the IEEE floating point form

at. They are accurate to fifteen decim
al digits, and allow

exponent ranges from
 1e-308 to 1e308. By default, identifiers ending w

ith the character # are
defined as D

O
U

BLE variables.

Infinity

The IEEE num
ber form

at supports infinity. This is a specially coded value that indicates the
num

ber is too large to represent. It is signed, so you can have either positive infinity or negative
infinity. The value prints as inf or -inf, depending on the sign.

A
ll num

eric operations in G
Soft BA

SIC support this num
ber, and do reasonable things w

ith
it based on the m

athem
atical concept of infinity. For exam

ple, adding any num
ber to infinity is

still infinity, w
hile dividing a num

ber by infinity gives zero.
In som

e cases, your calculations m
ay actually w

ork fine, even if an interm
ediate result is

infinity. In other cases, detecting a value of infinity is sim
ply an indication that you need to tune

your algorithm
s or sw

itch from
 SIN

G
LE to D

O
U

BLE.
If your program

 treats a num
eric overflow

 as an error, you can check for the overflow
 by

com
paring the result w

ith infinity. The code snippet show
s one w

ay to create a value to com
pare

w
ith, and handles both negative and positive infinity. This particular exam

ple generates a run tim
e

error w
hen the num

ber X
 is infinity. U

nless intercepted by an O
N

ERR G
O

TO
 error handler,

ERRO
R 25 w

ill generate an error m
essage that prints “Illegal quantity error.”

Snippet
INF = 1E50
IF ABS(X) = INF THEN ERROR 25

N
aNThe IEEE num

ber form
at supports an error num

ber that prints as N
aN

; this stands for “not a
num

ber.” It is generated w
henever a num

eric result is sim
ply not valid. A

n exam
ple is taking the

square root of a negative num
ber.

A
ll num

eric operations in G
Soft BA

SIC support this num
ber. In general, it propagates

through the calculation, so that all of the values that are based on N
aN

 are also N
aN

. For exam
ple,

adding any num
ber to N

aN
 results in N

aN
.

In m
ost cases, N

aN
 indicates an error condition, but the fact that it doesn’t trigger an

im
m

ediate halt to the program
 or force you to w

rite a tricky O
N

ERR G
O

TO
 handler gives you

m
ore options for handling the error gracefully in your program

.
For those cases w

here you w
ant to stop the program

 w
hen N

aN
 is detected, the code snippet

show
s how

 to test for the condition and flag a run tim
e error. U

nless intercepted by an O
N

ERR
G

O
TO

 error handler, ERRO
R 19 w

ill generate an error m
essage that prints “Illegal quantity error.”

Snippet
NAN = SQR (-1)
IF X = NAN THEN ERROR 25

Chapter 8: Types of Data87

Strings
Strings are stored internally as a sequence of A

SCII characters term
inated by a null character.

The null character is a character w
ith an ordinal value of 0.

U
nlike all other variable types, strings are stored in a special buffer to allow

 their length to
change w

ithout using large am
ounts of m

em
ory. A

 string variable is actually a four byte pointer
into a dynam

ic string heap. W
hen a string value changes, the old value is abandoned and a new

string is allocated at the bottom
 of the string heap. If the heap grow

s to fill all available m
em

ory,
garbage collection is perform

ed, squashing all strings together to recover unused space.
A

 side effect of this storage m
ethod is that you cannot change the length of a string from

 a
toolbox subroutine. Y

ou can return a string; G
Soft BA

SIC allocates space for the value you return
in the string buffer in the norm

al w
ay. Y

ou can also safely change the characters in a string as
long as the length of the string does not change.

By default, identifiers ending w
ith the character $ are defined as STRIN

G
 variables.

See SETM
EM

 for a w
ay to change the size of the variable buffer used by strings. See FRE for

a w
ay to determ

ine the am
ount of free space available in this buffer, as w

ell as for a w
ay to force

garbage collection so it does not occur at inopportune tim
es.

Pointers
Pointers are represented internally as four-byte unsigned num

bers, w
ith the least significant

byte stored first. A
 value of zero is used to represent a null pointer. U

sing type casting, pointers
can be treated as long integers in m

athem
atical equations w

ith no loss of precision.
The m

em
ory of the A

pple IIG
S is divided into units of 8 bits called bytes. Each of these bytes

has a unique address, represented as a num
ber betw

een 0 and 16777215. If you convert any valid
pointer to an integer using CLN

G
, the result w

ill be a num
ber from

 1 to 16777215. Zero is
reserved as a special pointer called N

U
LL, w

hich is defined as not pointing to anything.
These bytes are grouped into larger chunks to represent the fam

iliar data types used by BA
SIC.

A
n IN

TEG
ER value occupies tw

o adjacent bytes. LO
N

G
, pointer and SIN

G
LE values each use

four adjacent bytes, and D
O

U
BLE values use eight bytes. The num

ber of bytes used by a string
varies; strings use one byte per character in the string, plus a single byte to m

ark the end of the
string.W

hen you create a variable, the proper num
ber of bytes are set aside for its use. Setting the

variable changes the value of the bytes set aside for that variable value. U
sing the address operator,

@
, you can get a pointer to the variable. U

sing CLN
G

, you can convert this pointer to the integer
value representing the address of the first byte of storage used for the value. Y

ou can use type
casting to convert from

 an integer to a pointer.
W

hile there is no m
em

ory location beyond 16777215 ($00FFFFFF) on an A
pple IIG

S,
pointer values can technically go up to 4294967295, so long as they are reduced to a legitim

ate
m

em
ory address before being used. In fact, m

ost A
pple IIG

S com
puters don’t have 16777216

($01000000) bytes of m
em

ory, and even if they do, it’s not all RA
M

. The m
em

ory space of the

Language R
eference M

anual

88 A
pple IIG

S is actually divided into three distinct kinds. Random
 A

ccess M
em

ory (RA
M

) is the
kind you’ll generally be using w

ith pointers. RA
M

 starts at byte 0 and extends sequentially. For
an A

pple IIG
S w

ith 4 m
egabytes of RA

M
, the valid addresses w

ould be 0 to 4194303
($003FFFFF). Read O

nly M
em

ory (RO
M

) starts as byte 16777215 ($00FFFFFF) and extends
dow

n; how
 far depends on the m

odel of your com
puter. Sprinkled here and there are som

e
exceptions to this general schem

e, m
ostly in the form

 of m
em

ory m
apped I/O

. M
em

ory m
apped

I/O
 are bytes that appear to a program

 to be norm
al m

em
ory, but are in fact connected to hardw

are
in a special w

ay. A
 classic exam

ple is the A
pple IIG

S keyboard, w
hich causes values for the

characters typed to appear at m
em

ory location 49152 ($0000C000).
For m

ore inform
ation about the m

em
ory organization of the A

pple IIG
S , see Apple IIG

S
Firm

ware Reference and Apple IIG
S H

ardware Reference, Second Edition. Both of these books are
available as reprints from

 the Byte W
orks.

89

C
hapter 9 – BA

SIC
 Program

s

The A
natom

y of a BA
SIC

 Program
BA

SIC program
s are m

ade up of a series of lines, each of w
hich can have zero or m

ore BA
SIC

statem
ents. Blank lines are allow

ed, and m
ultiple statem

ents can appear on the sam
e line if the

statem
ents are separated by a colon character, w

ith a few
 exceptions noted in the descriptions of

individual statem
ents.

The program
 begins execution w

ith the first line, continuing sequentially unless the norm
al

flow
 of execution is changed by one of the statem

ents that is encountered.
H

ere is a sim
ple BA

SIC program
 that prints a string to the screen.

PRINT "Hello, world."

Subroutines

BA
SIC program

s can contain subroutines and functions, declared w
ith the SU

B and
FU

N
CTIO

N
 statem

ent. Subroutines and functions are referred to as procedures in situations w
here

either one is allow
ed. These procedures appear after the m

ain program
, one after the other. W

hile it
is possible to type lines betw

een these subroutines, they are never executed.
The m

ain program
 alw

ays appears first, and execution alw
ays starts there. The m

ain program
can call subroutines, w

hich can in turn call other subroutines.

Line N
um

bers

Lines start w
ith an optional line num

ber. The line num
ber is an integer in the range 1 to

65535 appearing at the beginning of the line.
There are tw

o fundam
entally different w

ays to use line num
bers, and in som

e im
portant w

ays
they are incom

patible.
Traditional BA

SIC program
s require a line num

ber on each program
 line. If you are im

porting
an A

pplesoft BA
SIC program

, or if you are using the line editor in the G
Soft BA

SIC shell, this
m

ay still be a convenient w
ay to organize your program

. U
sing this m

odel, a line num
ber m

ust
appear at the start of every line. The line num

bers m
ust be unique, and they are forced to be

sequential. If you load an A
SCII program

 w
ith line num

bers that are out of order, they are sorted as
they are loaded. If a duplicate line num

ber appears, the new
er line replaces the original line w

ith
the sam

e num
ber.

Like m
ost BA

SICs im
plem

ented after the early 1980’s, G
Soft BA

SIC does not require line
num

bers. If any line does not use a line num
ber, the second m

odel kicks in. Line num
bers are still

Language R
eference M

anual

90 available, but they are usually not used unless you need a destination for a branching statem
ent,

such as G
O

TO
 or O

N
ERR. Line num

bers do not have to be sequential, and in fact, they don’t even
have to be unique. It’s com

m
on to see the sam

e line num
ber used in various subroutines w

ithin a
program

. Since there is no requirem
ent that the line num

bers be unique, you can copy a subroutine
from

 one program
 and paste it into another w

ithout w
orrying about conflicts betw

een the line
num

bers.
Line num

bers appearing in the sam
e subroutine or in the program

 should be unique w
ithin

that part of the program
, although the interpreter does not enforce this restriction. For exam

ple, the
subroutineSUB Duplicate

10
PRINT "Start"
GOTO 10

10
PRINT "Done"
END

w
ill not generate an error, although it w

ill perform
 an infinite loop. W

hen duplicate line num
bers

appear in the sam
e part of a program

, the first is alw
ays found and subsequent num

bers are
invisible to the interpreter.

M
ultiple Statem

ents on O
ne Line

N
orm

ally, each BA
SIC statem

ent appears on a separate line in the program
. In m

ost cases, it
is technically possible to place m

ore than one statem
ent on a line if you separate the statem

ents
w

ith the : character. For exam
ple, the line

IF A < B THEN C = A : A = B : B = C

uses this feature to execute three separate statem
ents instead of one w

hen A
 is less than B. In

G
Soft BA

SIC, it w
ould be m

ore com
m

on to use a block IF statem
ent to do the sam

e thing, like
this:IF A < B THEN

 C = A
 A = B
 B = C
END IF

This m
ay look a bit peculiar to the A

pplesoft BA
SIC program

m
er, but m

ost people find
program

s w
ritten this w

ay to be easier to read after they get used to the form
at.

91

C
hapter 10 – D

eclaring V
ariables and Types

W
hat Is a Type?

A
 Short H

istory of Types in BA
SIC

BA
SIC w

as originally intended as a sim
pler version of FO

RTRA
N

, and w
as targeted at

scientists and engineers w
ho needed to w

rite short program
s. The original im

plem
entations of

BA
SIC supported a w

ide variety of m
athem

atical operations, including built-in m
atrix

m
athem

atics operations. O
ther than sim

ple num
bers and strings, about the only data type w

as the
array, w

hich doubled as a m
atrix.

M
atrix operations w

ere dropped as BA
SIC m

ade the m
ove from

 the science and engineering
com

m
unity to personal com

puters in the late 70’s and early 80’s. By that tim
e, com

puter
scientists w

ere em
bracing languages like A

LG
O

L, w
hich supported records and pointers. M

icrosoft
eventually installed records in its BA

SIC interpreters, w
hich pretty m

uch m
ade them

 a standard,
but until the advent of G

Soft BA
SIC, no com

m
ercially available BA

SICs w
e are aw

are of
supported both pointers and records in the sam

e fluid w
ay that they are im

plem
ented in Pascal and

C
.

The K
inds of Types

Sim
ple

T
ypes

A
t the sim

plest level, a type is a kind of value that can be stored in a variable. G
Soft BA

SIC
supports six sim

ple types. The nam
e of each type is itself a type, and can be used as a type in

D
IM

 and TY
PE statem

ents. The six sim
ple types are:

BY
TE

A
 single integer byte w

ith the range 0 to 255.
IN

TEG
ER

A
 tw

o byte signed integer w
ith a range of -32768 to 32767.

LO
N

G
A

 four byte signed integer w
ith a range of -2147483648 to 2147483647.

SIN
G

LE
A

 four byte single-precision floating-point num
ber w

ith exponents of
approxim

ately 1E-38 to 1E38.
D

O
U

BLE
A

n eight byte double-precision floating-point num
ber w

ith exponents of
approxim

ately 1E-308 to 1E308.
STRIN

G
Strings are sequences of up to 32767 characters. Each string requires one byte of
storage per character, plus an overhead of five bytes. O

ne of the five bytes of

Language R
eference M

anual

92

overhead is used to m
ark the end of the string; it is a zero value that appears after

the last character. The other four bytes are a pointer to the first character of the
string; this is the value actually stored in the string variable.

A
rrays

A
rrays are sequences of the sam

e type of variable. A
 particular variable is selected using a

subscript, w
hich is a num

eric value that specifies w
hich of the various variables should be used.

The first value in each array has a subscript of 0; subsequent values are num
bered sequentially.

BA
SIC supports m

ultiply subscripted arrays, too. M
ultiple subscripts are separated by

com
m

as. H
ere is an exam

ple that show
s the creation and initialization of a unit m

atrix w
ith 5

colum
ns and 5 row

s.

DIM A(4, 4)
FOR I% = 0 TO 4
 FOR J% = 0 TO 4
 A(I%, J%) = 0.0
 NEXT
 A(I%, I%) = 1.0
NEXT

BA
SIC follow

ed the lead of FO
RTRA

N
 w

hen it picked the order that values are stored in
m

em
ory, and unfortunately, som

e BA
SIC program

s take advantage of this order. N
aturally enough,

in an array w
ith a single subscript, the 0th elem

ent com
es first, follow

ed by the 1st elem
ent, the

2nd elem
ent, and so on. In an array w

ith m
ultiple subscripts, the leftm

ost index increases the
fastest. For the 5 by 5 m

atrix show
n in the code snippet, the m

em
ory order for the array elem

ents
is

A(0,0)
A(1,0)

A(2,0)
A(3,0)

A(4,0)
A(0,1)

A(1,1)
A(2,1)

...

In the vast m
ajority of cases, the base type for an array is one of the num

ber types, but
G

Soft BA
SIC also allow

s arrays of strings, arrays of records, and arrays of pointers.
G

Soft BA
SIC im

poses tw
o practical lim

itations on arrays. The first is a lim
it on the range of

a subscript; subscripts cannot be larger than 32767, and as w
as m

entioned before, the sm
allest

subscript is 0. There is also a lim
it on the total size of each array. The m

axim
um

 size of all of the
data in an array cannot exceed 65536 bytes. This is a lim

it on the size of any single array, not on
the total size of all arrays. If there is enough m

em
ory in the com

puter, and you have used
SETM

EM
 to m

ake the variable space large enough, you can easily create several arrays, each of
w

hich is 65536 bytes long.
Y

ou can calculate the num
ber of bytes used by an array by m

ultiplying the size of one
elem

ent of the array in bytes by the num
ber of elem

ents in each subscript. For exam
ple, the array

in the code snippet uses 100 bytes; 4 bytes for each SIN
G

LE value m
ultiplied by 5 row

s
m

ultiplied by 5 colum
ns. A

rrays of strings use 4 bytes per string entry, so an array of strings
cannot hold m

ore than 16384 strings. The rem
aining m

em
ory used by the string, w

hich includes

Chapter 10: Declaring Variables and Types

93

one byte per character plus an extra byte to m
ark the end of the string, com

es from
 another

location in m
em

ory, and doesn’t count against the total size of the array.
There is no lim

it on the num
ber of subscripts other than the obvious lim

it im
posed by

restricting arrays to 65536 bytes.

R
ecords

Records are collections of variables that are generally not the sam
e type. Each value in the

record is called a field; fields can be sim
ple types, arrays, pointers, or other records.

N
o single record can exceed 65536 bytes. A

s w
ith arrays, this is a lim

it on the size of a single
record, not the total m

em
ory used by all records. If there is enough free m

em
ory, and SETM

EM
has been used to reserve enough of it for use by variables, you can create several records w

hose
total size is far larger than 65536 bytes.

Y
ou can calculate the num

ber of bytes used by a record by adding the sizes of each field. O
ne

A
D

D
RESS record like the one in the code snippet requires 20 bytes; four for each of the four

strings and four m
ore for the LO

N
G

 zip code. The M
A

ILLIST array uses 10,000 bytes, so it is
still w

ell w
ithin the 65536 byte lim

it for a single array.

Snippet
TYPE ADDRESS
 NAME$
 STREET$
 CITY$
 STATE$
 ZIP&
END TYPE
DIM MAILLIST AS ADDRESS(500)
MAILLIST(0).NAME$ = "Albert Einstein"
MAILLIST(0).STREET$ = "1 Light Way"
MAILLIST(0).CITY$ = "Forever"
MAILLIST(0).STATE$ = "Relative"
MAILLIST(0).ZIP& = 300000000

Pointers

A
 pointer is not a type by itself. A

 pointer alw
ays points to som

e specific type of value; the
com

plete type is PO
IN

TER TO
 follow

ed by w
hatever type it points to. For exam

ple, to specify a
type that is a pointer to an integer value, you use the type PO

IN
TER TO

 IN
TEG

ER.
Each pointer requires four bytes of storage. Since one or m

ore pointers can point to the sam
e

thing, and they can point either to variables in the traditional variable space or to areas outside of
the m

em
ory norm

ally used by G
Soft BA

SIC, they don't generally require any m
ore storage than

the four bytes for the pointer itself—
the m

em
ory for the value the pointer points to is already

accounted for by the variable it points to, or w
as allocated from

 outside of G
Soft BA

SIC’s
m

em
ory space using A

LLO
CA

TE.

Language R
eference M

anual

94

A
 pointer can point to a sim

ple type, a record, or another pointer. A
 pointer cannot point to

an array, but it can point to an elem
ent of an array. In m

ost practical cases, pointing to the first
value in an array am

ounts to the sam
e thing as pointing to the array itself.

The snippet show
s a sim

plified version of a typical use for pointers. Several records are created
by allocating the m

em
ory directly w

ith A
LLO

CA
TE. These records are chained together by

creating a pointer w
ithin each record that points to the next record in a sequence. In a w

ay, this has
the sam

e effect as creating an array, but unlike an array, the num
ber of things in a linked list like

the one in the exam
ple is not fixed. The list can grow

 to fill all of available m
em

ory if need be,
but if less m

em
ory is needed, it only occupies the actual am

ount of m
em

ory that is required to
hold all of the entries in the list.

In the snippet, the values are printed and disposed of, freeing the m
em

ory for other uses.
That’s another im

portant difference betw
een linked lists and arrays: If the program

 is finished w
ith

the list, the m
em

ory can be reused w
ithout stopping the program

 or erasing all of the other
variables, too.

Snippet
TYPE NUMBER
 AFTER AS POINTER TO NUMBER
 VALUE AS INTEGER
END TYPE
DIM NUMBERS AS POINTER TO NUMBER
DIM TEMP AS POINTER TO NUMBER
FOR I% = 1 TO 10
 ALLOCATE (TEMP)
 IF TEMP <> NIL THEN
 TEMP^.AFTER = NUMBERS
 TEMP^.VALUE = I%
 NUMBERS = TEMP
 END IF
NEXT
WHILE NUMBERS <> NIL
 TEMP = NUMBERS
 NUMBERS = TEMP^.AFTER
 PRINT TEMP^.VALUE
 DISPOSE (TEMP)
WEND

N
am

ed T
ypes

The last kind of type is a nam
ed type. N

am
ed types are types you create using the TY

PE
statem

ent. Each record is a nam
ed type, and you can create other nam

ed types by giving the nam
e

and the expanded form
 of the type, like this:

TYPE IPTR AS POINTER TO INTEGER

The nam
e IPTR is now

 a type, just like SIN
G

LE. It can be used to declare variables the sam
e w

ay
SIN

G
LE is used.

Chapter 10: Declaring Variables and Types

95

There are tw
o typical reasons to create a nam

e for a type this w
ay. The first is essentially a

typing shortcut and an aid to understanding the program
. By using the type nam

e, rather than the
expanded form

 of the type, your program
 is shorter and som

etim
es easier to follow

.
The second reason to create a nam

e for a type is type casting. The nam
e of any pointer type

can be used as a function. The argum
ent to the function is any pointer type, and the value returned

by the function is a pointer to the sam
e byte of m

em
ory, but w

ith the nam
ed type.

See Type C
asting in Chapter 11 for a m

ore in depth description of type casting.
See the next section, Type C

om
patibility, for a m

ore com
plete discussion of w

hen and w
hy

type casting is necessary.
See the description of the TY

PE statem
ent, later in this chapter, for a detailed discussion of

the m
echanics of defining a type.

T
ype C

om
patibility

W
ith the plethora of new

 types available in G
Soft BA

SIC, it’s im
portant to understand w

hen
tw

o types are com
patible. If tw

o types are com
patible, their values can be used interchangeably: a

value can be assigned to a variable or passed as a param
eter if their types are com

patible, and tw
o

values can be com
pared if their types are com

patible.
There are actually tw

o shades of type com
patibility. Tw

o values are type com
patible if they

are com
pletely interchangeable. Tw

o values are assignm
ent com

patible if one value can be
assigned to a variable of the other type, or w

hen the value can be passed as a param
eter. Since

BA
SIC autom

atically converts num
bers of one type to another, assignm

ent com
patibility is not as

restrictive as type com
patibility. This distinction betw

een assignm
ent com

patibility and type
com

patibility is only im
portant for num

bers and pointers to num
bers.

N
um

eric Type C
om

patibility

A
ll of the num

eric types are assignm
ent com

patible w
ith each other: you can freely m

ix
num

bers of different types. For tw
o num

bers to be type com
patible, though, the num

bers m
ust be

exactly the sam
e kind.

There are four situations w
here the difference betw

een type com
patibility and assignm

ent
com

patibility is im
portant.

First, som
e of the autom

atic type conversions can lead to a loss of precision. If you assign
1.9 to an integer variable, the value that is stored is 1. The sam

e is true w
hen you use the

SIN
G

LE value 1.9 as an array subscript: the num
ber is first converted to an integer value 1, and

the integer result is used to determ
ine the array elem

ent to select. This can lead to strange results if
roundoff error causes a value to be slightly less than the expected integer. For exam

ple, try this:

FOR I = 0 TO 10
 A(I) = I
NEXT
I = 4 / 3

Language R
eference M

anual

96

I = I * 3
PRINT A(I)

O
bviously, the program

 should print 4. A
ctually, it prints 3. The reason is that 4 / 3 isn’t

stored as exactly one and one-third, it’s stored as approxim
ately 1.333333. W

hen m
ultiplied by 3,

the result is approxim
ately 3.999999, and w

hen truncated, the index used to access the array is 3,
not 4.In general, your program

 w
ill be both faster and less prone to bugs of this kind if you alw

ays
use integer or long integer values w

hen calculating an array subscript. If you m
ust use floating-

point subscript values, add 0.5 to the subscript to elim
inate the possibility of this kind of roundoff

error.The second place the difference betw
een type com

patibility and assignm
ent com

patibility is
im

portant is w
hen the num

eric values involved cannot be converted. For exam
ple, assigning the

SIN
G

LE value 3E5 to an IN
TEG

ER variable causes a run-tim
e error, since an IN

TEG
ER cannot

hold values larger than 32767.
The third place this difference is im

portant is w
hen you are passing param

eters to subroutines.
W

henever you pass a nam
ed variable as a subroutine param

eter, the variable is passed by reference.
“Passed by reference” m

eans the subroutine can alter the variable’s value directly. For exam
ple,

I = 4
CALL CHANGE (I)
PRINT I
END

SUB CHANGE (X)
X = X * 2
END SUB

prints the value 8; the subroutine changed the value of the original variable that w
as passed as a

param
eter. This only happens w

hen a variable is passed, though. If you pass the result of any
expression, even an expression as sim

ple as preceding the variable by a + operator or enclosing it
in parentheses, the param

eter is passed by value. W
hen a param

eter is passed by value, the
subroutine cannot change the original variable. The subtle change of adding parentheses, like this:

I = 4
CALL CHANGE ((I))
PRINT I
END

SUB CHANGE (X)
X = X * 2
END SUB

causes the program
 to print 4, rather than 8.

Chapter 10: Declaring Variables and Types

97

The reason this change is im
portant for type com

patibility is that variables that are passed by
reference m

ust m
atch the type of the param

eter exactly—
no conversion of any kind is done. If a

subroutine expects an IN
TEG

ER param
eter, you cannot pass a SIN

G
LE variable by reference. Y

ou
can pass a SIN

G
LE constant, or you can turn the SIN

G
LE value into an expression that is passed

by value by enclosing the variable nam
e in parentheses, but the variable nam

e itself cannot be
passed.

The last situation w
here the difference betw

een type com
patibility and assignm

ent
com

patibility is im
portant is for pointers to num

bers. Tw
o pointers to num

eric types are
com

patible only if the underlying num
eric type is exactly the sam

e.

Strings

Strings are alw
ays com

patible w
ith each other. Strings are not com

patible w
ith any other

type.Strings can be converted to num
bers, and num

bers can be converted to strings, using the
STR$ and V

A
L functions.

R
ecords

Record values are com
patible w

ith each other if both record variables are defined from
 the sam

e
base type. D

ifferent nam
es can be involved, so long as the underlying type is the sam

e, but if the
record types are different, the values are not com

patible, even if the fields of each record are the
sam

e.To explore how
 this w

orks, w
e’ll use these type and variable declarations.

TYPE POINT
 X
 Y
 Z
END TYPE
TYPE VECTOR
 X
 Y
 Z
END TYPE
TYPE XYZ AS POINT
DIM P AS POINT
DIM POINTS(5) AS POINT
DIM PP AS POINTER TO POINT
DIM V AS VECTOR
DIM ALPHA AS XYZ

W
ith these types in place, the value P is com

patible w
ith PO

IN
TS(3) and PP^, since all three

refer to the sam
e base type, PO

IN
T. P is also type com

patible w
ith A

LPH
A

; even though

Language R
eference M

anual

98 A
LPH

A
 is defined as a record w

hose type is X
Y

Z, X
Y

Z is itself defined as a PO
IN

T. P is not type
com

patible w
ith V

, though. Even though PO
IN

T and V
ECTO

R have the sam
e num

ber of fields,
and the fields are the sam

e type—
indeed, they even have the sam

e nam
es in this exam

ple—
PO

IN
T

and V
ECTO

R are distinct record types.

Pointers

Tw
o pointers are type com

patible if they point to values that are com
patible. In the case of

pointers to num
bers, the underlying num

ber m
ust be exactly the sam

e type; a pointer to an
IN

TEG
ER is not type com

patible w
ith a pointer to a BY

TE.
Y

ou can use type casting to convert pointers from
 one type to another, as w

ell as to convert a
num

ber to a pointer. See Type C
asting in Chapter 11 for details.

Pointers can be converted to num
bers using the function CLN

G
.

D
efault T

ypes
There are tw

o w
ays to create a nam

ed variable in BA
SIC. The m

ost direct w
ay is w

ith the
D

IM
 statem

ent. The D
IM

 statem
ent is traditionally used to dim

ension arrays, but it can also be
used to create a variable w

ith any type you like. For exam
ple, the D

IM
 statem

ent

DIM I AS INTEGER

creates a new
 variable called I, and m

akes this variable an IN
TEG

ER.
The m

ost com
m

on w
ay to create a new

 variable, though, is to sim
ply use it. BA

SIC
guarantees that the value w

ill be created and initialized to 0 or an em
pty string, as appropriate.

This doesn’t really m
atter in m

ost cases, since a variable is alm
ost alw

ays assigned an initial value
the first tim

e it is used.
There needs to be som

e w
ay to assign a type to a new

 variable, though. BA
SIC uses a special

set of characters that can appear at the end of any identifier. If the variable is declared by using it in
an expression, this trailing character determ

ines the variable’s type.
For exam

ple, %
 is used for integers. The program

FOR I% = 1 TO 10
 PRINT I%
NEXT

creates the variable I%
 w

hen the FO
R loop starts. Since the last character in the variable’s nam

e is
%

, this variable is an IN
TEG

ER.
H

ere’s a com
plete list of the type characters in G

Soft BA
SIC.

Chapter 10: Declaring Variables and Types

99

Character
Type

~
BY

TE
%

IN
TEG

ER
&

LO
N

G
!

SIN
G

LE
#

D
O

U
BLE

$
STRIN

G

V
ariables that don’t have a type character are declared as SIN

G
LE.

If the type character is used, it becom
es a part of the variable nam

e. U
sing the variable

w
ithout the type character w

ill create a com
pletely different variable. This short program

 creates
tw

o distinct variables, as the PRIN
T statem

ent proves w
hen you run the program

.

DIM I AS INTEGER
I% = 4
I = 5
PRINT I%, I

W
hile a type character at the end of an identifier becom

es a part of the variable nam
e, type

characters cannot be used anyw
here else in the variable nam

e. O
nly one is allow

ed, and that one
type character, if it is used at all, m

ust be the last character in the variable’s nam
e.

If a variable is created by the D
IM

 statem
ent, the type you give in the D

IM
 statem

ent
overrides any type character, or the absence of a type character. In the exam

ple just show
n, the

variable I w
ould have been a SIN

G
LE variable if the D

IM
 statem

ent w
as not in the program

, since
variables w

ithout a type character default to SIN
G

LE. In this case, though, the variable I is an
IN

TEG
ER variable. It’s just as possible to create a variable called I%

 that holds a SIN
G

LE value
using the sam

e idea, but of course anyone w
ho does this for anything but a prank deserves to have

their fingers sm
acked w

ith a ruler. A
ny BA

SIC program
m

er w
ill assum

e that a variable w
ith a

trailing %
 character is an IN

TEG
ER; m

aking it som
ething else could cause confusion.

A
rrays can also be defined by using the array, rather than w

ith the D
IM

 statem
ent. The

num
ber of subscripts m

atches the num
ber used in the expression w

here the array first appears. The
m

axim
um

 subscript is alw
ays 10. For exam

ple, encountering the statem
ent

A(1, 1) = 11

w
ithout first encountering a D

IM
 statem

ent creates an array of SIN
G

LE values. The array has tw
o

subscripts, and each can range from
 0 to 10, so there are 121 SIN

G
LE values in the array.

A
rrays and non-arrays are distinct, so you can have an array and a non-array variable w

ith the
sam

e nam
e. This isn’t generally a good idea, but it is possible. A

rrays are not distinct, though.
For exam

ple, you can’t create tw
o arrays w

ith the sam
e nam

e, even if they have a different num
ber

of subscripts.

Language R
eference M

anual

100

D
eclaring Types and V

ariables

D
I
M

i
d
e
n
t
i
f
i
e
r

[

s
u
b
s
c
r
i
p
t

]

[

A
S

t
y
p
e

]

[

'
,
'

i
d
e
n
t
i
f
i
e
r

[

s
u
b
s
c
r
i
p
t

]

[

A
S

t
y
p
e

]

]
*

The D
IM

 statem
ent is used to create a variable. V

ariables can be created by sim
ply using them

in a BA
SIC expression, but there are tw

o situations w
here you need m

ore control over how
 the

variable is created than you get w
hen you sim

ply use a variable. In addition, m
any program

m
ers

find that dim
ensioning each and every variable is a good w

ay to docum
ent w

hat variables are used
in a program

 and how
 they are used—

a com
m

ent just before or after the D
IM

 statem
ent is very

handy for rem
em

bering how
 a program

’s data structures are used.

D
im

ensioning
A

rrays

The first situation w
here you need control over how

 a variable is created is dim
ensioning an

array. This is the m
ost com

m
on use for D

IM
, and it’s also the traditional use that gives the

statem
ent its nam

e. To dim
ension an array, give the nam

e of the array w
ith the m

axim
um

 value
for each subscript. For exam

ple,

DIM V(5), A(5, 5)

dim
ensions tw

o arrays. The first is an array w
ith six SIN

G
LE values, subscripted from

 0 to 5. The
second array has tw

o subscripts, each ranging from
 0 to 5. The full array contains 36 SIN

G
LE

values.
A

s w
ith any variable, you can use type characters to specify the type of the elem

ents in the
array. For exam

ple,

DIM A#(7, 7)

creates an array of 64 D
O

U
BLE values. See D

efault Types, earlier in this chapter, for a com
plete

discussion of type characters. Y
ou can also specify a specific type using A

S; this is covered in
Assigning a Type W

ith AS, right after this section.
In m

ost situations it m
akes m

ore sense to use an IN
TEG

ER value for array subscripts, but it
is possible to use any num

eric value. V
alues are alw

ays converted to IN
TEG

ER before being used
as a subscript. For floating-point values, the value is truncated, so a subscript of 3.999 is treated
as the IN

TEG
ER value 3. The potential problem

s of this sort of round-off error are the m
ain

reason floating-point values should not norm
ally be used for array subscripts. Calculating the array

subscript also takes m
uch longer using floating-point arithm

etic; in som
e program

s the speed
difference can be dram

atic.
In m

ost cases D
IM

 statem
ents appear right at the start of a program

 or subroutine, and the
subscripts are constant values. These norm

al use rules com
e about because it m

akes sense to
organize program

s w
ith the D

IM
 statem

ents at the beginning, and in m
ost cases the size of an

Chapter 10: Declaring Variables and Types

101

array is fixed. There are situations w
here it m

akes sense to use an expression for the size of an
array, though, and occasionally it even m

akes sense to im
bed the D

IM
 statem

ent in the program
.

For exam
ple, here’s an array that uses the value stored in I%

 to determ
ine the size of the array.

This value m
ight be read from

 a disk file just before reading the num
bers for the array, or it m

ight
be entered by the person using the program

.

DIM SPEED(I%)

H
ere’s an exam

ple that uses one of tw
o sizes for several arrays, depending on how

 m
uch

m
em

ory is available.

IF FRE(0) > 64*1024 THEN
 DIM NAME$(BIG%)
 DIM ADDRESS$(BIG%)
 DIM CITY$(BIG%)
 DIM STATE$(BIG%)
 DIM ZIP&(BIG%)
ELSE
 DIM NAME$(SMALL%)
 DIM ADDRESS$(SMALL%)
 DIM CITY$(SMALL%)
 DIM STATE$(SMALL%)
 DIM ZIP&(SMALL%)
END IF

The low
est allow

ed subscript in any array is 0, and the largest allow
ed subscript is 32767. The

m
axim

um
 size for a single array is 65536 bytes. See Arrays, earlier in this chapter, for a m

ore
com

plete discussion of these lim
its.

A
ssigning a T

ype W
ith A

S

The A
S clause is used to assign a type to a variable. A

S is follow
ed by the nam

e of a type.
This can be som

ething as sim
ple as the nam

e of a default type or as com
plex as the nam

e of a
record.For exam

ple,

DIM I AS INTEGER, J AS INTEGER, K AS INTEGER

creates three IN
TEG

ER variables that don’t need %
 as the last character of the variable nam

e. Y
ou

can use this idea w
ith any of the built-in types. The built-in types are BY

TE, IN
TEG

ER, LO
N

G
,

SIN
G

LE, D
O

U
BLE and STRIN

G
. See D

efault Types, earlier in this chapter, for a com
plete

discussion of these types.
W

hile it rarely if ever m
akes sense to do so, you can use the A

S clause to override the type of
a variable. For exam

ple,

Language R
eference M

anual

102

DIM COST$ AS SINGLE

creates a variable nam
ed CO

ST$; this w
ould norm

ally be a string, but because of the A
S clause,

the variable is SIN
G

LE.
A

 less m
undane use of the A

S clause is to create a record variable. Record types are created
w

ith the TY
PE statem

ent. For exam
ple,

TYPE CUBE
 TOP
 BOTTOM
 LEFT
 RIGHT
 FRONT
 BACK
END TYPE

creates a record type w
hose type nam

e is CU
BE. Each CU

BE record contains six SIN
G

LE fields.
The D

IM
 statem

ent

DIM C AS CUBE, CUBES(10) AS CUBE

creates tw
o variables. C is a CU

BE record variable, w
hile CU

BES is an array of 11 CU
BE records.

Type nam
es aren’t alw

ays so sim
ple. Y

ou can use PO
IN

TER TO
 before any type nam

e to
create a pointer to a value. For exam

ple,

DIM CP AS POINTER TO CUBE

creates a pointer variable nam
ed CP. This pointer points to a CU

BE record. Y
ou can allocate a

cube record using A
LLO

CA
TE, or point CP to an existing CU

BE record w
ith the address operator,

like this:

CP = @CUBES(4)

U
sing D

efault T
ypes W

ith D
IM

The last use of the D
IM

 statem
ent is to create a variable using its norm

al default type. This is
entirely optional, since BA

SIC w
ill create the variable for you and initialize it to zero the first

tim
e it is used in the subroutine or program

, but this is a convenient w
ay to create a dictionary of

your variables and describe how
 they are used in the program

.
The statem

ents

DIM I%: REM Loop/index variable
DIM INTEREST: REM Annual interest rate

Chapter 10: Declaring Variables and Types

103

create tw
o variables, the IN

TEG
ER variable I%

 and the SIN
G

LE variable IN
TEREST, and give a

clue as to how
 these variables are used in the program

.

T
Y
P
E

i
d
e
n
t
i
f
i
e
r

[

(

f
i
e
l
d
-
n
a
m
e

[

A
S

t
y
p
e

]

)

|

(

C
A
S
E

[

e
x
p
r
e
s
s
i
o
n

]

)

]
+

E
N
D

T
Y
P
E

The TY
PE statem

ent has tw
o m

ajor form
s. The form

 described in this section is used to create
record types. The other form

, described right after this one, is used to assign a nam
e to a sim

ple
type or pointer.

D
eclaring R

ecord T
ypes

A
 record contains one or m

ore values, just like an array. U
nlike an array, the values in a record

do not have to be the sam
e type. Each of these values is called a field, and each has its ow

n nam
e

and its ow
n type, just like a variable that is not a field in a record.

The field declarations appear betw
een the TY

PE and EN
D

 TY
PE statem

ents. Each field
declaration looks exactly like a variable defined in a D

IM
 statem

ent, but w
ithout the D

IM
. Just as

w
ith a D

IM
 statem

ent, you can declare fields using an A
S clause, using default types, or using

array subscripts.
H

ere’s a classic exam
ple of a record. Each record contains an address.

TYPE ADDRESS
 NAME$
 STREET$
 CITY$: STATE$: ZIP&
END TYPE

This particular record has five fields, four strings and a LO
N

G
 zip code. It’s custom

ary to put
each field on a separate line, but this exam

ple show
s how

 to put m
ultiple fields on one line.

H
ow

 R
ecords A

re Stored In M
em

ory

K
now

ing how
 records are stored in m

em
ory is im

portant for som
e kinds of program

m
ing,

especially toolbox program
m

ing. In toolbox program
m

ing and other situations w
here a

G
Soft BA

SIC program
 is com

m
unicating w

ith another program
 or device, it’s often necessary to

lay out a record that w
ill occupy bytes in m

em
ory in a very specific w

ay. K
now

ing how
 records

are stored is also key to understanding how
 values can be overlaid in m

em
ory using variant records.

To explore how
 records are stored in m

em
ory, w

e’ll use these contrived record types, w
hich

show
 an exam

ple of each kind of variable that can appear in a record.

Language R
eference M

anual

104

TYPE POINT
 H AS INTEGER
 V AS INTEGER
END TYPE
TYPE ALLKINDS
 B AS BYTE
 I AS INTEGER
 L AS LONG
 S AS SINGLE
 D AS DOUBLE
 STR AS STRING
 A(3) AS INTEGER
 P AS POINT
 PTR AS POINTER TO INTEGER
END TYPE

DIM R AS ALLKINDS

Each field in a record occupies one or m
ore bytes in m

em
ory. The am

ount of m
em

ory and
exact storage m

ethod is discussed m
ore com

pletely in the various sections that describe the data
types. For our purpose in this section, it is enough to know

 that a BY
TE value requires one byte,

an IN
TEG

ER uses tw
o bytes, LO

N
G

 and SIN
G

LE values and pointers to any value require four
bytes, and D

O
U

BLE values require eight bytes. Strings are a special case. The string value is
stored in a special m

em
ory pool; the string variable, w

hich is w
hat is stored in the record, requires

four bytes of m
em

ory, so for this discussion w
e treat all strings as if they require four bytes of

m
em

ory.
Fields w

ithin a record are stored sequentially. The record PO
IN

T consists of tw
o IN

TEG
ER

values, so each record variable of type PO
IN

T needs four bytes of m
em

ory. The field H
 w

ill
occupy the first tw

o bytes of the record, and the field V
 w

ill occupy the last tw
o bytes in the record

variable. The usual w
ay to describe the position of the fields is to say that H

 is zero bytes past the
start of the record, or that it has a displacem

ent of zero, w
hile V

 has a displacem
ent of tw

o bytes.
The variable R is a record of type A

LLK
IN

D
S. It uses 39 bytes of m

em
ory, laid out like this:

D
isplacem

ent
Size

Field N
am

e
0

1
B

1
2

I
3

4
L

7
4

S
11

8
D

19
4

STR
23

8
A

31
4

P
35

4
PTR

Chapter 10: Declaring Variables and Types

105

V
ariant R

ecords

A
 variant record is used to treat m

em
ory in different w

ays, setting up variables that occupy the
sam

e m
em

ory. A
 sim

ple exam
ple is the toolbox rectangle record, RECT. Rectangles require four

integer values, one each for the top, bottom
, left and right edges of the rectangle. D

ue to som
e

schizophrenic nam
ing, there are three different nam

ing schem
es for rectangle records on the

A
pple IIG

S—
the nam

es used on the M
acintosh, a m

ethod that treats a rectangle as tw
o corner

points, and the one m
ost people use, w

hich nam
es the edges H

1, H
2, V

1 and V
2. H

ere’s how
 this

record is declared:

TYPE RECT
 CASE NORMAL
 V1 AS INTEGER
 H1 AS INTEGER
 V2 AS INTEGER
 H2 AS INTEGER
 CASE MAC
 TOP AS INTEGER
 LEFT AS INTEGER
 BOTTOM AS INTEGER
 RIGHT AS INTEGER
 CASE POINTS
 TOPLEFT AS POINT
 BOTRIGHT AS POINT
END TYPE

The CA
SE clause causes the displacem

ent counter to start over. The expression that appears
after CA

SE is for your benefit, not BA
SIC’s. It serves as a com

m
ent, telling w

hat the variant part
is used for. Y

ou can leave it off, or m
ake it the sam

e as a variable you use to keep track of the
variant parts w

ithin a record.
In this sim

ple exam
ple the result is a record w

ith three different nam
es for each of the integers

that are stored in the record. For exam
ple,

DIM R AS RECT
R.V1 = 4
PRINT R.TOP

prints 4, since R.V
1 and R.TO

P are different nam
es for the sam

e value. H
ere’s a table that show

s
the nam

es for each of the offsets in a RECT record.

D
isplacem

ent
Size

Field N
am

es
0

2
V

1
TOP

TO
PLEFT.V

2
2

H
1

LEFT
TO

PLEFT.H
4

2
V

2
BO

TTO
M

BO
TRIG

H
T.V

6
2

H
2

RIG
H

T
BO

TRIG
H

T.H

Language R
eference M

anual

106 The CA
SE clause is a m

arker that divides the various parts of the record from
 each other. Each

of the parts is called a variant part. A
ll variables from

 the first CA
SE to the next, or until the

EN
D

 TY
PE for the last CA

SE clause, form
 a variant part, w

hich is overlaid on all of the other
variant parts. They don’t have to be the sam

e length; the total length of the record is determ
ined by

the longest CA
SE clause. For exam

ple, in the record

TYPE SIZE
 CASE ONE
 I AS INTEGER
 CASE TWO
 S AS SINGLE
END TYPE

the record w
ill be four bytes long. The first variant part is a single tw

o byte IN
TEG

ER, w
hile the

second is a four byte SIN
G

LE. Each variable w
ill need four bytes so it can hold the longest

possible variant part.
A

nother use of variant records is to treat the sam
e value tw

o different w
ays. For exam

ple, let’s
assum

e you need to split a four byte LO
N

G
 value into tw

o IN
TEG

ER values. That’s a real
problem

 in a surprising num
ber of situations. H

ere’s a variant record that can be used to do it.

TYPE CONVERT
 CASE LONGWORD
 L&
 CASE WORD
 I1%
 I2%
END TYPE
DIM C AS CONVERT
!L& = $00020001
PRINT C.I1%, C.I2%

The first integer in the record overlays the first tw
o bytes of the long integer value, w

hich is
the least significant integer on an A

pple IIG
S; the second integer overlays the m

ost significant
integer. The program

 dem
onstrates this concept by stuffing a hexadecim

al value into the long
integer value. The hexadecim

al constant m
akes it easy to see that the least significant tw

o bytes of
the long value should be 1, w

hile the m
ost significant tw

o bytes should be 2. The program
 show

s
this is true by printing the values.

Y
ou can also place variables before the first CA

SE clause. V
ariables that appear before the

first CA
SE are not overlaid at all; they appear in all versions of the record. A

 great exam
ple is a

control record, used to describe the characteristics of a control in a w
indow

. A
ll controls have a

field for the rectangle that surrounds the control, so this field needs to be available for all records.
O

nly a scroll bar has a thum
b rectangle, though, and it doesn’t need a key equivalent like som

e of
the other controls. Rather than w

aste space by reserving m
em

ory for a key equivalent in a scroll

Chapter 10: Declaring Variables and Types

107

bar or for a thum
b rectangle in a button, A

pple’s engineers used a variant record to lay out
controls. Leaving out the dozens of other fields, the three w

e discussed look like this in the type
declaration for a control record.

TYPE CTLREC
 CTLRECT AS RECT
 CASE BTNORCHECK
 KEYEQUIV AS KEYEQUIVREC
 CASE SCROLL
 THUMBRECT AS RECT
END TYPE

In this record, CTLRECT has a displacem
ent of zero. Rectangles use 8 bytes of m

em
ory, so both

K
EY

EQ
U

IV
 and TH

U
M

BRECT have offsets of 8.

U
sing the R

ecord T
ype In T

he R
ecord (L

inked L
ists)

A
 type m

ust be declared before it can be used, but the type nam
e is already declared as the

fields are being created. This m
eans that the nam

e of the record type can be used w
hen creating a

field w
ithin the sam

e record—
but only w

hen you are declaring a pointer to the type. W
e’ll discuss

the reason for this restriction after looking at a concrete exam
ple of a record type nam

e used inside
the sam

e record.
The short program

 below
 show

s a linked list, w
hich is the classic reason to use a record’s

nam
e w

hen declaring a field in the record. A
 linked list is a record w

ith at least one field that is a
pointer to another record of the sam

e kind. Linked lists are frequently used in database applications,
since they can adapt to a w

idely varying am
ount of m

em
ory. Linked lists are also used extensively

in the A
pple IIG

S toolbox. For exam
ple, w

indow
 records have a pointer to another w

indow
 record.

W
hen you open a new

 w
indow

, the W
indow

 M
anager creates a new

 w
indow

 record. Each w
indow

has a pointer to the next w
indow

. The W
indow

 M
anager has a single pointer to the first open

w
indow

, and scans the list to deal w
ith all of the w

indow
s that are open. This is a pow

erful
com

bination: The W
indow

 M
anager can handle any num

ber of w
indow

s, so long as you have
enough m

em
ory, but it never uses m

ore m
em

ory than it needs for the actual num
ber of w

indow
s

that are open. A
n array doesn’t have either of these advantages.

In the exam
ple below

, N
U

M
BER is a record type that holds an IN

TEG
ER value. A

FTER is a
field w

ithin N
U

M
BER that points to the next record in the linked list. The program

 builds the
linked list by allocating m

em
ory for each record using A

LLO
CA

TE, then filling in the values.
N

U
M

BERS is a pointer to the first record in the linked list; the program
 can find all of the other

records by tracing through the pointers to subsequent records.

TYPE NUMBER
 AFTER AS POINTER TO NUMBER
 VALUE AS INTEGER
END TYPE
DIM NUMBERS AS POINTER TO NUMBER
DIM TEMP AS POINTER TO NUMBER
!

Language R
eference M

anual

108

FOR I% = 1 TO 10
 ALLOCATE (TEMP)
 IF TEMP <> NIL THEN
 TEMP^.AFTER = NUMBERS
 TEMP^.VALUE = I%
 NUMBERS = TEMP
 END IF
NEXT
WHILE NUMBERS <> NIL
 TEMP = NUMBERS
 NUMBERS = TEMP^.AFTER
 PRINT TEMP^.VALUE
 DISPOSE (TEMP)
WEND

If you’ve never dealt w
ith pointers and linked lists, this w

ill seem
 rather strange, but if you

plan to do anything resem
bling database program

m
ing or toolbox program

m
ing, you’ll eventually

get very com
fortable w

ith linked lists. For an introduction to linked lists, see Learn to Program
 in

G
Soft BASIC, a com

panion course that teaches general program
m

ing techniques using
G

Soft B
A

SIC
.

Thinking about how
 records are stored in m

em
ory should m

ake it easy to see w
hy a record’s

nam
e can only be used as a pointer inside that sam

e record. Som
ething like this:

TYPE NUMBER
 N AS NUMBER
 I AS INTEGER
END TYPE

just w
ouldn’t m

ake sense. For one thing, BA
SIC has no idea how

 m
any bytes to reserve for the

record variable N
, since the record hasn’t been com

pleted yet. For another, it’s not really clear even
after you look at the entire record just how

 it should look in m
em

ory. A
fter all, the field N

 has a
N

U
M

BER record inside it, and that N
U

M
BER record has another field N

, w
hich has another

N
U

M
BER record, and so on.

A
 pointer to the record doesn’t share those problem

s. A
 pointer alw

ays uses four bytes of
m

em
ory, so BA

SIC know
s exactly how

 m
any bytes to set aside for the field.

T
Y
P
E

i
d
e
n
t
i
f
i
e
r

A
S

t
y
p
e

The TY
PE statem

ent has tw
o m

ajor form
s. The form

 described in this section is used to
assign a nam

e to a sim
ple type or pointer. The other form

, described right before this one, is used
to create record types.

This form
 of the TY

PE statem
ent creates a new

 nam
ed type. There are tw

o com
m

on reasons
to do this: organization and nam

ing pointer types.
It’s com

m
on to declare a record and use pointers to the record. Y

ou’ll see this throughout the
A

pple IIG
S toolbox, w

here w
indow

s, controls, m
enus, m

enu bars, points and rectangles are

Chapter 10: Declaring Variables and Types

109

frequently dealt w
ith via a pointer to the value. W

hen a pointer to a particular kind of value is used
in m

any places, it m
akes sense to create a type for the pointer itself. For exam

ple, the toolbox
defines a rectangle pointer like this:

TYPE RECTPTR AS POINTER TO RECT

W
ith this type in place, you can create a pointer to a rectangle w

ith the D
IM

 statem
ent using this

type nam
e.

DIM RP AS RECTPTR

Strictly speaking, this doesn’t create a new
 type, it just attaches a nam

e to a frequently used
type. For exam

ple, if w
e create a com

pletely separate pointer to a rectangle, like

TYPE RPTR AS POINTER TO RECT

and another variable using this second type,

DIM RP2 AS RPTR

or even a variable that doesn’t use either type, as in

DIM RP3 AS POINTER TO RECT

all of the variables are com
patible. Y

ou can assign one to the other, or pass any of them
 as a

param
eter to a subroutine that expects a pointer to a rectangle.

The second com
m

on reason to create a nam
ed type is for organization. If you’re creating a

program
 that deals w

ith the physical quantities speed and m
ass, you could define all of your

variables as SIN
G

LE.

DIM SPEED1, SPEED2, MASS1, MASS2

That w
ould w

ork w
ell, and it’s w

hat you w
ill find in m

ost program
s that deal w

ith speed and
m

ass. A
n alternative is to create new

 types for speed and m
ass, like this:

TYPE SPEEDTYPE AS SINGLE
TYPE MASSTYPE AS SINGLE
DIM SPEED1 AS SPEEDTYPE, SPEED2 AS SPEEDTYPE
DIM MASS1 AS MASSTYPE, MASS2 AS MASSTYPE

A
t first it probably seem

s brain-dead to add all that typing to the program
. Let’s assum

e,
though, that the entire program

 has several thousand lines of code, and declares dozens of values

Language R
eference M

anual

110

that are speeds or m
asses in various subroutines throughout the program

. If you suddenly discover
that you need D

O
U

BLE values for m
asses because your program

 needs m
ore than seven significant

digits, you’re stuck searching through the entire program
 line by line for all the locations that need

to be changed. If you organized the program
 w

ith types, though, you only need to change one line:

TYPE MASSTYPE AS DOUBLE

The m
ethod you choose often depends on the size of program

s you w
rite and how

 m
any tim

es
the program

 is likely to be changed, but organizing a program
 w

ith types is a pow
erful w

ay to
m

ake it easy to change.

111

C
hapter 11 – Expressions and A

ssignm
ents

E
xpressions

BA
SIC w

orks on values, m
anipulating, storing, and retrieving inform

ation stored in the bytes
of your com

puter’s RA
M

 and on various external storage devices. A
lm

ost all of the statem
ents in

BA
SIC that accept a value as a param

eter allow
 you to use an expression. A

n expression can be
som

ething as sim
ple as the num

ber 1, or as com
plicated as a com

plex m
athem

atical form
ula

taking inform
ation from

 a disk, pointers to records, and arrays. This chapter describes how
expressions w

ork.

K
inds of E

xpressions

There are four different kinds of expressions in BA
SIC. They can be interm

ixed, and putting
them

 together follow
s the sam

e underlying rules, so all four are described here as a group. The
difference betw

een them
 lies sim

ply in the result they produce.

M
athem

atical
E

xpressions

M
ost BA

SIC com
m

ands and statem
ents w

ork on num
bers. A

 m
athem

atical expression is any
expression that results in a num

ber, w
hether that num

ber is an IN
TEG

ER, LO
N

G
, SIN

G
LE or

D
O

U
BLE value.

W
hen you see the term

 expression in the m
odel for a BA

SIC statem
ent, it generally m

eans
that the expression is a m

athem
atical expression. In a few

 cases, like the LET statem
ent, it can

also m
ean that the expression can be a m

athem
atical expression, pointer expression or a string

expression. Those cases are usually obvious. A
fter all, you need to be able to assign values to

string variables, just as you assign values to num
erical variables, so LET m

ust support string
expressions as w

ell as m
athem

atical expressions. Just as obviously, you can’t take the square root
of a string, so the expression accepted by SQ

R m
ust be a m

athem
atical expression. In any case,

the description of the com
m

and w
ill point out w

hat kinds of expressions are valid by telling you
w

hat the operation is and by explicitly stating w
hen strings or pointers are allow

ed.

L
ogical

E
xpressions

Som
e com

m
ands test to see if a condition is true or false. The IF statem

ent is the classic
exam

ple. The condition is called a logical expression.
A

t one level, logical expressions are exactly the sam
e as m

athem
atical expressions. Both are

calculated the sam
e w

ay. Both result in a num
ber. The difference is not how

 they are created, but
how

 they are used.

Language R
eference M

anual

112 W
hile the result of a logical expression is a num

ber, w
hat is needed is a logical value—

either
true or false. To m

ake this jum
p, BA

SIC treats any num
ber w

hose value is zero as false, and any
other value as true.

O
perations that return a logical value, like the O

R operation, alw
ays return 0 for false and 1

for true. W
hile it is not technically required, m

ost im
plem

entations of BA
SIC seem

 to follow
 this

rule. In G
Soft BA

SIC, the num
ber is alw

ays returned as an IN
TEG

ER. In m
ost situations this

doesn’t m
ake m

uch difference, but operations on integers are a bit faster than operations on other
kinds of num

bers.
There is one place w

here conversion of num
bers can lead to som

e unexpected results. Be
careful of floating-point values used as logical values. The value 0.01, for exam

ple, is not a zero,
so by itself it has a logical value of true. If you save the value in an integer, though, it converts to
zero, changing the result to false. This causes the follow

ing program
 to print TRU

E the first tim
e,

and FA
LSE the second, even though strict logic requires both values to be the sam

e.

L = 0.1
L% = L
PRINT_LOGICAL(L OR 0)
PRINT_LOGICAL(L% OR 0)
END

SUB PRINT_LOGICAL (L)
IF L THEN
 PRINT "TRUE"
ELSE
 PRINT "FALSE"
END IF
END SUB

Pointer
E

xpressions

G
Soft BA

SIC is rare. U
nlike older im

plem
entations of BA

SIC, G
Soft BA

SIC handles
pointers sm

oothly, just like C and Pascal.
Pointers are values that point to the location w

here another value is stored. Pointer
expressions return a pointer to som

e other value.
V

ariables have a type. For exam
ple, I%

 is a variable w
hose type is IN

TEG
ER. Pointers have

a type, too, but the type can vary. A
 pointer points to som

ething, and the type of the pointer is
PO

IN
TER TO

 w
hatever the other type happens to be. Tw

o pointers are interchangeable if they
point to the sam

e kind of value, but cannot be assigned or com
pared if they point to different kinds

of values. Y
ou can, how

ever, change the type of a pointer using type casting, discussed later in
this chapter.

String
E

xpressions

String expressions return strings, as the nam
e im

plies. G
enerally the string is the result of a

function, like LEFT$, but the m
ath operation + also w

orks on strings, com
bining them

 to form
 a

longer string.

C
hapter 11: Expressions and Assignm

ents

113

E
valuating E

xpressions

To help us analyze how
 expressions are constructed, w

e’ll divide the discussion into tw
o

categories. This section w
ill discuss the various operations that accept tw

o num
bers or strings and

return a single num
ber or string. These are technically know

n as binary operators. In the next
section, w

e’ll discuss term
s, w

hich are num
bers, variables, and operations that w

ork on a single
value and return a single result. A

s w
e’ll see, you can alw

ays think of a term
 as a single value, and

these values can be com
bined w

ith the operations in this section tw
o at a tim

e.

O
perator Precedence

W
hen you w

rite a m
athem

atical form
ula, you expect that som

e operations are perform
ed

before others. For exam
ple, if you see

1 + 2 x 3

you expect the result to be 7, because m
ultiplication is alw

ays done before addition. The technical
term

 for this choice of order is operator precedence. O
perations w

ith a higher precedence are alw
ays

done before those w
ith a low

er precedence.
The follow

ing table show
s operator precedence for all of the operations in BA

SIC, both the
binary operations (those that take tw

o argum
ents, like addition and division) described in this

section and the unary operations (those that take a single argum
ent, like N

O
T) described w

ith
term

s. The operations at the top of the table have a higher precedence, and are alw
ays perform

ed
first.W

hen operations have the sam
e precedence, the operation is alw

ays done in left-to-right order.
N

orm
ally this doesn’t m

atter, but in som
e num

erically sensitive equations it can m
ake a difference.

Language R
eference M

anual

114 O
perations By Precedence

. 1
2̂

^. 3
() 4

@+
5

- 5
N

O
T

6̂*
/

+
-

=
<

>
<=

>=
<>

A
N

D
O

R

N
otes for the operator precedence table:

1
U

sed to access fields in a record.
2

U
sed to dereference a pointer, returning the value pointed to rather than the value of the

pointer.
3

U
sed to access the field of a record that is pointed to by a pointer.

4
In this table, the parentheses indicate accessing an array.

5
These are the unary versions of the operations. For exam

ple, -X
 uses the unary

subtraction operation.
6

This is the exponentiation operation. 2^3 is 2*2*2, or 8.

Y
ou can use parentheses to change the order of operations. For exam

ple,

PRINT 1 + 2 * 3

prints 7, but

PRINT (1 + 2) * 3

prints 9.

B
inary

C
onversions

G
Soft BA

SIC supports five different kinds of num
bers: BY

TE, IN
TEG

ER, LO
N

G
, SIN

G
LE

and D
O

U
BLE. Binary conversions are the rules used to perform

 operations on different kinds of
num

bers. These rules tell you both w
hat the result w

ill be, and in som
e cases how

 the calculation
is perform

ed.
M

ost of the tim
e these differences are not im

portant. BA
SIC converts num

bers back and forth
as needed w

ithout causing m
uch trouble. There are a few

 situations w
here the difference is

C
hapter 11: Expressions and Assignm

ents

115

im
portant, though. U

nderstanding them
 could save you hours of staring at a program

 that ought to
w

ork, but just doesn’t seem
 to give you the answ

er you expect.
U

nless otherw
ise noted, w

hen tw
o num

bers of the sam
e kind are used w

ith a binary operation,
the result is a num

ber of the sam
e kind, too. For exam

ple, if you add tw
o integers, as in I%

 + J%
,

the result is also an integer.
The one universal exception is BY

TE. G
Soft BA

SIC treats BY
TE variables as a special case

of IN
TEG

ER that uses less storage. O
perations involving BY

TE values alw
ays w

ork as if the
values w

ere IN
TEG

ER.
W

hen you m
ix tw

o different kinds of num
ber in the sam

e operation, the num
bers are first

converted to the sam
e num

ber type, then the operation is perform
ed. For exam

ple, R * I%
, w

here
R is a SIN

G
LE num

ber, is carried out by converting I%
 to a SIN

G
LE value, then doing the

m
ultiplication. The result is SIN

G
LE.

The follow
ing table show

s how
 binary conversions are carried out. Since BY

TE num
bers are

alw
ays converted to IN

TEG
ER, they are not show

n in the table. The rightm
ost colum

n show
s

both the num
ber form

at the values are converted to before the calculation is perform
ed and the kind

of num
ber the operation returns.

If one value is…
and the other is…

the calculation is…
D

O
U

BLE
SIN

G
LE

D
O

U
BLE

D
O

U
BLE

LO
N

G
D

O
U

BLE
D

O
U

BLE
IN

TEG
ER

D
O

U
BLE

SIN
G

LE
LO

N
G

SIN
G

LE
SIN

G
LE

IN
TEG

ER
SIN

G
LE

LO
N

G
IN

TEG
ER

LO
N

G

U
nary

C
onversions

There are m
any places in G

Soft BA
SIC w

here a num
ber is converted from

 one type to
another. For exam

ple, this happens during binary conversions, described above. U
nary conversions

are also m
ade w

hen you assign a num
ber that is one type to a variable of another type using a LET

statem
ent, or w

hen you pass a value as a param
eter. Y

ou can also force a unary conversion using
the functions CIN

T, CLN
G

, CSN
G

 and CD
BL. In all of these cases, the conversion from

 one
num

ber type to another is done in exactly the sam
e w

ay. This section describes how
 these

conversions are perform
ed.

Converting D
O

U
BLE to SIN

G
LE

Converting a D
O

U
BLE value to a SIN

G
LE value results in a loss of precision in the num

ber,
w

hich drops from
 about 16 decim

al digits to about 7 decim
al digits. In som

e cases, this loss is
com

pletely transparent. Both form
ats can represent the num

ber 4.5 w
ith com

plete accuracy, so
converting the D

O
U

BLE value 4.5 to the SIN
G

LE value 4.5 doesn’t loose any accuracy at all. O
n

the other hand, converting the D
O

U
BLE value 4.500000001 to SIN

G
LE w

ill result in the num
ber

4.5.

Language R
eference M

anual

116 D
O

U
BLE values also support a larger exponent range than SIN

G
LE values. The exponent

range for SIN
G

LE is about 1E-38 to 1E38. If the D
O

U
BLE num

ber is too close to zero to
represent w

ith the sm
allest available SIN

G
LE exponent, the result is 0.0. If the D

O
U

BLE value is
too large to represent w

ith the largest available SIN
G

LE exponent, the result is infinity or
negative infinity, w

hich prints as inf and -inf, respectively.

Converting D
O

U
BLE to LO

N
G

The value is first converted to an integer by rounding dow
n to the largest integer that is less

than or equal to the original value. Som
e typical values are:

D
O

U
BLE

LO
N

G
-100.6

-101
-99.2

-100
-0.1

-1
0.1

0
3.3

3
3.99

3

The m
axim

um
 range for LO

N
G

 values is -2147483648 to 2147483647. A
fter truncating, if

the double value is outside this range, the program
 stops w

ith a run tim
e error.

Converting D
O

U
BLE to IN

TEG
ER

The rules for converting D
O

U
BLE to IN

TEG
ER are essentially the sam

e as for converting
D

O
U

BLE to LO
N

G
. The only difference is that IN

TEG
ER values have a sm

aller range than
LO

N
G

 values, so overflow
s that result in a run tim

e error can occur w
ith num

bers that are valid
for LO

N
G

. The valid range for IN
TEG

ER values is -32768 to 32767; if the truncated D
O

U
BLE

value is outside this range, a run tim
e error stops the program

.

Converting SIN
G

LE to D
O

U
BLE

Converting SIN
G

LE to D
O

U
BLE alw

ays w
orks, and there is no loss of precision.

Converting SIN
G

LE to LO
N

G

Converting a SIN
G

LE value to a LO
N

G
 value follow

s the sam
e rules as converting a

D
O

U
BLE value to a LO

N
G

 value.

Converting SIN
G

LE to IN
TEG

ER

Converting a SIN
G

LE value to an IN
TEG

ER value follow
s the sam

e rules as converting a
D

O
U

BLE value to an IN
TEG

ER value.

C
hapter 11: Expressions and Assignm

ents

117

Converting LO
N

G
 to D

O
U

BLE

A
ll LO

N
G

 values can be represented w
ith no loss of precision by a D

O
U

BLE value. The
conversion alw

ays w
orks, w

ith no possible error or loss of precision.

Converting LO
N

G
 to SIN

G
LE

Converting a LO
N

G
 value to a SIN

G
LE value alw

ays w
orks, w

ith no possibility of an error,
but there can be a loss of precision. The m

antissa of a SIN
G

LE value uses 24 bits, w
hich gives

about 7 significant decim
al digits. LO

N
G

 values larger than 16777216 or sm
aller than -16777216

cannot be stored w
ithout loss of precision in a SIN

G
LE value. The least significant bits are lost.

If you decide to verify this range, be sure to convert the SIN
G

LE value back to LO
N

G
 before

printing it. O
nly the first seven significant digits of SIN

G
LE values are norm

ally printed, and you
need to see eight digits to verify there w

as no loss of precision.

Converting LO
N

G
 to IN

TEG
ER

Converting a LO
N

G
 value to an IN

TEG
ER value w

orks for any value in the range -32768 to
32767. A

 LO
N

G
 value outside this range triggers a run tim

e error.

Converting IN
TEG

ER to D
O

U
BLE

A
ll IN

TEG
ER values can be represented w

ith no loss of precision by a D
O

U
BLE value. The

conversion alw
ays w

orks, w
ith no possible error or loss of precision.

Converting IN
TEG

ER to SIN
G

LE

A
ll IN

TEG
ER values can be represented w

ith no loss of precision by a SIN
G

LE value. The
conversion alw

ays w
orks, w

ith no possible error or loss of precision.

Converting IN
TEG

ER to LO
N

G

A
ll IN

TEG
ER values can be represented w

ith no loss of precision by a LO
N

G
 value. The

conversion alw
ays w

orks, w
ith no possible error or loss of precision.

Converting BY
TE to A

ny O
ther Type

BY
TE values are alw

ays converted to IN
TEG

ER values before any operation is perform
ed. The

result is alw
ays an integer in the range 0 to 255.

Converting A
ny O

ther Type to BY
TE

Conversion of any value to a BY
TE alw

ays starts by converting the value to an IN
TEG

ER. If
the original value is outside the range -32768 to 32767, the conversion triggers a run tim

e error.

Language R
eference M

anual

118 O
nce the value has been reduced to an IN

TEG
ER, the least significant 8 bits of the tw

o’s
com

plem
ent integer value are used. If the value is in the range 0 to 255, the result is exact. If the

value is outside that range, the result seem
s strange unless you are fam

iliar w
ith the w

ay integers
are stored. If you w

ould like to explore how
 integers are stored, refer to any assem

bly language
program

m
ing book, or any general com

puter science text that discusses tw
o’s com

plem
ent

notation.
For positive num

bers the value that results is the sam
e as you w

ould get from
 the expression

I% - 256 * INT (I% / 256)

For negative num
bers the value is the sam

e as the result of this expression:

65536 + I% - 256 * INT ((65536 + I%) / 256)

A
ddition

The sym
bol for addition is +.

A
ddition w

orks on both num
bers and strings, and can be used in one w

ay w
ith pointers.

String and pointer addition are discussed later in this section.
W

hen you add tw
o num

bers, the addition operation returns the sum
 of the tw

o num
bers. For

exam
ple, 1 + 1 returns 2.

If you are adding integers, and the result is larger than 32767 or sm
aller than -32768, the

result cannot be an integer value. G
Soft BA

SIC quietly detects the overflow
 and converts the

result to a SIN
G

LE num
ber. For exam

ple, 30 + 30 returns the integer 60, but 30000 + 30000
returns the floating-point num

ber 60000.0. The sam
e thing happens w

ith LO
N

G
 values, although

the range is som
ew

hat larger. LO
N

G
 values can range from

 -2147483648 to 2147483647. If the
result of an addition of long integers falls outside this range, the values are quietly converted to
D

O
U

BLE.
SIN

G
LE and D

O
U

BLE values can overflow
, too. If the result of an addition is too close to

zero to represent, the value returned w
ill be 0.0. If the value is too large or too sm

all to represent,
the result w

ill be infinity or negative infinity. Infinity prints as inf. A
ll of the various m

ath
operations in G

Soft BA
SIC know

 how
 to handle infinity in a reasonable w

ay. A
dding infinity to

any other value except negative infinity gives infinity, and adding negative infinity to any value
except positive infinity gives negative infinity. A

dding infinity to negative infinity results in a
value called “not a num

ber,” w
hich prints as N

aN
. This is handled reasonably, too. N

aN
 added to

any other value still returns N
aN

.
A

ddition also w
orks on strings. W

hen you add tw
o strings, the second is tacked onto the end

of the first. For exam
ple,

PRINT "Hello, " + "world."

prints the string “H
ello, w

orld.”

C
hapter 11: Expressions and Assignm

ents

119

A
ddition w

orks on pointers, but in a lim
ited w

ay. Y
ou can add an integer value to a pointer,

but you cannot add tw
o pointers, nor can you add a pointer to an integer. Floating-point values can

be used instead of integers; they w
ill be converted to an integer by truncating before the addition

takes place.
A

dding an integer to a pointer causes the pointer to point a specific num
ber of item

s further in
m

em
ory. For exam

ple, let’s assum
e w

e are adding 1 to the integer pointer IP, and that IP
originally points to the m

em
ory location 100000. A

dding 1 to IP causes IP to point to the integer
after the original integer. Since each integer requires tw

o bytes of m
em

ory, IP + 1 w
ill be an

integer pointer that points to m
em

ory location 100002. A
dding 4 to a SIN

G
LE pointer that

originally points to 100000 gives a SIN
G

LE pointer that points to m
em

ory location 100016, four
SIN

G
LE values later in m

em
ory.

A
dding a negative value to a pointer is supported, too. It is treated like a pointer subtraction.

See Subtraction, below
, for a com

plete discussion.
A

 classic exam
ple uses pointers to access the values in an array. This short program

 fills an
array using pointer addition, then prints the values using standard array notation.

DIM IP AS POINTER TO INTEGER
DIM A(10) AS INTEGER
IP = @A(0)
FOR I% = 0 TO 10
 IP^ = I%
 IP = IP + 1
NEXT
FOR I% = 0 TO 10
 PRINT A(I%)
NEXT

Subtraction

The sym
bol for subtraction is -.

Subtraction w
orks w

ith num
bers, and in a lim

ited sense, w
ith pointers. Pointers are discussed

at the end of this section.
W

hen you subtract tw
o num

bers, the result is the num
ber on the left m

inus the num
ber on

the right. For exam
ple, 4 - 10 returns -6.

Just as w
ith addition, overflow

s do not cause errors. If subtracting one IN
TEG

ER from
another results in a value that cannot be an IN

TEG
ER, the original num

bers are converted to
SIN

G
LE and the operation is perform

ed again. If tw
o LO

N
G

 values result in an overflow
, the

operation is perform
ed again after the tw

o num
bers are converted to D

O
U

BLE.
Just as w

ith addition, subtraction of SIN
G

LE or D
O

U
BLE values that result in a num

ber too
close to zero to represent returns 0.0, w

hile results too large or too sm
all to represent return

infinity or negative infinity.
The table below

 show
s how

 infinity and N
aN

 behave for subtraction. N
aN

 stands for “not a
num

ber,” and indicates that the result of an operation is not a valid real num
ber. “A

ny value” refers
to any num

ber, including infinity or N
aN

, that is not listed explicitly in the table.

Language R
eference M

anual

120 This…
m

inus this…
gives this…

N
aN

any value
N

aN
any value

N
aN

N
aN

inf
inf

N
aN

-inf
inf

-inf
inf

-inf
inf

-inf
-inf

N
aN

inf
any value

inf
any value

inf
-inf

-inf
any value

-inf
any value

-inf
inf

Subtraction w
orks on pointers, but in a lim

ited w
ay. Y

ou can subtract an integer value from
 a

pointer, but you cannot subtract tw
o pointers, nor can you subtract a pointer from

 an integer.
Floating-point values can be used instead of integers; they w

ill be converted to an integer by
truncating before the subtraction takes place.

Subtracting an integer from
 a pointer causes the pointer to point to a specific num

ber of item
s

earlier in m
em

ory. For exam
ple, let’s assum

e w
e are subtracting 1 from

 the integer pointer IP, and
that IP originally points to the m

em
ory location 100000. Subtracting 1 from

 IP causes IP to point
to the integer before the original integer. Since each integer requires tw

o bytes of m
em

ory, IP - 1
w

ill be an integer pointer that points to m
em

ory location 99998. Subtracting 4 from
 a SIN

G
LE

pointer that originally points to 100000 gives a SIN
G

LE pointer that points to m
em

ory location
99984, four SIN

G
LE values earlier in m

em
ory.

Subtracting a negative value from
 a pointer is supported, too. It is treated like a pointer

addition. See Addition, above, for a com
plete discussion.

M
ultiplication

The sym
bol for m

ultiplication is *.
M

ultiplying tw
o num

bers returns their product. For exam
ple, 4 * 5 returns 20.

If the product of tw
o IN

TEG
ER num

bers is outside the range -32768 to 32767, the values are
converted to SIN

G
LE before the m

ultiplication is perform
ed, and the result is SIN

G
LE. If the

product of tw
o LO

N
G

 num
bers is outside the range -2147483648 to 2147483647, the values are

converted to D
O

U
BLE before the m

ultiplication is perform
ed, and the result is D

O
U

BLE.
If the product of tw

o SIN
G

LE or tw
o D

O
U

BLE values is too close to zero to represent, the
result is 0.0. If the values are too large or too sm

all to represent, the result is infinity or negative
infinity. These print as inf and -inf.

The table below
 show

s how
 infinity and N

aN
 behave for m

ultiplication. N
aN

 stands for “not a
num

ber,” and indicates that the result of an operation is not a valid real num
ber. “A

ny value” refers
to any num

ber, including infinity or N
aN

, that is not listed explicitly in the table.

C
hapter 11: Expressions and Assignm

ents

121

This…
tim

es this…
gives this…

N
aN

any value
N

aN
any value

N
aN

N
aN

inf
any positive value

inf
inf

any negative value
-inf

inf
0

N
aN

any positive value
inf

inf
any negative value

inf
-inf

0
inf

N
aN

-inf
any positive value

-inf
-inf

any negative value
inf

-inf
0

N
aN

any positive value
-inf

-inf
any negative value

-inf
inf

0
-inf

N
aN

D
ivision

The sym
bol for division is /.

D
ivision divides the num

ber to the left of the operator by the num
ber to the right. For

exam
ple, 4.8 / 1.5 returns 3.2.

D
ivision alw

ays returns a SIN
G

LE or D
O

U
BLE value. A

fter binary conversions, if the
operands are IN

TEG
ER or LO

N
G

, the values are converted to SIN
G

LE and the result is SIN
G

LE.
If the result is too close to zero to represent, the result is 0.0. If the values are too large or too

sm
all to represent, the result is infinity or negative infinity. These print as inf and -inf.

The table below
 show

s how
 infinity and N

aN
 behave for division. N

aN
 stands for “not a

num
ber,” and indicates that the result of an operation is not a valid real num

ber. “A
ny value” refers

to any num
ber, including infinity or N

aN
, that is not listed explicitly in the table.

Language R
eference M

anual

122 This…
divided by this…

gives this…
N

aN
any value

N
aN

any value
N

aN
N

aN
any positive value

0
inf

any negative value
0

-inf
inf

any positive value
inf

inf
any negative value

-inf
-inf

any positive value
-inf

-inf
any negative value

inf
any value

inf
0.0

any value
-inf

0.0
inf (+ or -)

inf (+ or -)
N

aN

E
xponentiation

The sym
bol for exponentiation is the carrot character, ^.

Exponentiation raises the num
ber to the left of the operator to the pow

er of the num
ber to the

right. For exam
ple, 3 ^ 4 is 3 * 3 * 3 * 3, or 81.

Exponentiation alw
ays returns a SIN

G
LE or D

O
U

BLE value. A
fter binary conversions, if the

operands are IN
TEG

ER or LO
N

G
, the values are converted to SIN

G
LE and the result is SIN

G
LE.

If the result is too close to zero to represent, the result is 0.0. If the values are too large or too
sm

all to represent, the result is infinity or negative infinity. These print as inf and -inf.
W

hile it is m
athem

atically valid for integer pow
ers, the exponentiation operator in

G
Soft BA

SIC w
ill not raise a negative num

ber to any pow
er. Raising a negative num

ber to any
pow

er alw
ays results in N

aN
 (not a num

ber), w
hich indicates that the result of an operation is not

a valid real num
ber. The reason for this restriction has to do w

ith the w
ay exponentiation is

im
plem

ented for floating-point num
bers. The exponentiation operation a ^ b is equivalent to EX

P
(B * LO

G
 (A

)).
The table below

 show
s how

 infinity and N
aN

 behave for exponentiation. “A
ny value” refers to

any num
ber, including infinity or N

aN
, that is not listed explicitly in the table.

This…
raised to the pow

er…
gives this…

N
aN

any value
N

aN
any value

N
aN

N
aN

any negative value
any value

N
aN

inf (+ or -)
any value

N
aN

any value
inf

inf
any value

-inf
0.0

C
hapter 11: Expressions and Assignm

ents

123

A
N

DThe A
N

D
 operator logically com

bines tw
o argum

ents, returning false (an IN
TEG

ER 0) if
either of the argum

ents is 0, and true (an IN
TEG

ER 1) if both of the argum
ents are not zero. Both

infinity and N
aN

 (not a num
ber, indicating a result that is not a valid num

ber) are treated as true.
A

N
D

 is generally used w
ith other logical argum

ents. For exam
ple, to check to see if the value

A
 lies betw

een LO
W

 and H
IG

H
, you could use the test

IF LOW < A AND A < HIGH THEN CALL PROCESS(A)

This condition first tests to see if LO
W

 is less than A
, then checks to see if A

 is less than H
IG

H
.

If both conditions are true, A
N

D
 returns true and the subroutine PRO

CESS is called. If either
condition is not true, A

N
D

 returns false, and subroutine PRO
CESS is not called.

O
R

The O
R operator logically com

bines tw
o argum

ents, returning false (an IN
TEG

ER 0) if both
of the argum

ents are 0, and true (an IN
TEG

ER 1) if either of the argum
ents are not zero. Both

infinity and N
aN

 (not a num
ber, indicating a result that is not a valid num

ber) are treated as true.
O

R is generally used w
ith other logical argum

ents. For exam
ple, to check to see if a character

is either an uppercase or low
ercase alphabetic character, you could use this test:

A$ = LEFT$(LINE$, 1, 1)
IF A$ >= "A" AND A$ <= "Z" OR A$ >= "a" AND A$ <= "z" THEN
 GETWORD(LINE$)
END IF

This condition first tests to see if A
$ is an uppercase character (A

$ >= "A
" A

N
D

 A
$ <= "Z"), then

checks to see if A
$ is a low

ercase letter (A
$ >= "a" A

N
D

 A
$ <= "z"). If either of these tests is

true, the result of the O
R operation is true, and G

ETW
O

RD
 is executed. If both conditions are

false, the first letter of LIN
E$ is not an alphabetic character, and G

ETW
O

RD
 is not called.

C
om

parison O
perators

Com
parison operators are used to com

pare tw
o values. They return true (an IN

TEG
ER 1) if

the com
parison is true, and false (an IN

TEG
ER 0) if the com

parison is not true. Y
ou can com

pare
num

bers, pointers or strings.
For exam

ple, 4.9 < 5 is true, so the result is an integer 1. “Fred” >= “Sam
” is not true, so the

result is an integer 0.
There are six com

parison operators. The sym
bol, w

hat the operation does, som
e exam

ples and
the result of the com

pare are show
n in the table below

.

Language R
eference M

anual

124 Sym
bol

O
peration

Exam
ple

Result
<

less than
-3 < 6

1
6.1 < 6.1

0
9 < 6

0
<=

less than or equal
-4 <= 4

1
7 <= 7

1
43 <= 16

0
>

greater than
2 > 7

0
-10 > -10

0
-10 > -20

1
>=

greater than or equal
2 >= 8

0
3.14 >= 3.14

1
6.1 >= 6.0

1
=

equal
9 = 9

1
9 = -9

0
<>

not equal
3 <> 3

0
4 <> 3

1

Som
e BA

SICs allow
 the m

ulti-character com
parison operators w

ith the characters in any
order. For exam

ple, >< is allow
ed instead of <>. Spaces are also allow

ed betw
een the characters.

G
Soft BA

SIC supports these conventions, but you should generally use the standard form
 for the

operations show
n in the table.

N
um

bers are com
pared using norm

al rules for arithm
etic. Strings, on the other hand, are

com
pared m

ore or less by alphabetical order. For exam
ple, “Fred” is less than “Sam

”. There are
som

e surprises, though, because the characters are com
pared using their A

SCII character orders.
U

ppercase letters are alw
ays less than low

ercase letters, so “fred” is greater than “Sam
”. The A

SCII
character chart also includes characters other than alphabetical characters. The A

SCII character chart
is show

n in A
ppendix C.

If the first letter of a string m
atches, the com

pare continues w
ith the next letter. For exam

ple,
“Sam

” is less than “Susan”. If all of the characters m
atch, but the strings have different lengths,

the longer string is greater than the shorter string. This m
eans that “Fred” is less than “Frederick”.

O
f course, if all of the characters m

atch and the strings are the sam
e length, the strings are

equal.Pointers are com
pared by com

paring their relative locations in m
em

ory. A
n accurate w

ay of
thinking of pointer com

pares is to think of com
paring P1 and P2 as a tw

o step process: first, the
pointers are converted to long integers, then the resulting integers are com

pared. For exam
ple,

IF P1 < P2 THEN

behaves exactly like

C
hapter 11: Expressions and Assignm

ents

125

IF CLNG(P1) < CLNG(P2) THEN

T
erm

s

The first part of this chapter dealt w
ith expressions from

 the standpoint of traditional
m

athem
atical operations like addition, com

parisons, and parentheses, just as these operations are
generally used in algebra. In algebra, these operations use num

bers or variables as argum
ents. For

exam
ple,

4 + Y

is a perfectly reasonable statem
ent in algebra, and it’s perfectly acceptable in BA

SIC, too.
In BA

SIC, the num
bers that are used by the m

athem
atical operations covered earlier in this

chapter are called term
s, and they can be m

any things besides just num
bers or variables. In each

case, though, the term
 is fully evaluated, giving a resultant num

ber or string, before any of the
operations discussed earlier is perform

ed.

C
onstants

Constants include num
bers and strings. N

um
bers can be integers, long integers, single-

precision floating-point or double-precision floating-point. Integers and long integers can be
w

ritten in either standard decim
al form

 or using hexadecim
al notation.

Chapter 7 describes the form
at and lim

itations for num
eric and string constants.

U
nary M

ath O
perations

Y
ou can use a - operation before any term

. This operation doesn’t require a num
ber to the left.

In affect, the BA
SIC term

-V

w
orks as if you typed

0 - V

W
hen it is used this w

ay, the - operation is technically referred to as unary subtraction to
distinguish it from

 the sim
ilar subtraction operator.

Y
ou’ll generally use this operation to indicate a negative constant or to change the sign of a

variable, as in

X = -4
Y = -X

Language R
eference M

anual

126

but it’s perfectly legal to use the operation in the m
iddle of an expression. For exam

ple, it is legal
to w

rite

Z = X - -4

The effect is exactly the sam
e as

Z = X + 4

Elim
inating the extra operation by using + rather than tw

o - operators saves a sm
all am

ount
of space and tim

e. Still, there are rare cases w
here the program

 m
akes m

ore sense if the natural
operations are left in place, and if clarity is m

ore im
portant than a byte of space and a little speed,

it m
ight m

ake sense to use the unary subtraction operator in the m
iddle of an expression.

There is also a unary operation for +. It rarely m
akes sense to use it in a program

, since it
doesn’t actually do anything but occupy space and tim

e.

N
O

TN
O

T is the unary negation operation for logical values. BA
SIC uses num

bers for logical
values, assigning false the value of 0 and treating any num

ber other than 0 as true. The N
O

T
operation returns true if its operand is false, and false if the operand is true. From

 a strictly
m

athem
atical standpoint, N

O
T returns the IN

TEG
ER 0 if the operand is nonzero, and it returns the

IN
TEG

ER 1 if the operand is zero.
In practice, N

O
T is usually used w

ith logical operations or variables used to store logical
values. A

 com
m

on exam
ple uses a variable D

O
N

E%
 to indicate if a loop has com

pleted its w
ork.

The loop continues until D
O

N
E%

 is true.

DONE% = 0
WHILE NOT DONE%
 HANDLEEVENT
WEND

A
rray Subscripts

Elem
ents of an array are selected by enclosing the array subscripts in parentheses after the

array nam
e. The subscripts are expressions, and can contain functions and other array elem

ents. In
all cases, the subscripts are evaluated first, in left to right order, then the corresponding elem

ent of
the array is extracted.

If an array has m
ore than one subscript, the subscripts are separated by com

m
as.

H
ere is an exam

ple of arrays in an expression that com
putes the length of a m

ultidim
ensional

vector.

C
hapter 11: Expressions and Assignm

ents

127

LENGTH = 0.0;
FOR I% = 1 TO DIMENSIONS
 LENGTH = LENGTH + VECTOR(I%)*VECTOR(I%)
NEXT
LENGTH = SQR(LENGTH)

U
sing

B
A

SIC

Functions

BA
SIC has m

any built in functions. These functions return either a num
ber or string. M

ost of
the functions are described later in this chapter, broken dow

n into sections based on w
hether they

deal prim
arily w

ith strings or num
bers. The functions ERR and ERL, used in error handling, are

described in Chapter 12.
M

ost functions require one or m
ore argum

ents, called param
eters. For exam

ple, the SQ
R

function returns the square root of another num
ber. Taking the square root of 4 is w

ritten like this:

SQR (4)

The param
eter is 4.

This entire sequence is a single term
. The param

eter is an expression, and it can include
anything you see in any other expression, including calls to other BA

SIC functions. The
param

eters are evaluated first, then the function is called, and finally the value returned by the
function is used in the expression.

In som
e rare cases, the actual order in w

hich the param
eters are evaluated can affect the w

ay the
program

 operates. It’s generally best to rethink the program
 so this doesn’t happen. For the rare

cases w
here it m

atters, G
Soft BA

SIC evaluates param
eters in left to right order.

U
sing

FU
N

C
T

IO
N

Functions

Like m
ost m

odern BA
SICs, G

Soft BA
SIC supports m

ulti-line functions. Chapter 17 tells
how

 to create these functions, and gives exam
ples of how

 they are used.
Functions defined w

ith the FU
N

CTIO
N

 statem
ent behave just like built in BA

SIC functions
in an expression.

U
sing D

E
F FN

 Functions

D
EF FN

 functions are a sim
ple w

ay to create a function that only requires one line. Chapter
17 describes creation of D

EF FN
 functions, and gives exam

ples of how
 they are used.

In an expression, a D
EF FN

 function looks alm
ost like a built in BA

SIC function. The big
difference is that the nam

e is preceded by FN
. For exam

ple, if you create a D
EF FN

 function called
LEN

G
TH

 to return the length of a line, an expression that uses the function m
ight look like this:

L = FN LENGTH (X, Y)

Language R
eference M

anual

128 A
s w

ith built-in BA
SIC functions, D

EF FN
 functions are treated as a single term

. The
param

eters are evaluated first in left to right order, then the function is evaluated, and finally the
returned value is used in the expression.

The A
ddress O

perator

The sym
bol for the address operator is @

.
The address operator returns a pointer to a storage location. This pointer is generally used to

set the value of a pointer. For exam
ple, if you need to use a pointer to index into an array, you

could set a pointer to point to the first entry of the array using the address operator like this:

DIM IP AS POINTER TO INTEGER
DIM A(20) AS INTEGER
IP = @A(0)
FOR I% = 0 TO 20
 IP^ = I%
 IP = IP + 1
NEXT
FOR I% = 20 TO 0 STEP -1
 PRINT A(I%)
NEXT

The variable storage location can be any l-value. Loosely, an l-value is any term
 that you

could assign a value to. L-values are described in detail later in this chapter.
The type for the pointer is “PO

IN
TER TO

 type,” w
here type is the type of the value w

hose
address is taken. In the exam

ple above, the type of the pointer returned by @
A

(0) is PO
IN

TER TO
IN

TEG
ER. This value could be assigned to any pointer to an integer, but not to pointers to other

types. For exam
ple, the follow

ing code is not legal.

DIM IP AS POINTER TO INTEGER
DIM A(3) AS SINGLE
IP = @A(3) : REM This is an illegal operation.

T
ype

C
asting

There are som
e situations, particularly w

hen dealing w
ith pointers to toolbox records, w

here
the type of the pointer returned by the address operator or stored in som

e variable doesn’t m
atch the

type of the pointer needed, yet the value is still the one needed. Type casting is used in this case. A
type cast looks like a function call, but the nam

e that appears w
here the function nam

e w
ould be is

the nam
e of a type, and the function argum

ent is a pointer value. The value returned is a pointer to
the sam

e m
em

ory location, but w
ith the new

 type. Putting this to w
ork w

ith the exam
ple from

the address operator, you could turn the illegal assignm
ent into a legal one like this:

C
hapter 11: Expressions and Assignm

ents

129

TYPE IPTR AS POINTER TO INTEGER
DIM IP AS IPTR
DIM A(3) AS SINGLE
IP = IPTR(@A(0))

Type casting can also be used to convert num
bers to pointers. Floating-point values are

truncated to yield a long integer result, and integer values are extended to long integer values. The
result is treated as a pointer. A

 classic exam
ple is accessing the keyboard. Rather than using PEEK

and PO
K

E statem
ents, you can read the A

pple IIG
S keyboard using pointers like this:

PRINT KEY
END

FUNCTION KEY AS STRING
TYPE BYTEPTR AS POINTER TO BYTE
DIM KEYBOARD AS BYTEPTR
DIM STROBE AS BYTEPTR

KEYBOARD = BYTEPTR($00C000)
STROBE = BYTEPTR($00C010)
WHILE KEYBOARD^ < 128
 ! Wait for a keypress
WEND
KEY = CHR$ (KEYBOARD^ - 128)
STROBE^ = 0
END FUNCTION

Type casting is only supported for converting num
eric values to pointers and for converting

one pointer type to another pointer type. See CLN
G

 for a w
ay to convert a pointer to a num

ber.

D
ereferencing

Pointers

In m
ost cases, w

hen a pointer is used in an expression, it’s not the pointer value that’s needed,
but the value the pointer points to. To get the value of the pointer, use the nam

e of the pointer.
To get the value the pointer points to, use the nam

e of the pointer follow
ed by the ^ character.

For exam
ple, to assign the address of a value to a pointer, you w

ant to change the pointer
itself. In this case, you use the pointer nam

e w
ithout the ^ character. To change the value the

pointer points to, the ^ character is added, as this short exam
ple show

s.

DIM IP AS POINTER TO INTEGER
IP = @I%
IP^ = 4
PRINT I%

Language R
eference M

anual

130

A
ccessing R

ecord Fields

The . operator is used to extract a field from
 a record. It appears after the nam

e of the record,
and before the nam

e of the field.
The field can be an array, pointer, or another record. In that case, the field is extracted from

 the
record first, then the array subscript, pointer dereference, or subsequent field dereference is handled.
The record itself can also be a pointer or an array. In that case, the array access or pointer
dereference appears im

m
ediately after the record nam

e, just before the . operator.
H

ere are som
e exam

ples of legal field accessing. These have no particular use; they are just
intended to show

 how
 the pointer dereference operator is used in conjunction w

ith array and pointer
operators.

Snippet
TYPE POINT3D
 X
 Y
 Z
END TYPE
TYPE CUBE
 CORNER1 AS POINT3D
 CORNER2 AS POINT3D
END TYPE
TYPE PPTR AS POINTER TO POINT3D
DIM P AS POINT3D
DIM PP AS PPTR
DIM POINTS(5) AS POINT3D
DIM C AS CUBE

P.X = 1.2
PPTR = @P
PPTR^.Y = PPTR^.X * 2.0
P.Z = P.X * P.Y
POINTS(0) = P
POINTS(1).Y = POINTS(0).Y
C.CORNER1.X = 3.5

L
-V

alues

In a few
 places in this m

anual, you w
ill see a reference to som

ething called an l-value. This is
a rather descriptive term

 borrow
ed from

 the C language. It m
eans any expression that can appear on

the left side of an equal sign in a LET statem
ent. In practice, it’s any expression that gives the

location of a value in m
em

ory.
The rem

ainder of this section gives a very technical description of just w
hat is and is not an l-

value. W
hether you w

ade through this description to get a full understanding of l-values or not,
keep in m

ind that the concept is sim
pler than the description. A

n l-value is any expression that
gives a place w

here a value is stored in m
em

ory.

C
hapter 11: Expressions and Assignm

ents

131

L-V
alues are required for the location to store a value w

ith a LET statem
ent, for som

e kinds of
param

eters passed to subroutines and procedures, and as argum
ents for the address operator (@

).
The sim

plest l-value is the nam
e of a variable. Constants, such as 4.5, are not l-values. Think

of it this w
ay: you can store 7.1 in the variable X

, but you can’t store 7.1 in the num
ber 4.5.

A
rrays are a series of l-values, and an elem

ent of an array is an l-value. For exam
ple, A

(X
) is

an l-value.
Fields in a record are l-values. For the record P in

TYPE POINT
 X AS SINGLE
 Y AS SINGLE
END TYPE
DIM P AS POINT

P.X
 is an l-value. So is P itself—

you can store one record into another, as long as they have the
sam

e record type.
Both a pointer and the value it points to are l-values. Building on the point record, PPTR in

DIM PPTR AS POINTER TO POINT

is an l-value; you can store a pointer value in a pointer.
Y

ou can also build l-values from
 com

binations of these operators. PPTR^.X
 is also an l-

value, since both pointers and fields from
 a record are l-values.

A
ll other expression operations are not l-values. Even som

ething as innocent as enclosing a
value in parentheses, using a type cast, or putting a + operation in front of an l-value yields an
expression that is not an l-value. For exam

ple,

LET +X% = 4 : ! Illegal!

is not a legal BA
SIC statem

ent, since the expression to the left of the = operator in a LET
statem

ent m
ust be an l-value.

The A
ssignm

ent Statem
ent

[

L
E
T

]

l
-
v
a
l
u
e

'
=
'

e
x
p
r
e
s
s
i
o
n

The expression to the right of the = operation is evaluated and stored in the location given by
the l-value.

LET is optional, and is alm
ost alw

ays om
itted from

 BA
SIC program

s. It has been part of the
language since the original im

plem
entation, though, and has been kept by virtually every

im
plem

entation so old program
s w

ill still w
ork.

Language R
eference M

anual

132 If the expression yields a num
ber of any kind, and the l-value is a different kind of num

ber, the
num

ber is converted to the proper type before it is stored. If the expression is a floating-point
value and the l-value is an IN

TEG
ER or LO

N
G

 value, the num
ber is truncated to the largest

integer that is less than or equal to the value of the expression. For exam
ple, after

I% = 3.9
PRINT I%

prints 3.
If you assign a value to an IN

TEG
ER or LO

N
G

 that is too long for the variable, a m
ath error

is generated. For exam
ple,

R = 40000.0
I% = R

generates an error.
If you assign a D

O
U

BLE to a SIN
G

LE, and the D
O

U
BLE value is too large to be represented

as a SIN
G

LE, the result is infinity. The lines

D# = 1D40
D = D#
PRINT D#, D

prints1.0000000E40 inf

In addition to sim
ple num

eric values, you can also assign strings, pointers and records. The
types m

ust m
atch exactly, though. Y

ou can't assign a num
eric value to any of these values, nor

can you assign one to another.
For exam

ple, w
hile you can assign a string to another string, you cannot assign the num

ber
4.5 to a string (or vice versa).

For pointers and records, the type m
ust m

atch, too. To assign one pointer to another, both
pointers m

ust point to the sam
e thing (or you m

ust use a type cast). To assign one record to
another, both records m

ust be the sam
e kind of record.

The snippet show
s a few

 exam
ples that you can experim

ent w
ith to see how

 this w
orks.

Snippet
DIM P AS POINT, R AS POINT
P.H = 3
P.V = 6
R = P
PRINT R.H, R.V

C
hapter 11: Expressions and Assignm

ents

133

S$ = "Hello, world."
H$ = LEFT$(S$, 5)
PRINT H$
DIM SP AS POINTER TO STRING, SP2 AS POINTER TO STRING
SP = @S$
SP2 = SP
PRINT SP2^

M
athem

atical Functions

A
B
S

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the absolute value of the argum
ent.

The argum
ent m

ust be a num
eric type. The type of the result is the sam

e as the type of the
argum

ent. For exam
ple, if the argum

ent is SIN
G

LE, the result is SIN
G

LE; if the argum
ent is

IN
TEG

ER, so is the result.
The absolute value is the sam

e as the argum
ent if the argum

ent is zero or positive, and the
negative of the argum

ent if the argum
ent is negative. For exam

ple, A
BS(4) is 4, and so is A

BS(-
4).

The absolute value of negative infinity is infinity. The absolute value of N
aN

 is N
aN

.

A
T
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the arc tangent of the argum
ent. The angle is returned in radians.

If the argum
ent is D

O
U

BLE, the result is also D
O

U
BLE. For SIN

G
LE, LO

N
G

 and
IN

TEG
ER argum

ents, the result is SIN
G

LE.
The arc tangent is the num

ber w
hose tangent is the sam

e as the argum
ent. For any particular

argum
ent, there are actually an infinite num

ber of answ
ers. For exam

ple, the tangent of π/4
(roughly 0.785398) is 1, so the arc tangent of 1.0 is approxim

ately 0.785398. A
s w

ith any angle,
though, adding 2π to the angle gives an equivalent angle.

The result of the A
TN

 function is the angle betw
een

the X
 axis and a line from

 the origin and a point in the
X

-Y
 plane. The value of the argum

ent is the Y
coordinate of the point divided by the X

 coordinate.
The A

TN
 function alw

ays returns a result betw
een

0.0 and π/2 for positive argum
ents, and 0.0 and -π/2 for

negative values. It can’t tell if a positive num
ber should

be a point w
here both X

 and Y
 are positive, or a reflected

angle w
here both X

 and Y
 are negative. Both coordinates are needed to return a value from

 0 to 2π;
the code snippet does double duty by show

ing a function that returns the arc tangent over the entire
range of angles from

 0 to 2π, as w
ell as show

ing the A
TN

 function in action.

X, Yθ
θ = ATN

(Y/X)

Language R
eference M

anual

134

Snippet
FUNCTION ATN2(X, Y) AS SINGLE
PI = 3.1415927

IF X = 0 THEN
 IF Y >= 0 THEN
 ATN2 = PI / 2.0
 ELSE
 ATN2 = - PI / 2.0
 END IF
ELSE
 A = ATN (ABS (Y / X))
 IF X >= 0 THEN
 IF Y >= 0 THEN
 ATN2 = A
 ELSE
 ATN2 = 2.0 * PI - A
 END IF
 ELSE
 IF Y >= 0 THEN
 ATN2 = PI - A
 ELSE
 ATN2 = PI + A
 END IF
 END IF
END IF
END FUNCTION

C
D
B
L

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts any num
eric argum

ent or pointer argum
ent to a D

O
U

BLE value.
CD

BL is generally used in an expression to force the calculation to be perform
ed using

double-precision floating-point operations. For exam
ple, if you are about to m

ultiply tw
o real

values, and w
ould like to m

aintain as m
any significant digits as possible, you could use CD

BL to
force one of the argum

ents to D
O

U
BLE before doing the m

ultiply, like this:

PRODUCT# = CDBL(X) * Y

This gives a different result from
 the statem

ent

PRODUCT# = X * Y

W
ithout CD

BL, the calculation is perform
ed using a single-precision m

ultiply, truncating the
result to approxim

ately 7 significant decim
al digits. This result is extended to a double-precision

value. U
sing CD

BL, X
 is extended to double-precision im

m
ediately. This also forces Y

 to double-
precision—

see Binary Conversions, earlier in this chapter, for the com
plete explanation of w

hy.
The m

ultiplication produces a result that has about 14 significant decim
al digits.

C
hapter 11: Expressions and Assignm

ents

135

A
t first glance, it m

ight seem
 like these extra digits have no m

eaning. In fact, there are m
any

num
erically sensitive algorithm

s that depend on exactly this kind of extra precision at just the
right point in the calculation. A

nd the extra digits are real in at least one sense—
com

puter based
m

ultiplication alw
ays doubles the num

ber of significant digits, but these are generally discarded
before you see the result.

Y
ou don’t need this function w

hen assigning a value to a D
O

U
BLE variable. Conversion

betw
een num

eric types is generally autom
atic. CD

BL is only needed for extraordinary situations
like the one described, w

here the precision of a num
ber m

ust be changed w
ithin a calculation.

CD
BL can also be used to convert a pointer to an equivalent num

eric value, but it generally
isn't used this w

ay. A
 round-off error converting the floating-point value back to a pointer could

easily end up in a pointer value that is off by one byte from
 the expected value. In m

ost cases, it
m

akes m
ore sense to use CLN

G
 to convert a pointer to a num

ber, and to use integer expressions
to m

anipulate pointer values.

C
I
N
T

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts any num
eric argum

ent or pointer argum
ent to an IN

TEG
ER value.

CIN
T is frequently used in calculations that w

ill end up producing an integer, but use
interm

ediate floating-point values. For exam
ple, to calculate a new

 position for a graph, you
m

ight use an equation like

H% = H1% + D * SIN(THETA)

U
sing CIN

T, you can force the SIN
G

LE result to an IN
TEG

ER value im
m

ediately, like this:

H% = H1% + CINT(D * SIN(THETA))

The result is the sam
e, but integer addition is m

uch faster than floating-point addition. Forcing the
SIN

G
LE value to an integer allow

s the use of the faster integer addition.
W

hen the argum
ent is a floating-point num

ber, CIN
T truncates the value to convert to an

integer. The result is the largest integer that is less than or equal to the floating-point value. For
exam

ple, CIN
T(4.6) gives 4, w

hile CIN
T(-4.6) gives -5.

Converting a num
ber that is too large to an integer gives an error. The valid range for integers

is -32768 to 32767.
CIN

T can also be used to convert a pointer to an equivalent integer value, but it generally isn't
used this w

ay. Pointers can, and usually do, have values m
uch larger than 32767, w

hich is the
largest value an integer can hold. In m

ost cases, it m
akes m

ore sense to use CLN
G

 to convert a
pointer to a num

ber.

C
L
N
G

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts any num
eric argum

ent or pointer argum
ent to a LO

N
G

 value.

Language R
eference M

anual

136 CLN
G

 is som
etim

es used to convert IN
TEG

ER values to LO
N

G
, extending the precision of a

calculation. Y
ou m

ight do this to avoid the autom
atic conversion to SIN

G
LE that occurs w

hen an
integer operation overflow

s. For exam
ple, in the expression

I = 30000
L& = I + I

you know
 the integer value w

ill overflow
. In this case, BA

SIC w
ill try the integer operation first.

W
hen it overflow

s, both argum
ents w

ill be converted to SIN
G

LE, an operation that takes a great
deal m

ore com
puter tim

e than a LO
N

G
 addition, then a SIN

G
LE addition is perform

ed. The
SIN

G
LE addition takes still m

ore tim
e. Finally, the result is converted to a LO

N
G

, w
hich takes

even m
ore tim

e.
It is vastly m

ore efficient in term
s of execution tim

e to force the calculation to be perform
ed

as a LO
N

G
 addition by converting both argum

ents to LO
N

G
 right aw

ay. Y
ou can do this w

ith
CLN

G
:

I = 30000
L& = CLNG(I) + I

CLN
G

 can also be used to convert floating-point argum
ents to LO

N
G

 for faster calculations
that involve both LO

N
G

 and floating-point values. See CIN
T for an exam

ple based on this idea.
W

hen the argum
ent is a floating-point num

ber, CLN
G

 truncates the value to convert to an
integer. The result is the largest integer that is less than or equal to the floating-point value. For
exam

ple, CLN
G

(4.6) gives 4, w
hile CLN

G
(-4.6) gives -5.

Converting a num
ber that is too large to fit into a long integer gives an error. The valid range

for long integers is -2147483648 to 2147483647.
CLN

G
 is also used to convert pointers to num

bers. A
 long value is large enough to hold any

legal pointer value, so you can safely convert the pointer to a num
ber, m

anipulate the num
ber, and

perhaps convert back to a pointer using a type cast.

C
O
S

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the cosine of the argum
ent. The argum

ent is expressed in radians.
If the argum

ent is D
O

U
BLE, the result is also D

O
U

BLE. For SIN
G

LE, LO
N

G
 and

IN
TEG

ER argum
ents, the result is SIN

G
LE.

The CO
S function is not accurate for very large angles. By very large angles, w

e m
ean angles

larger than about 1300 radians for SIN
G

LE argum
ents, and 2E8 radians for D

O
U

BLE argum
ents,

although the accuracy drops off gradually as the angle increases. For this reason, it is best to keep
angles betw

een -2π and 2π w
henever possible. For very large argum

ents, CO
S alw

ays returns 0.0.
Refer to any book that covers trigonom

etry for a discussion of the cosine.

Snippet
X = LENGTH * COS(THETA)

C
hapter 11: Expressions and Assignm

ents

137

C
S
N
G

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts any num
eric argum

ent or pointer argum
ent to a SIN

G
LE value.

See CD
BL and CIN

T for som
e thoughts on w

hen this function m
ight be useful. K

eep in m
ind

that SIN
G

LE m
ath operations take significantly less tim

e than their D
O

U
BLE counterparts, so

reducing a D
O

U
BLE value to SIN

G
LE at an appropriate place in an equation can often speed a

program
 up significantly, in som

e cases w
ith little or no loss of precision.

CSN
G

 can also be used to convert a pointer to an equivalent num
eric value, but it generally

isn't used this w
ay. A

 round-off error converting the floating-point value back to a pointer could
easily end up in a pointer value that is off by one byte from

 the expected value. In m
ost cases, it

m
akes m

ore sense to use CLN
G

 to convert a pointer to a num
ber, and to use integer expressions

to m
anipulate pointer values.

E
X
P

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the natural exponent of the argum
ent.

If the argum
ent is D

O
U

BLE, the result is also D
O

U
BLE. For SIN

G
LE, LO

N
G

 and
IN

TEG
ER argum

ents, the result is SIN
G

LE.
The natural exponent is the result of raising e to a pow

er. The num
ber know

n as e is
approxim

ately 2.71828. The exponent is also the inverse of the natural logarithm
, LO

G
. For

values that are valid for both functions, EX
P(LO

G
(X

)) alw
ays returns X

.
The EX

P function is frequently used to m
anipulate pow

ers, such as interest rates. For
exam

ple, if you earn 4%
 per year on a passbook savings account for 10 years, the value of your

initial investm
ent M

 is given by

V = M * EXP(10.0 * LOG(1.04))

Snippet
FUNCTION POWER10 (X)
! Returns 10 raised to a power.
POWER10 = EXP(X * LOG(10.0))
END FUNCTION

I
N
T

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the largest integer value that is less than or equal to the argum
ent.

For IN
TEG

ER and LO
N

G
 argum

ents, IN
T returns the argum

ent. The value returned is still an
IN

TEG
ER for IN

TEG
ER argum

ents, and LO
N

G
 for LO

N
G

 argum
ents.

For SIN
G

LE and D
O

U
BLE argum

ents, the value returned is still SIN
G

LE or D
O

U
BLE, but

any fraction part is lost. The value returned is the largest integer that is less than or equal to the
argum

ent.
The table show

s som
e results for various floating-point argum

ents.

Language R
eference M

anual

138 expression
result

INT(5.4)
5.0

INT(3.99)
3.0

INT(-0.1)
-1.0

INT(-10.9)
-11.0

L
O
G

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the natural logarithm
 of the argum

ent.
If the argum

ent is D
O

U
BLE, the result is also D

O
U

BLE. For SIN
G

LE, LO
N

G
 and

IN
TEG

ER argum
ents, the result is SIN

G
LE.

The natural logarithm
 is not defined for zero or negative argum

ents. If the argum
ent is less

than or equal to zero, LO
G

 returns N
aN

.

Snippet
FUNCTION LOG10 (X)
! Returns the base 10 logarithm of X
LOG10 = LOG (X) / LOG (10.0)
END FUNCTION

R
N
D

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

RN
D

 returns a pseudo-random
 num

ber greater than or equal to zero and less than 1.0. The
value returned is alw

ays SIN
G

LE.
W

hile the rest of this discussion refers to the values RN
D

 returns as random
 num

bers, they
really aren’t random

. Pseudo-random
 num

bers is the technical term
 that refers to functions like

RN
D

, w
hich return sequences of num

bers w
ith no apparent pattern. O

f course, there is a
pattern—

but it’s a pattern that can’t be detected by a series of tests for random
ness. The result is a

series of num
bers that can be used for tasks like shuffling a deck of cards, and that w

ill produce
results as good as shuffling by hand.

Each tim
e RN

D
 returns a value, the value is com

puted using a form
ula, and is based on the

last value returned. The original value determ
ines the sequence of num

bers you get. This original
value is called the seed. There is a w

ay to specify the seed for RN
D

, w
hich w

e’ll look at in a
m

om
ent. In m

ost cases, though, you should let RN
D

 pick its ow
n seed. It bases the seed on the

current date and tim
e.

There are three w
ays to call RN

D
. If the argum

ent is a positive value, RN
D

 returns a random
num

ber. Subsequent calls return other seem
ingly unrelated random

 num
bers.

If you call RN
D

 w
ith an argum

ent of zero, it returns the sam
e value it returned on the

previous call. This is a useful shortcut w
hen you need to use the sam

e random
 value in several

places in an equation.
If you call RN

D
 w

ith a negative argum
ent, the argum

ent is used as a new
 seed for the random

num
ber generator. A

fter producing a series of num
bers, calling RN

D
 w

ith the sam
e negative

argum
ent w

ill cause RN
D

 to regenerate the sam
e sequence of num

bers. This is a very useful
feature w

hen you are debugging a program
 that uses RN

D
: By tem

porarily placing a line like

C
hapter 11: Expressions and Assignm

ents

139

R = RND(-1.0)

at the start of the program
, it w

ill alw
ays generate the sam

e series of num
bers, m

aking bugs easier
to reproduce.

Snippet
! Print 10 random numbers
FOR I = 1 TO 10
 PRINT RND(1.0)
NEXT
! Print 10 different random numbers based on our seed.
PRINT RND(-1.0)
FOR I = 1 TO 9
 PRINT RND(1.0)
NEXT
! Print the same 10 random numbers again.
PRINT RND(-1.0)
FOR I = 1 TO 9
 PRINT RND(1.0)
NEXT

S
G
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns -1, 0 or 1, depending on the argum
ent. If the argum

ent is zero, SG
N

 returns 0. If the
argum

ent is less than zero, SG
N

 returns -1. If the argum
ent is greater than zero, SG

N
 returns 1.

The type of the result is the sam
e as the type of the argum

ent. For exam
ple, if the argum

ent
is SIN

G
LE, the result is SIN

G
LE; if the argum

ent is IN
TEG

ER, so is the result.

Snippet
! Jump to various spots based on the sign of the number
ON 2 + SGN(X) GOTO 10, 20, 30

S
I
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the sine of the argum
ent. The argum

ent is expressed in radians.
If the argum

ent is D
O

U
BLE, the result is also D

O
U

BLE. For SIN
G

LE, LO
N

G
 and

IN
TEG

ER argum
ents, the result is SIN

G
LE.

The SIN
 function is not accurate for very large angles. By very large angles, w

e m
ean angles

larger than about 1300 radians for SIN
G

LE argum
ents, and 2E8 radians for D

O
U

BLE argum
ents,

although the accuracy drops off gradually as the angle increases. For this reason, it is best to keep
angles betw

een -2π and 2π w
henever possible. For very large argum

ents, SIN
 alw

ays returns 0.0.
Refer to any book that covers trigonom

etry for a discussion of the sine.

Snippet
Y = LENGTH * SIN(THETA)

Language R
eference M

anual

140

S
Q
R

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the square root of the argum
ent.

If the argum
ent is D

O
U

BLE, the result is also D
O

U
BLE. For SIN

G
LE, LO

N
G

 and
IN

TEG
ER argum

ents, the result is SIN
G

LE.
The square root of a num

ber is the num
ber that, m

ultiplied by itself, gives the argum
ent. For

exam
ple, the square root of 4 is 2, since 2 * 2 is 4.

The square root function is not defined for negative num
bers, and returns N

aN
 if the argum

ent
is negative.

Snippet
HYPOTENUSE = SQR(X * X + Y * Y)

T
A
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the tangent of an angle. The argum
ent is expressed in radians.

If the argum
ent is D

O
U

BLE, the result is also D
O

U
BLE. For SIN

G
LE, LO

N
G

 and
IN

TEG
ER argum

ents, the result is SIN
G

LE.
The TA

N
 function is not accurate for very large angles. By very large angles, w

e m
ean angles

larger than about 1300 radians for SIN
G

LE argum
ents, and 2E8 radians for D

O
U

BLE argum
ents,

although the accuracy drops off gradually as the angle increases. For this reason, it is best to keep
angles betw

een -2π and 2π w
henever possible. For very large argum

ents, TA
N

 alw
ays returns

N
aN

.The tangent tends tow
ard infinity as the argum

ent approaches π/2. If the argum
ent gets too

close to π/2, TA
N

 returns inf. If the argum
ent gets too close to -π/2, the result w

ill be -inf.
Refer to any book that covers trigonom

etry for a discussion of the tangent.

Snippet
ALTITUDE = BASE_LINE * TAN(THETA)

String Functions

A
S
C

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the A
SCII value for the first character in the string. If there are no characters in the

string, A
SC returns 0.

Characters are represented internally as a num
ber. For exam

ple, the character A
 is stored as the

num
ber 65. The A

SC function returns this num
ber.

See A
ppendix C for a com

plete list of the A
SCII character set, as w

ell as the extended A
pple

character set.
See also CH

R$, w
hich returns the A

SCII character corresponding to a given num
ber.

Snippet

C
hapter 11: Expressions and Assignm

ents

141

FUNCTION TOUPPER (S$) AS STRING
! Return the string as uppercase letters
S2$ = ""
WHILE LEN(S$) > 0
 C$ = LEFT$(S$, 1)
 S$ = RIGHT$(S$, LEN(S$) - 1)
 IF (C$ >= "a") AND (C$ <= "z") THEN
 C$ = CHR$ (ASC ("A") + ASC (C$) - ASC ("a"))
 END IF
 S2$ = S2$ + C$
WEND
TOUPPER = S2$
END FUNCTION

C
H
R
$

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the A
SCII character for a given num

ber. The character is returned as a string of length
1.

The expression value is evaluated and converted to an IN
TEG

ER by truncation. See U
nary

Conversions, earlier in this chapter, for a detailed description of this process.
Characters are represented internally as a num

ber. For exam
ple, the character A

 is stored as the
num

ber 65. G
iven the A

SCII num
ber, CH

R$ returns the character.
The character value for 0 is used internally to m

ark the end of a string. CH
R$(0) returns a

string of length 0.
See A

ppendix C for a com
plete list of the A

SCII character set, as w
ell as the extended A

pple
character set.

See also A
SC, w

hich returns the A
SCII num

ber for the first character of a string. There is
also a code sam

ple show
ing CH

R$ and A
SC used together.

F
R
E

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Forces string garbage collection, then returns the num
ber of bytes of free space available for

strings, variables and local variable space for subroutines. The num
ber of bytes of free space are

returned as a long integer.
The expression value should be zero to allow

 for possible expansion, but is actually ignored.
FRE can be used to determ

ine the am
ount of m

em
ory available in a program

, but is m
ore

often used to force garbage collection.
See A

ppendix F for a com
plete discussion of G

Soft BA
SIC’s m

em
ory use and for a

description of garbage collection.
See also SETM

EM
. SETM

EM
 is used to change the am

ount of space available for variables.

Snippet
RAM& = FRE(0)

L
E
F
T
$

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the leftm
ost characters in a string.

Language R
eference M

anual

142 The second param
eter is evaluated and converted to an IN

TEG
ER by truncation. See U

nary
C

onversions, earlier in this chapter, for a detailed description of this process. If this value is
negative or larger than the num

ber of characters in the string that is passed as the first param
eter,

LEFT$ returns the string. If this value is positive and less than the num
ber of characters in the

string, the specified num
ber of characters is returned, beginning w

ith the first character of the
string.O

ne use of LEFT$ is to peel characters from
 a string, processing them

 one by one. See the
code snippet for A

SC for an exam
ple.

Snippet
! Remove the first word from S$.
I% = 1
WHILE (I% < LEN(S$)) AND (MID$(S$, I%, 1) <> " ")
 I% = I% + 1
WEND
W$ = LEFT$(S$, I% - 1)

L
E
N

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the num
ber of characters in a string. The term

inating null character that m
arks the end

of the string is not a part of the string, and is not counted by LEN
. The num

ber of characters is
returned as an IN

TEG
ER.

G
Soft BA

SIC uses the character CH
R$(0) to m

ark the end of a string. If you intentionally
im

bed this character in a string, LEN
 w

ill return the num
ber of characters appearing before this

character.

Snippet
L% = LEN(S$)

M
I
D
$

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'Returns characters from

 any position in a string.
The last tw

o expressions give the index of the first character to return, counting from
 one, and

the num
ber of characters to return, respectively. Both of these values are converted to IN

TEG
ER

by truncating before being used. See U
nary Conversions, earlier in this chapter, for a detailed

description of this process.
For exam

ple,

MID$ ("Hello, world.", 8, 5)

returns the string "w
orld".

If the index is larger than the num
ber of characters in the string, M

ID
$ returns the em

pty
string. For exam

ple,

MID$ ("Hello, world.", 14, 5)

C
hapter 11: Expressions and Assignm

ents

143

returns the string "", a string w
ith no characters.

If the num
ber of characters from

 the index to the end of the string is sm
aller than the num

ber
of characters specified by the last param

eter, all available characters from
 the index character to the

end of the string are returned. For exam
ple,

MID$ ("Hello, world.", 8, 20)

returns the string "w
orld.".

R
I
G
H
T
$

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the rightm
ost characters in a string.

The second param
eter is evaluated and converted to an IN

TEG
ER by truncation. See U

nary
C

onversions, earlier in this chapter, for a detailed description of this process. If this value is
negative or larger than the num

ber of characters in the string that is passed as the first param
eter,

RIG
H

T$ returns the string. If this value is less than the num
ber of characters in the string, the

specified num
ber of characters is returned from

 the end of the string.
For exam

ple,

RIGHT$("Testing, 1, 2, 3", 7)

returns the string "1, 2, 3", w
hile

RIGHT$("Testing, 1, 2, 3", 50)

returns the entire input string.
O

ne use of RIG
H

T$ is to return w
hat’s left of a string after one character or a sequence of

characters has been peeled off of the start of the string. See the code snippet for A
SC for an

exam
ple.

S
T
R
$

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

STR$ accepts any num
ber and returns the num

ber as a string. The form
at m

atches the form
at

the PRIN
T statem

ent uses to print strings.
The actual value returned depends to som

e extent on the type of the num
ber. For exam

ple, the
SIN

G
LE value returned by STR$(1000000000.0) w

ill be returned as the string "1.000000E9",
w

hile the sam
e value returned as a LO

N
G

, as in STR$(CLN
G

(1000000000.0)) returns the string
"1000000000".

See PRIN
T for a description of the form

atting rules.

V
A
L

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
)
'

V
A

L accepts any string and returns the equivalent num
ber.

Language R
eference M

anual

144 V
A

L exam
ines the string beginning w

ith the first character. It form
s the largest possible

string that is a valid num
ber, then converts this value to a D

O
U

BLE value. Leading signs, decim
al

points and exponents are allow
ed, but no leading or im

bedded spaces can be used. The exponent
character can be E, e, D

 or d. A
llow

ing D
 or d for the exponent character is consistent w

ith the
syntax for double-precision constants in the program

, although it m
akes no difference in the V

A
L

function, since all results are double-precision.
If there are no characters in the string, or if the first character cannot be a part of a num

ber,
V

A
L returns 0.0.

This function...
...returns this num

ber.
VAL("4")

4.0
VAL("-1e45")

-1E45
VAL("1d2")

100.0
VAL(" 4")

0.0
VAL("7th")

7.0

145

C
hapter 12 – C

ontrol Statem
ents

This chapter describes the statem
ents that control the order statem

ents are executed, and in
som

e cases, w
hether a statem

ent is executed or not.

L
ooping

D
O

[

W
H
I
L
E

e
x
p
r
e
s
s
i
o
n

|

U
N
T
I
L

e
x
p
r
e
s
s
i
o
n

]

[

s
t
a
t
e
m
e
n
t

]
*

L
O
O
P

[

W
H
I
L
E

e
x
p
r
e
s
s
i
o
n

|

U
N
T
I
L

e
x
p
r
e
s
s
i
o
n

]

D
O

-LO
O

P loops are a pow
erful looping construct that you can use any tim

e you need to
perform

 an action m
ultiple tim

es, but the num
ber of tim

es you need to loop can’t be calculated in
advance. It is typically used to loop w

hile som
e condition is true.

The D
O

-LO
O

P structure is a very flexible loop statem
ent that replaces several sim

pler
statem

ents in other program
m

ing languages, adding capability at the sam
e tim

e. In fact, the
W

H
ILE-W

EN
D

 loop is a special case of the D
O

-LO
O

P loop. This flexibly com
es at a price,

though: It’s tough to grasp how
 the statem

ent w
orks until you think it through carefully.

To understand this loop, w
e’ll exam

ine its four sim
plest parts first, then see how

 they can be
com

bined.
The first form

 of the D
O

-LO
O

P is equivalent to the W
H

ILE-W
EN

D
. U

sing the sam
e exam

ple
from

 the description of W
H

ILE-W
EN

D
, the D

O
 version looks like this:

DO WHILE NOT EOF (1)
 INPUT #1, A$
 PRINT A$
LOOP

This loop starts by checking a condition to see if it is true; in this case, w
e’re checking to see

if the end of a file has been reached. If the condition is true—
if the end of file has not been

reached—
the statem

ents betw
een D

O
 and LO

O
P are executed, then the condition is tested again.

This process repeats until the end of file is reached, at w
hich tim

e the loop is finished and the
statem

ent after LO
O

P is executed.
In this exam

ple, w
e looped w

hile w
e w

ere not at the end of the file. It’s a bit m
ore natural to

think of this loop as looping until w
e get to the end of the file, and that’s how

 the second version
of this loop w

orks. In BA
SIC, this condition looks like this:

Language R
eference M

anual

146

DO UNTIL EOF (1)
 INPUT #1, A$
 PRINT A$
LOOP

The m
ain advantage of this form

 of the D
O

 statem
ent is the natural w

ay the condition is
expressed. Leaving out the N

O
T m

akes the statem
ent easier to read and easier to think about. There

is also a very slight speed im
provem

ent, and the program
 is shorter by one byte, but these

considerations are m
inor com

pared to m
aking the statem

ent easier to read and understand: Program
s

that are easy to read and understand are easier to w
rite, easier to debug, and easier to m

odify than
program

s that are w
ritten in an unnatural w

ay.
In this situation, w

e needed to test the condition before the loop started; after all, it is possible
that the file m

ight be em
pty, so w

e start off at the end of the file, and never w
ant to execute the

contents of the loop. There are also situations w
here you know

 the loop m
ust be executed at least

once. M
any tim

es these situations arise w
hen the value to be tested doesn’t even exist until the

loop executes at least one tim
e. In these situations, the test needs to be perform

ed after the
statem

ents in the body of the loop have executed once. That’s exactly w
hat the next tw

o versions
of this loop do.

A
 classic exam

ple is the event loop in a desktop program
. D

esktop program
s start by clearing

the event queue. They then loop, w
aiting until som

ething interesting happens, handling these
events as they occur. The event loop term

inates w
hen the program

 is com
plete—

signaled by som
e

subroutine setting an exit variable to true.
A

 desktop program
 event loop m

ight look som
ething like this:

DONE = 0
DO GETEVENT
 HANDLEEVENT
LOOP UNTIL DONE

A
t som

e point, the person using the program
 w

ill do som
ething like pulling dow

n the File
m

enu and selecting Q
uit. The subroutine that handles this event cleans up any open w

indow
s, then

sets D
O

N
E to som

e nonzero value and returns. The loop finishes, and the program
 quits.

A
s w

ith the D
O

 statem
ent w

ith the condition at the top, you can use W
H

ILE to reverse the
sense of the loop. The loop w

ould do exactly the sam
e thing if you coded it as

DONE = 0
DO GETEVENT
 HANDLEEVENT
LOOP WHILE NOT DONE

It is possible to use a condition both at the top and bottom
 of a loop. For exam

ple, you could
w

rite a loop to cheer K
aren up like this:

C
hapter 12: C

ontrol Statem
ents

147

DO UNTIL KAREN.FEELING$ = "HAPPY"
 THROWPARTY
LOOP UNTIL BROKE

This loop starts off checking to see if K
aren is happy. If so, nothing is done. If K

aren is not
happy, the body of the loop executes. O

nce it executes, w
e check to see if there is any m

oney left.
If not, the loop is finished. If there is m

oney left, control returns to the top of the loop, w
here w

e
check to see how

 K
aren is doing. The process repeats until K

aren is happy or w
e go broke.

W
hile this is legal, it’s usually easier to understand a loop that keeps all of the conditions

together. This loop does pretty m
uch the sam

e thing as the first one.

DO UNTIL (KAREN.FEELING$ = "HAPPY") OR BROKE
 THROWPARTY
LOOP

The difference is that w
e check to see if w

e’re broke first—
probably a good idea in this case. If

you really have tw
o conditions, and one m

ust be tested before the loop starts, but the other can’t
be, splitting them

 up can m
ake a program

 shorter and m
ore efficient. If the conditions can be put

together, though, it’s a good idea to do so.
It is very poor form

, but technically legal, to jum
p into or out of a D

O
 loop. It is not legal,

and w
ill cause an error, to jum

p into a D
O

 loop in such a w
ay that the D

O
 statem

ent is not
encountered before the LO

O
P statem

ent. It is also illegal to jum
p out of a D

O
 loop w

ithout
com

pleting it; this leaves incom
plete D

O
 statem

ents in an internal stack, and w
ill generate an error

w
hen you exit the program

. It can also cause the stack to overflow
, generating a different m

essage.
Y

ou can nest D
O

 statem
ents and other loop statem

ents up to 10 levels deep. This is not a
lim

it on the total num
ber of looping statem

ents, just on how
 m

any can be nested inside other loop
statem

ents. See the description of the FO
R loop for an exam

ple of nested loops.

F
O
R

i
d
e
n
t
i
f
i
e
r

'
=
'

e
x
p
r
e
s
s
i
o
n

T
O

e
x
p
r
e
s
s
i
o
n

[

S
T
E
P

e
x
p
r
e
s
s
i
o
n

]

[

s
t
a
t
e
m
e
n
t

]
*

N
E
X
T

[

i
d
e
n
t
i
f
i
e
r

]

[

'
,
'

i
d
e
n
t
i
f
i
e
r

]
*

The FO
R-N

EX
T statem

ent is used to loop over a series of statem
ents a fixed num

ber of
tim

es. If you need to loop over a series of statem
ents, but can’t calculate in advance how

 m
any

tim
es you w

ill need to loop, use the D
O

-LO
O

P or W
H

ILE-W
EN

D
 statem

ent.
A

 typical FO
R-N

EX
T statem

ent w
ould print all of the num

bers from
 1 to 10, like this:

FOR I = 1 TO 10
 PRINT I
NEXT

Language R
eference M

anual

148 The statem
ent begins by assigning 1 to the loop control variable I. A

ll of the statem
ents up

to the N
EX

T statem
ent are then executed. W

hile this exam
ple only show

s one statem
ent, there are

typically m
any statem

ents betw
een the FO

R and N
EX

T statem
ents.

A
s you can see, the loop control variable can be used inside the loop. W

hile it is legal to
change the value of the loop control statem

ent inside the FO
R loop, it’s generally not a good idea

to do so. Changing the loop control variable can create subtle and difficult to locate bugs.
W

hen the N
EX

T statem
ent is reached, the loop control value is increm

ented by 1. If the new
value is less than or equal to the second expression, 10 in our exam

ple, the statem
ents betw

een
FO

R and N
EX

T are executed again. This process repeats until the loop control variable’s value is
larger than 10; at that point, execution continues w

ith the statem
ent im

m
ediately after the N

EX
T

statem
ent.

W
hile the FO

R loop requires the stop and start values to be know
n in advance, they do not

have to be fixed constants like those in the first exam
ple. For exam

ple, assum
e you need to change

all of the characters in a string to uppercase letters. W
ith an appropriately defined function called

TO
U

PPER som
ew

here else in your program
, you could use a FO

R loop to change the string, like
this:R$ = ""

FOR I% = 1 TO LEN(S$)
 R$ = R$ + TOUPPER (MID$ (S$, I%, 1))
NEXT
S$ = R$

A
 subtle point about expressions in the start and stop value is that they are calculated once, as

the loop starts, and the values saved until the FO
R loop com

pletes. This has tw
o practical

im
plications. The first is that the program

 w
ill not be faster if you calculate the values before you

use them
 in the FO

R statem
ent. The LEN

 function is a perfect exam
ple: com

pared to other
instructions, this function takes a fair am

ount of tim
e. Since the LEN

 function is only called once,
and the result stored, there is no speed gain from

 calculating the value in advance.
The second im

plication is just as im
portant. If you change the length of the string in the

loop, LEN
 is not recalculated. A

 loop that changes the value as the loop progresses is a perfect
exam

ple of a loop w
hose stop value cannot be calculated in advance. The FO

R loop w
ould not

w
ork properly, but a loop using D

O
-LO

O
P w

ould handle the varying string length correctly.
In the exam

ples so far, the loop control variable is increm
ented by 1 each tim

e through the
loop. It is possible to tell the FO

R loop to step by som
e other increm

ent using the optional
STEP clause. A

 classic exam
ple is draw

ing a circle using trigonom
etric functions. This loop steps

around the circle using radians, dividing the circle into 360 one degree lines.

SUB CIRCLE(RADIUS, XCENTER, YCENTER)
PI = 3.1415926535
X% = XCENTER + RADIUS
Y% = YCENTER
MOVETO (X%, Y%)

C
hapter 12: C

ontrol Statem
ents

149

FOR ANGLE = 0 TO 2 * PI STEP PI / 180
 X% = XCENTER + RADIUS * COS(ANGLE)
 Y% = YCENTER + RADIUS * SIN(ANGLE)
 LINETO (X%, Y%)
NEXT
END SUB

STEP values can be calculated, like the start and stop values. STEP values can also be
negative, w

hich reverses the direction of the loop. For exam
ple, this loop w

ill count dow
n from

10, rather than up.

FOR I = 10 TO 1 STEP -1
 PRINT I
NEXT

Y
ou can optionally include the loop control value on the N

EX
T statem

ent. This provides a
quick check; if the loop control variables don’t m

atch, the program
 stops w

ith an error. Y
ou can

also put m
ore than one loop control variable on the next statem

ent, separating them
 w

ith com
m

as.
In fact, you can sim

ply use the com
m

a to indicate that the N
EX

T statem
ent applies to m

ore than
one loop control variable.

The exam
ples below

 are all legal, and show
 the various w

ays you can code the N
EX

T
statem

ent.

! Matrix addition: C = A + B
FOR I% = 1 TO 10
 FOR J% = 1 TO 10
 C(I%, J%) = A(I%, J%) + B(I%, J%)
 NEXT
NEXT

FOR I% = 1 TO 10
 FOR J% = 1 TO 10
 C(I%, J%) = A(I%, J%) + B(I%, J%)
 NEXT J%
NEXT I%

FOR I% = 1 TO 10
 FOR J% = 1 TO 10
 C(I%, J%) = A(I%, J%) + B(I%, J%)
NEXT J%, I%

FOR I% = 1 TO 10
 FOR J% = 1 TO 10
 C(I%, J%) = A(I%, J%) + B(I%, J%)
NEXT ,

Language R
eference M

anual

150 The FO
R loop control variable can be any num

eric type, including BY
TE, IN

TEG
ER,

LO
N

G
, SIN

G
LE or D

O
U

BLE. It m
ust be a single value, though, not an elem

ent of an array.
W

hen you exit a FO
R loop, the value of the FO

R loop control variable is guaranteed to be
the first value that w

ould fail the loop term
ination test. For exam

ple, in the array addition above,
both I%

 and J%
 w

ill be 11 w
hen the loops finish.

It is very poor form
, but technically legal, to jum

p into or out of a FO
R loop w

ith a G
O

TO
statem

ent. It is not legal, and w
ill cause an error, to jum

p into a FO
R loop in such a w

ay that the
FO

R statem
ent is not encountered before the N

EX
T statem

ent. It is also illegal to jum
p out of a

FO
R loop w

ithout com
pleting it; this leaves incom

plete FO
R statem

ents in an internal stack, and
w

ill generate an error w
hen you exit the program

. It can also cause the stack to overflow
,

generating a different m
essage.

Y
ou can nest FO

R statem
ents and other loop statem

ents up to 10 levels deep. This is not a
lim

it on the total num
ber of looping statem

ents, just on how
 m

any can be nested inside other loop
statem

ents. The array addition exam
ple show

ed a FO
R loop inside another LO

O
P; these w

ere
nested 2 levels deep.

W
H
I
L
E

e
x
p
r
e
s
s
i
o
n

[

s
t
a
t
e
m
e
n
t

]
*

W
E
N
DThe W

H
ILE-W

EN
D

 loop is a sim
pler, m

ore efficient version of a D
O

-LO
O

P that loops until
a condition is m

et. It is typically used w
hen you need to loop over a series of statem

ents, but don’t
know

 in advance how
 m

any tim
es you w

ill need to loop. W
hen the num

ber of tim
es you need to

loop is know
n, use the FO

R-N
EX

T statem
ent.

The expression m
ust result in a num

eric value. If the result is not zero, execution continues
w

ith the first statem
ent past the W

H
ILE statem

ent. O
nce W

EN
D

 is reached, the process repeats. If
the expression result is zero, the loop is skipped. In this case, execution continues w

ith the
statem

ent just past W
EN

D
.

It is very poor form
, but technically legal, to jum

p into or out of an executing W
H

ILE loop.
It is not legal, and w

ill cause an error, to jum
p into a W

H
ILE loop in such a w

ay that the W
H

ILE
statem

ent is not encountered before the W
EN

D
 statem

ent. It is also illegal to jum
p out of a

W
H

ILE loop w
ithout com

pleting it; this leaves incom
plete W

H
ILE statem

ents in an internal
stack, and w

ill generate an error w
hen you exit the program

. It can also cause the stack to
overflow

, generating a different m
essage.

Y
ou can nest W

H
ILE statem

ents and other loop statem
ents up to 10 levels deep. This is not a

lim
it on the total num

ber of looping statem
ents, just on how

 m
any can be nested inside other loop

statem
ents. See the description of the FO

R loop for an exam
ple of nested loops.

C
hapter 12: C

ontrol Statem
ents

151

Snippet
!---
!! PrintFile - Print a text file
!! Parameters:
! name - name of the file to print
!!---

SUB PRINTFILE (NAME$)
OPEN NAME$ FOR INPUT AS #1
WHILE NOT EOF (1)
 INPUT #1, A$
 PRINT A$
WEND
CLOSE #1
END SUB

M
aking D

ecisions

I
F

e
x
p
r
e
s
s
i
o
n

T
H
E
N

s
t
a
t
e
m
e
n
t

I
F

e
x
p
r
e
s
s
i
o
n

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

I
F

e
x
p
r
e
s
s
i
o
n

T
H
E
N

[

E
L
S
E

I
F

e
x
p
r
e
s
s
i
o
n

]
*

[

E
L
S
E

]

E
N
D

I
F

The IF statem
ent is used to execute other statem

ents w
hen a specific condition exists. O

ne
form

 of the IF statem
ent also allow

s you to check a series of conditions, selecting the appropriate
alternative.

BA
SIC has evolved over the years, leaving us w

ith tw
o rather different variations of the IF

statem
ent. The classic BA

SIC IF statem
ent is contained com

pletely on a single line. The
expression right after IF is evaluated. It m

ust result in a num
ber. If this num

ber is zero, execution
continues w

ith the line after the IF statem
ent. If the result of the expression is anything except

zero, the statem
ent after TH

EN
 is executed.

H
ere’s an exam

ple of the classic IF statem
ent in action:

LIFE_FORCE = LIFE_FORCE - SWORD_HIT
IF LIFE_FORCE <= 0 THEN CALL PLAYER_DIED

Language R
eference M

anual

152 O
ne of the interesting features of the classic IF statem

ent is that it executes everything from
TH

EN
 to the end of the line, even if there are m

ultiple statem
ents. Y

ou could put this to use to
im

plem
ent the classic shell sort.

DO SWAP = 0
 FOR I% = 1 TO ARRAY_SIZE - 1
 IF A(I%) < A(I% + 1) THEN T = A(I%) : A(I%) = A(I% + 1) : A(I% + 1) = T

: SWAP = 1
 NEXT
LOOP WHILE SWAP

Before structured program
m

ing statem
ents like the D

O
-LO

O
P and IF-TH

EN
-ELSE statem

ents
w

ere added to BA
SIC, it w

as very com
m

on to see statem
ents like

 10 IF A < B THEN GOTO 40
 20 C = B
 30 GOTO 50
 40 C = A
 50 REM

It w
as so com

m
on, in fact, that a shorthand w

as invented. W
hen you have an IF statem

ent
w

ith TH
EN

 G
O

TO
, you can om

it the TH
EN

, as in

 10 IF A < B GOTO 40

This form
 of the if statem

ent isn’t used m
uch anym

ore, though. Its been replaced by the block IF
statem

ent, w
hich can span m

ultiple lines. Recoding this exam
ple w

ith the block IF statem
ent gets

rid of the line num
bers and m

akes the program
 considerably easier to follow

.

IF A < B THEN
 C = B
ELSE
 C = A
END IF

This form
 of the IF statem

ent allow
s m

ultiple statem
ents betw

een the IF and ELSE, and again
betw

een the ELSE and EN
D

 IF. In fact, you can even im
bed other IF statem

ents.
The ELSE clause is optional. A

s in this exam
ple, it is used w

hen you need to do one thing if
the condition is true, and another if the condition is not true. If you don’t need to do anything
w

hen the condition is false, you can leave the ELSE out entirely.
The last im

portant option is the ELSE IF statem
ent, used w

hen the IF statem
ent m

ust choose
betw

een several alternatives. H
ere’s an exam

ple that changes the direction of a ball w
hen it hits the

C
hapter 12: C

ontrol Statem
ents

153

side of the screen. X
 represents the ball’s position, and V

X
 the speed. The sam

e statem
ents w

ould
appear right after these to handle the vertical direction.

X = X + VX
IF X <= 0 THEN
 VX = -VX
 IF X < 0 THEN X = -X
ELSE IF X >= 320 THEN
 VX = -VX
 IF X > 320 THEN X = 640 - X
END IF

Y
ou can use m

ore than one ELSE IF clause, stringing them
 out to handle as m

any different
variations on a possibility as you like. Y

ou can also m
ix ELSE IF w

ith ELSE, but if you do, the
ELSE clause m

ust appear after all ELSE IF causes. W
hen m

ultiple ELSE IF clauses are used, the
program

 tests them
 in order. W

hen one m
atches, the statem

ents betw
een it and the next ELSE IF,

ELSE or EN
D

 IF are executed, and all rem
aining ELSE IF and ELSE clauses are skipped.

It’s possible to use the ELSE IF clause to do different things based on the value of a variable,
such as this color com

plem
ent exam

ple.

IF COLOR = RED THEN
 COLOR = GREEN
ELSE IF COLOR = ORANGE THEN
 COLOR = BLUE
ELSE IF COLOR = YELLOW THEN
 COLOR = VIOLET
ELSE IF COLOR = GREEN THEN
 COLOR = RED
ELSE IF COLOR = BLUE THEN
 COLOR = ORANGE
ELSE
 COLOR = VIOLET
END IF

W
hen you see a series of ELSE IF statem

ents like this that com
pare the sam

e value over and
over to various possibilities, though, it’s tim

e to consider the SELECT CA
SE statem

ent.

S
E
L
E
C
T

C
A
S
E

e
x
p
r
e
s
s
i
o
n

[

C
A
S
E

c
a
s
e
-
r
a
n
g
e

[

'
,
'

c
a
s
e
-
r
a
n
g
e

]
*

]
*

[

C
A
S
E

E
L
S
E

]

E
N
D

S
E
L
E
C
T

The SELECT CA
SE statem

ent is used w
hen you w

ant to do one of several different things,
m

aking the choice based on a single value. For exam
ple, to change a color to its com

plem
entary

color, you could use

Language R
eference M

anual

154

SELECT CASE COLOR
 CASE RED
 COLOR = GREEN
 CASE ORANGE
 COLOR = BLUE
 CASE YELLOW
 COLOR = VIOLET
 CASE GREEN
 COLOR = RED
 CASE BLUE
 COLOR = ORANGE
 CASE VIOLET
 COLOR = YELLOW
END SELECT

The expression after SELECT CA
SE is evaluated one tim

e, then com
pared to a succession of

values. A
s soon as a m

atch is found, the statem
ents follow

ing the m
atching CA

SE are executed.
There can be m

ore than one statem
ent after each CA

SE statem
ent, even though our exam

ple only
show

s a single statem
ent after each CA

SE. O
nce the statem

ents are executed, control passes to the
statem

ent after EN
D

 SELECT.
If no m

atching statem
ents are found, control skips to the statem

ent after EN
D

 SELECT
w

ithout executing any of the im
bedded statem

ents. If you need a catch-all case, use the CA
SE

ELSE clause, like this:

FOR I = I TO 10
 PRINT I
 SELECT CASE I
 CASE 1: PRINT "st"
 CASE 2: PRINT "nd"
 CASE 3: PRINT "rd"
 CASE ELSE: PRINT "th"
 END SELECT
NEXT

This exam
ple also show

s a com
pact and easy to read w

ay to code a SELECT CA
SE w

hen all
of the actions fit on a single line. It is m

uch easier to scan this SELECT CA
SE statem

ent for a
particular situation to see how

 it is handled than it is to scan the m
ore verbose form

 of the first
exam

ple. W
hen m

ultiple statem
ents appear after each CA

SE, though, it is usually easier to read
the program

 if the statem
ents follow

ing the CA
SE appear on separate lines.

If you need to execute the sam
e series of statem

ents for several alternate values, separate the
values w

ith com
m

as, like this:

C
hapter 12: C

ontrol Statem
ents

155

SELECT CASE MID$(A$, 1, 1)
 CASE "A", "E", "I", "O", "U"
 PRINT "vowel"
 CASE "W", "Y"
 PRINT "sometimes vowel"
 CASE ELSE
 PRINT "consonant"
 END SELECT

Y
ou can also com

pare a value to a range of values. This is particularly useful w
ith strings and

floating-point num
bers.

SELECT CASE WAVELENGTH
 CASE 0.0 TO 1E-11: PRINT "Gamma rays"
 CASE 1E-11 TO 1E-9: PRINT "X-rays"
 CASE 1E-9 TO 4E-7: PRINT "Ultraviolet"
 CASE 4E-7 TO 7E-7: PRINT "Light"
 CASE 7E-7 TO 1E-5: PRINT "Infrared"
 CASE 1E-5 TO 100: PRINT "Short wave radio"
 CASE 100 TO 1E4: PRINT "Radio"
 CASE 1E4 TO 1E38: PRINT "Long wave radio"
END SELECT

If you are used to languages like C and Pascal, that last exam
ple deserves a second look.

U
nlike m

ost languages, BA
SIC can handle floating-point and strings, and due to the fact that it

supports ranges, it handles them
 quite w

ell. A
s w

ith single values, you can code several ranges, or
even ranges m

ixed w
ith discrete values, on a single CA

SE statem
ent. M

ultiple values are separated
by com

m
as.

It is possible, and w
ith ranges even likely, that m

ore than one CA
SE clause w

ill m
atch the

value from
 the SELECT CA

SE statem
ent. The CA

SE clauses are exam
ined in the order they

appear in the program
. The statem

ents after the first m
atching CA

SE clause are executed;
statem

ents after subsequent CA
SE clauses are not executed, and in fact, the conditions are not even

tested. O
nce a m

atching CA
SE clause is found and the statem

ents executed, control jum
ps

im
m

ediately to the statem
ent after EN

D
 SELECT w

ithout exam
ining any other possibilities.

Because of this, it is im
portant that the CA

SE ELSE clause appear after all CA
SE clauses,

just before the EN
D

 SELECT statem
ent.

Jum
ping A

round

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

The G
O

TO
 statem

ent is used to jum
p im

m
ediately to another line in the program

.
W

hile there is nothing fundam
entally w

rong w
ith the G

O
TO

 statem
ent, its overuse can lead to

program
s that are alm

ost im
possible to read or debug. A

s structured program
m

ing becam
e popular,

Language R
eference M

anual

156

the zealous attacks of the structured program
m

ers led to the nicknam
e of G

O
TO

-less program
m

ing
for structured program

m
ing. This isn't entirely accurate; structured program

s occasionally use the
G

O
TO

 statem
ent for error handling and other abort situations. Still, the G

O
TO

 statem
ent should

be avoided unless it results in a dram
atic increase in perform

ance.

 GOTO 40
 DATA 1.65235, 30.656, 5.6665, 3.1556
 ...
 DATA 1.45564, 28.667, 4.4453, 3.1327
 40 !

O
N

e
x
p
r
e
s
s
i
o
n

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

l
i
n
e
-
n
u
m
b
e
r

]
*

The O
N

-G
O

TO
 statem

ent uses an index to jum
p to one of several locations in a program

. In
m

odern BA
SICs, it has largely been replaced by the SELECT CA

SE statem
ent, w

hich is
considerably easier to read and debug.

The expression is evaluated, then truncated to an integer. Counting from
 one, one of the line

num
bers is selected from

 the list of line num
bers im

m
ediately after G

O
TO

, and the program
 jum

ps
to that line. If there are no m

atching line num
bers, execution continues w

ith the line after the O
N

-
G

O
TO

 statem
ent.

Snippet
 ON ERROR_NUMBER GOTO 10, 20, 30
 PRINT "Unknown error"
 GOTO 40
 10 PRINT "I don't know how to "; VERB$
 GOTO 40
 20 PRINT "You can't go "; DIRECTION$; " from here."
 GOTO 40
 30 PRINT "You are too weak to move"
 40 REM

H
andling E

rrors

E
R
R
O
R

e
x
p
r
e
s
s
i
o
n

The ERRO
R statem

ent is used to trigger a run tim
e error. The param

eter is the num
ber of the

error to trigger. See A
ppendix A

 for a com
plete list of error num

bers and the corresponding
m

essages.
If there is an O

N
ERR G

O
TO

 error handler active w
hen ERRO

R is used, control passes to the
O

N
ERR G

O
TO

 error handler. From
 there, the ERR statem

ent can be used to read the error
num

ber.
The principal use for the ERRO

R statem
ent is in O

N
ERR G

O
TO

 error handlers. It allow
s

you to pass any error your error handler is not designed to handle back to BA
SIC. See the

C
hapter 12: C

ontrol Statem
ents

157

description of O
N

ERR G
O

TO
 for an exam

ple that show
s how

 to use ERRO
R effectively in an

O
N

ERR G
O

TO
 error handler. Pay special attention to the fact that

ONERR GOTO 0

should be used before ERRO
R statem

ents that appear inside an O
N

ERR G
O

TO
 error handler. If

you don’t turn O
N

ERR G
O

TO
 handling off before using ERRO

R, it w
ill jum

p right back to the
O

N
ERR G

O
TO

 handler, generally causing an infinite loop.

O
N
E
R
R

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

W
hen BA

SIC encounters any condition this m
anual calls an error, the norm

al reaction is to
stop the program

 and print an error m
essage. O

N
ERR G

O
TO

 gives you a w
ay to intercept these

errors, handle them
, and continue w

ith the program
.

O
N

ERR G
O

TO
 doesn't do m

uch w
hen it is executed. In fact, all that happens is that the line

num
ber is recorded. If an error never occurs, nothing is ever done w

ith the line num
ber. If an error

occurs, though, execution im
m

ediately jum
ps to the line you specified. From

 there, you can detect
w

hat error occurred using the ERR statem
ent, and w

here it occurred using ERL. If it's som
ething

you w
ant to handle, you can deal w

ith the error, then pop back to the line w
here the error occurred

using RESU
M

E.
The O

N
ERR G

O
TO

 statem
ent can appear anyw

here in the program
, but the line num

ber
w

here the error is handled m
ust appear in the m

ain program
, not in a SU

B or FU
N

CTIO
N

.
Y

ou can use m
ore than one O

N
ERR G

O
TO

 statem
ent in the program

. If an error occurs,
execution continues w

ith the line num
ber specified by the m

ost recently executed O
N

ERR G
O

TO
statem

ent.
U

sing a line num
ber of 0 turns off O

N
ERR G

O
TO

 error handling.
The snippet show

s a short program
 that deliberately generates an error by assigning a value

that is too large to be an integer. This error is trapped and corrected by the error handler at line 99.
The next error is one the error handler is not designed to handle, though, so it uses the ERRO

R
statem

ent to flag the error in the norm
al w

ay.
Pay special attention to the line:

ONERR GOTO 0

in the error handler. U
sing a line num

ber of 0 turns O
N

ERR G
O

TO
 error handling off. This m

ust
be done before using ERRO

R to flag the error. If the original error handler is still in effect w
hen

ERRO
R is encountered, the program

 w
ill jum

p right back to the start of the error handler, causing
an infinite loop.

Language R
eference M

anual

158

Snippet
 ONERR GOTO 99
 X = 40000
 I% = X
 PRINT I%
 NEXT I%
 END

 99 IF ERR = 19 THEN
 X = 32767
 RESUME
 END IF
 ONERR GOTO 0
 ERROR ERR

E
R
LThe ERL function is used in O

N
ERR G

O
TO

 error handlers. W
hen BA

SIC triggers an error, or
w

hen your program
 uses the ERRO

R statem
ent to force an error, BA

SIC records the line num
ber

w
here the error occurred. ERL returns that line num

ber.
If the statem

ent w
here the error occurred did not have a line num

ber, ERL returns 0.
The value returned by ERL is not defined before an error has been triggered.

E
R
RThe ERR function is used in O

N
ERR G

O
TO

 error handlers. W
hen BA

SIC triggers an error,
or w

hen your program
 uses the ERRO

R statem
ent to force an error, the error num

ber is recorded.
ERR returns that error num

ber.
In the case of the ERRO

R statem
ent, the error num

ber returned by ERR is the sam
e as the

param
eter for the ERRO

R statem
ent.

A
ppendix A

 lists the error num
bers that can be triggered directly by BA

SIC.
The value returned by ERR is not defined before an error has been triggered.
See O

N
ERR G

O
TO

 for an exam
ple of an O

N
ERR G

O
TO

 error handler that uses the ERR
function to determ

ine if the error that occurred is one the error handler can deal w
ith.

R
E
S
U
M
E

The RESU
M

E statem
ent is used in an O

N
ERR G

O
TO

 error handler to pass control back to
the statem

ent w
here the error occurred. Execution begins at the start of the line w

here the error
occurred, not at the statem

ent im
bedded in that line. For exam

ple, in the line

IF I > 0 THEN J% = I

if I has the value 40000, the statem
ent generates an generates an error because I is larger than

32767, w
hich is the largest value J%

 can hold. RESU
M

E does not start w
ith the assignm

ent J%
 =

I; the program
 resum

es w
ith the IF statem

ent.

C
hapter 12: C

ontrol Statem
ents

159

If the error occurs in a subroutine or function, RESU
M

E restores control at the call in the
m

ain program
, not in the subroutine itself.

See O
N

ERR G
O

TO
 for an exam

ple of an error handler that uses RESU
M

E to recover from
 an

error.

Stopping and Starting a Program

U
sing C

TR
L-C

 and C
om

m
and-. To Stop a Program

Y
ou can stop a program

 at any tim
e by holding dow

n the control key and pressing C, or by
holding dow

n the Com
m

and key (they key w
ith the open apple) and pressing the period key. This

has exactly the sam
e effect as executing a STO

P statem
ent—

the program
 can be restarted w

ith
CO

N
T, and you can exam

ine and change the values of variables.
W

hile you can use these keys to stop a program
 during an IN

PU
T statem

ent, the program
w

on't stop until after you press the return key to com
plete the input. A

ll of the characters you type
except the CTRL-C or Com

m
and-. are processed in the norm

al w
ay. The IN

PU
T statem

ent
processes the text you type, assigns the values to variables, and then the program

 stops.

U
sing C

TR
L-S To Pause a Program

Y
ou can pause a program

 at any tim
e by holding dow

n the control key and pressing S. The
program

 freezes until you press any other key.

B
R
E
A
K

U
se the BREA

K
 statem

ent to trigger any O
RCA

 com
patible debugger, such as PRIZM

,
O

RCA
/D

ebugger or Splat!
W

hen this statem
ent is encountered, a CO

P instruction is executed. This can do one of tw
o

things. If you have an O
RCA

 com
patible debugger installed, this w

ill trigger the debugger. It w
ill

display your G
Soft BA

SIC program
, starting w

ith the line containing the BREA
K

. D
epending on

the capabilities of the debugger, you w
ill be able to step, trace, w

atch or change variables, exam
ine

RA
M

, and so forth. W
hen you tell the debugger to return control to the executing program

, your
G

Soft BA
SIC program

 w
ill continue to execute norm

ally.
D

o not use this com
m

and unless an O
R

C
A

 com
patible debugger is installed! O

R
C

A
com

patible debuggers w
ork by intercepting the 65816 CO

P instruction. There is no w
ay for

G
Soft BA

SIC to tell if a debugger is installed or not, so it w
ill issue the CO

P instruction w
hether

or not a debugger is actually present. If there is no debugger installed, this causes the com
puter to

crash. W
hile this does no actual harm

, the only w
ay to recover is to reboot.

Language R
eference M

anual

160

Snippet
! Try this program to see how your debugger reacts to GSoft BASIC
BREAK
SUM = 0
FOR I = 1 to 10
 SUM = SUM + I
NEXT
PRINT SUM

E
N
DEN

D
 is used to stop the program

. The m
ost com

m
on use is just before the first SU

B or
FU

N
CTIO

N
 statem

ent.
EN

D
 can actually be used anyw

here in the program
. It stops execution, leaving intact all of

the variables and even the various internal stacks that track FO
R loops, subroutines and the like.

This m
akes it possible to use the EN

D
 statem

ent as a quiet version of the STO
P statem

ent. By
com

parison, the EN
D

 statem
ent sim

ply stops execution, w
hile the STO

P statem
ent prints a

m
essage telling you the STO

P statem
ent w

as issued, and if there w
as a line num

ber, w
hich line

the STO
P statem

ent appeared on.
EN

D
 is also the first token in several special token pairs. The snippet show

s tw
o exam

ples,
EN

D
 IF and EN

D
 FU

N
CTIO

N
. See IF, SELECT CA

SE, FU
N

CTIO
N

, SU
B and TY

PE for
descriptions of EN

D
 used w

ith another token.

Snippet
! Print a table of vector lengths
PRINT "", 1, 2, 3, 4
FOR Y = 1 TO 4
 PRINT Y, ;
 FOR X = 1 TO 4
 IF X = 4 THEN
 PRINT VECTOR_LENGTH(X, Y)
 ELSE
 PRINT VECTOR_LENGTH(X, Y), ;
 END IF
 NEXT X
NEXT Y
END

FUNCTION VECTOR_LENGTH(X, Y)
VECTOR_LENGTH = SQR (X * X + Y * Y)
END FUNCTION

C
O
N
TCO

N
T tells G

Soft BA
SIC to continue execution after a STO

P or EN
D

. It is used from
 the

G
Soft BA

SIC com
m

and line, not inside a program
.

C
hapter 12: C

ontrol Statem
ents

161

A
fter stopping a program

 w
ith STO

P or EN
D

, and perhaps after exam
ining or even changing

a few
 variables, you can use CO

N
T to restart the program

. So long as no lines have been changed,
CO

N
T picks up execution right after the STO

P or EN
D

, continuing on as if nothing happened.

S
T
O
PSTO

P is used as a sim
ple debugging com

m
and. STO

P stops the program
, printing a m

essage
that includes the line num

ber w
here the STO

P statem
ent is located—

assum
ing, of course, that the

line has a line num
ber. Y

ou can exam
ine variables, change the values of variables, and list lines.

O
nce you have finished exam

ining the state of the program
, use CO

N
T to continue execution.

W
A
I
T

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

W
A

IT is used to test bits in the com
puter’s m

em
ory. It w

aits until one of several bits are set,
then continues execution. In practice, W

A
IT is generally used to interact w

ith hardw
are, w

atching
various special m

em
ory locations that appear to the com

puter to be norm
al RA

M
, but are in fact

set by hardw
are ports.

The rem
ainder of this discussion assum

es you know
 how

 bits are stored in bytes as tw
o’s

com
plem

ent num
bers. If you do not understand how

 this is done, refer to a book on assem
bly

language program
m

ing or basic com
puter technology for a quick course in binary m

athem
atics.

O
ne exam

ple that exists on every A
pple IIG

S is the keyboard. W
hen you press a key, the

m
ost significant bit of the m

em
ory location $00C000 is set to 1, and the A

SCII value for the
keyboard character pressed is placed in the other 7 bits of the sam

e byte. A
fter noticing that there is

a key available and retrieving the value, you clear the keyboard value for the next character by
storing any value to the location $00C010. The snippet show

s a subroutine that takes advantage of
these facts, reading a key w

ithout allow
ing G

Soft BA
SIC’s standard input com

m
ands to get in the

w
ay and interpret any inform

ation.
The first expression is the m

em
ory location to exam

ine. The second expression is a bit m
ask.

This value is logically anded w
ith the 8 bit byte at the m

em
ory location given by the first

expression. If the result is not zero—
that is, if any of the m

em
ory bits w

ere also set—
the W

A
IT

statem
ent proceeds to the next line. If none of the bits are set, W

A
IT cycles again, w

aiting
indefinitely until one of the bits turns to 1.

M
em

ory locations start at 0 and are num
bered sequentially to $00FFFFFF (16,777,215

decim
al). Y

our com
puter’s RA

M
 occupies sequential m

em
ory addresses starting at zero and

continuing until the RA
M

 is exhausted, w
hile the built-in RO

M
 occupies the m

em
ory from

$00FFFFFF dow
n. Som

e of these m
em

ory locations have special uses; for exam
ple, $00C000 to

$00CFFF is used for m
em

ory m
apped input and output to devices like the keyboard and the cards

plugged into various slots in your com
puter, and $E12000 to $E19FFF is the graphics display.

For the A
pple IIG

S com
puter, the actual m

em
ory locations and how

 they are used is docum
ented

in Apple IIG
S Firm

ware Reference and Apple IIG
S H

ardware Reference, Second Edition. Both of
these books are available as reprints from

 the Byte W
orks. For hardw

are devices that are not built
in, if the docum

entation exists at all, it probably cam
e w

ith the hardw
are itself.

Language R
eference M

anual

162

Snippet
!---
!! GetKey - read a key directly from the keyboard
!! Returns: Key read
!! Notes: This subroutine does not work if the Event Manager is
! active.
!!---

FUNCTION GETKEY AS STRING
WAIT $00C000, $80
GETKEY = CHR$ (PEEK ($00C000) - $80)
POKE $00C010, 0
END FUNCTION

163

C
hapter 13 – Input and O

utput

There are m
any kinds of input and output on a m

odern com
puter. BA

SIC has built-in
com

m
ands to deal w

ith tw
o of these: disk input and output and input from

 the keyboard w
ith

output to the com
puter’s m

onitor. BA
SIC also has a set of com

m
ands to read data im

bedded in the
program

 itself. W
hile you could argue that reading data from

 the program
 isn’t really input, the

com
m

ands look and w
ork a lot like the other input com

m
ands, and are lum

ped in w
ith them

 here.
There is a lot of overlap betw

een com
m

ands that read the keyboard and w
rite to the console,

and com
m

ands that read and w
rite disk files. A

t the sam
e tim

e, these are very different operations.
This chapter covers com

m
ands that are generally used w

ith the keyboard and m
onitor, as w

ell as
the com

m
ands that read data im

bedded in the program
. The next chapter covers com

m
ands that are

generally used to read and w
rite disk files.

Printing T
ext

P
R
I
N
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

]

[

e
x
p
r
e
s
s
i
o
n

|

S
P
C

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

|

T
A
B

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

|

'
;
'

|

'
,
'

]
*

The PRIN
T statem

ent is used to w
rite text to the m

onitor and to text disk files. It has tw
o

m
ajor form

s. The sim
plest to use is covered in this section; it’s easy to understand, but doesn’t

give a lot of control over how
 num

bers are form
atted. PRIN

T U
SIN

G
 gives a great deal of control

over how
 num

bers are form
atted, but it is a bit harder to understand and use. PRIN

T U
SIN

G
 is

covered in the next section.
The PRIN

T statem
ent w

rites a line of text to the screen. It norm
ally m

oves the position for
the next character, called the cursor position, to a new

 line after it prints the values in the
expressions. The short program

PRINT "Hello, world."
PRINT 1990 + 8

Language R
eference M

anual

164

w
rites these tw

o lines to the text screen:

Hello, world.
1998

U
sing ? A

s a T
yping Shortcut

PRIN
T is a frequently used com

m
and, especially in the im

m
ediate execution m

ode, w
here you

can use BA
SIC as a calculator. Rather than typing the entire w

ord, you can use a shortcut and type
?. For exam

ple,

?4+5

prints 9. It is com
pletely equivalent to

PRINT 4 + 5

and in fact that's w
hat you w

ill see if you use the line in a program
 and then list or edit the

program
.

Printing
Strings

String output is relatively sim
ple. A

ll of the characters in the string are printed, one after the
other, to the text screen or disk file.

K
eep in m

ind that string expressions w
ork, too. The line

PRINT LEFT$("Hello, world.", 5)

printsHello

Printing B
Y

T
E

, IN
T

E
G

E
R

 and L
O

N
G

 V
alues

A
ny expression that evaluates to one of these integer num

ber form
ats prints the result as

decim
al digits w

ith no leading zeros or spaces. If the num
ber is less that zero, it is printed w

ith a
leading - character.

The table show
s several exam

ples. The PRIN
T statem

ent in the first colum
n prints the line

show
n in the second colum

n.

C
hapter 13: Input and O

utput

165

PRIN
T Statem

ent
O

utput Line
PRINT 320

320
PRINT 0

0
PRINT 4000 - 5000

-1000
PRINT CINT (45.67)

45
PRINT CLNG(40)

40
PRINT $E12000

14753792
PRINT -2147483647 - 1

-2147483648

Printing SIN
G

L
E

 and D
O

U
B

L
E

 V
alues

Floating-point num
bers print three different w

ays, depending on the value of the num
ber.

The m
ost com

m
on representation for a floating-point num

ber displays a w
hole num

ber, a
decim

al point, and the decim
al fraction. N

egative num
bers are preceded by the - character. For

exam
ple, π to seven significant digits is w

ritten 3.141593. This is the form
at used for SIN

G
LE

and D
O

U
BLE values w

hose absolute value is greater than or equal to 0.01 and sm
aller than 1E8

for SIN
G

LE values, or 1D
13 for D

O
U

BLE values. N
um

bers w
hose absolute value is sm

aller than
0.01, and SIN

G
LE num

bers w
hose absolute value is greater than or equal to 1E8, or D

O
U

BLE
num

bers w
hose absolute value is greater than or equal to 1D

13, print in scientific notation.
SIN

G
LE values are precise to slightly m

ore than seven significant decim
al digits, so that is

the num
ber of digits that print. If there are m

ore than seven significant digits the num
ber is

rounded to seven significant digits before printing. A
ny trailing zeros appearing after the decim

al
point are rem

oved; if all of the digits appearing after the decim
al point are zero, the decim

al point
is also rem

oved. N
um

bers sm
aller than 1.0 alw

ays print w
ith a leading zero. A

fter follow
ing these

rules, w
hatever is left of the num

ber is printed.
D

O
U

BLE values are precise to slightly m
ore than 13 decim

al digits, so they print thirteen
significant digits. The sam

e rules are used for rem
oving trailing zeros after the decim

al point, and
for rem

oving the decim
al point itself if there are no non-zero digits after the decim

al point.
Scientific notation is used for num

bers that are very close to zero and very far aw
ay from

 zero.
In scientific notation, the num

ber is m
ultiplied or divided by 10 until the absolute value is greater

than or equal to 1.0 and less than 10.0. This portion of the num
ber is called the m

antissa. For
SIN

G
LE num

bers, seven significant digits are printed; for D
O

U
BLE num

bers, eight significant
digits are printed. U

nlike num
bers in standard form

, the decim
al point and all trailing zeros are

printed, even if all of the digits to the right of the decim
al point are zero. The m

antissa is follow
ed

by the letter E and the exponent for the num
ber. Raising 10 to the pow

er of the exponent and
m

ultiplying the result by the m
antissa gives the actual num

ber. For exam
ple, 1000000000 prints

as 1.000000E9, w
hile 0.001 prints as 1.000000E-3.

The table show
s several exam

ples. The PRIN
T statem

ent in the first colum
n prints the line

show
n in the second colum

n.

Language R
eference M

anual

166 PRIN
T Statem

ent
O

utput Line
PRINT .00123456789

1.234568E-3
PRINT .0123456789

0.01234568
PRINT .123456789

0.1234568
PRINT 1.23456789

1.234568
PRINT 12.3456789

12.34568
PRINT 12345.6789

12345.68
PRINT 123456.789

123456.8
PRINT 1234567.89

123456.8
PRINT 1234567.89

1234568
PRINT 12345678.9

12345680
PRINT 123456789.0

123456E8
PRINT 1.23456789123456789D-3

1.2345679E-3
PRINT 1.23456789123456789D-2

0.01234567891234
PRINT 1.23456789123456789D-1

0.1234567891234
PRINT 1.23456789123456789D0

1.234567891234
PRINT 1.23456789123456789D12

12345678912.34
PRINT 1.23456789123456789D13

1.2345679E13
PRINT 1.001

1.001
PRINT 1.000001

1.000001
PRINT 1.0000001

1
PRINT 1.0000007

1.000001
PRINT -10000 * 10000

-1.000000E8
PRINT EXP(1)

2.718282

Pointers and R
ecords

The PRIN
T statem

ent can print num
bers or strings, but not pointers or records. O

f course,
you can print the value the pointer points to if it is a num

ber or string, and you can also print
fields from

 a record.

Printing M
ultiple E

xpressions W
ith C

om
m

as and Sem
icolons

Y
ou can print m

ore than one num
ber or string using a single PRIN

T statem
ent by separating

the expressions w
ith com

m
as or sem

icolons.
Sem

icolons sim
ply separate the expressions. The expressions are cram

m
ed together w

ith no
intervening spaces. A

 good exam
ple of sem

icolons in action is

PRINT "The circumference of a circle whose diameter is "; R; " is "; PI *
R; "."

If R is 3 and PI is 3.1415926, this statem
ent prints

The circumference of a circle whose diameter is 3 is 9.424778.

C
hapter 13: Input and O

utput

167

Com
m

as tab the next item
 to the next tab position. Tabs appear in each colum

n divisible by
16. The leftm

ost colum
n is num

bered 1. Com
m

as give you a sim
ple w

ay to quickly create tables,
like this table that prints the sine for each angle from

 1 to 20 degrees.

DTR = 3.1415926 / 180.0
FOR A = 1 TO 20
 PRINT A, SIN (A * DTR)
NEXT

These tables are created by printing the correct num
ber of spaces to the screen, not by using

tab characters. This m
eans the PRIN

T statem
ent w

ill w
ork correctly w

ith any output device that
uses a m

onospaced font, including printers.
The 16 character colum

ns form
ed by com

m
a tabbing on the default text screen divide the 80

colum
n screen into five equal colum

ns. If you print a line that extends past colum
n 64, then use a

com
m

a, the next colum
n starts in colum

n 1 of the next line. To keep screen and printer output as
sim

ilar as possible, this tabbing m
ethod is also used in disk files and any other printed output.

Y
ou can use m

ore than one com
m

a in a row
 to skip m

ultiple colum
ns. For that m

atter, you
can use m

ultiple sem
icolons, too, or even m

ix com
m

as and sem
icolons.

C
ontrolling Spaces U

sing SPC
 and T

A
B

SPC and TA
B are special functions you can use inside a PRIN

T statem
ent. They are only

valid in a PRIN
T statem

ent. Each returns a string w
ith a varying num

ber of spaces.
SPC takes a single param

eter, w
hich it evaluates and converts to IN

TEG
ER. If the result is

negative, it is replaced by 0. SPC returns a string w
ith the resulting num

ber of spaces. This short
exam

ple show
s how

 SPC can be used to create a table of num
bers that are right justified in any

desired field size. W
ID

TH
%

 is the w
idth of the colum

ns.

WIDTH% = 12
DTR = 3.1415926 / 180.0 : ! Converts degrees to radians.
H1$ = "Angle"
H2$ = "Cosine"
PRINT SPC (WIDTH% - LEN (H1$));H1$; SPC (WIDTH% - LEN (H2$));H2$
H1$ = "-----"
H2$ = "------"
PRINT SPC (WIDTH% - LEN (H1$));H1$; SPC (WIDTH% - LEN (H2$));H2$
FOR A = 0 TO 10
 V1$ = STR$ (A)
 V2$ = STR$ (COS (A * DTR))
 PRINT SPC (WIDTH% - LEN (V1$));V1$; SPC (WIDTH% - LEN (V2$));V2$
NEXT

TA
B also returns a string w

ith som
e num

ber of spaces. Tab evaluates the param
eter, then

subtracts the colum
n num

ber w
here the next character w

ill be printed, counting colum
ns from

 1. If
the result is negative, it is replaced w

ith zero. TA
B returns a string w

ith the specified num
ber of

Language R
eference M

anual

168

spaces. The effect is that TA
B inserts spaces so the next character you print w

ill appear in the
colum

n you specify.
H

ere’s the sam
e program

 you just saw
, but this tim

e the second colum
n is left justified using

TA
B.WIDTH% = 12
DTR = 3.1415926 / 180.0 : ! Converts degrees to radians.
H1$ = "Angle"
H2$ = "Cosine"
PRINT SPC (WIDTH% - LEN (H1$));H1$; TAB (WIDTH% + 4);H2$
H1$ = "-----"
H2$ = "------"
PRINT SPC (WIDTH% - LEN (H1$));H1$; TAB (WIDTH% + 4);H2$
FOR A = 0 TO 10
 V1$ = STR$ (A)
 V2$ = STR$ (COS (A * DTR))
 PRINT SPC (WIDTH% - LEN (V1$));V1$; TAB (WIDTH% + 4);V2$
NEXT

C
ontrolling

N
ew

L

ines
W

ith
Sem

icolons

In all of the exam
ples show

n so far, PRIN
T alw

ays starts at the beginning of a fresh line, and
alw

ays finishes by m
oving to the start of a new

 line. Y
ou can prevent this behavior by ending the

PRIN
T statem

ent w
ith a sem

icolon. This leaves the cursor at the end of the line you w
ere

printing, rather than skipping to a fresh line. The next PRIN
T statem

ent, or any other statem
ent

that sends characters to the output device, picks up w
here the PRIN

T statem
ent left off.

Snippet
DIM A$(5)
A$(0) = "red"
A$(1) = "orange"
A$(2) = "yellow"
A$(3) = "green"
A$(4) = "blue"
A$(5) = "violet"
FOR I% = 1 TO 6
 PRINT "The ";I%;
 SELECT CASE I%
 CASE 1
 PRINT "st";
 CASE 2
 PRINT "nd";
 CASE 3
 PRINT "rd";
 CASE ELSE
 PRINT "th";
 END SELECT

C
hapter 13: Input and O

utput

169

 PRINT " color in the rainbow is ";A$(I% - 1);"."
NEXT

Printing B
lank L

ines

A
 PRIN

T statem
ent w

ith no param
eters at all skips to the start of a new

, fresh output line. If
the cursor starts at the beginning of a line, this prints a blank line. If the cursor is on a line that
already contains characters, perhaps because a sem

icolon appeared at the end of the last PRIN
T

statem
ent, the PRIN

T statem
ent w

ith no param
eters finishes the current line, setting the cursor so

the next printed character w
ill appear at the start of the next line.

Printing T
o D

isk Files

If the first thing after the PRIN
T statem

ent is a # character, the printed text w
ill go to a disk

file rather than the text screen. The # character is follow
ed by an IN

TEG
ER expression; this value

m
ust m

atch one of the files currently open for output. See O
PEN

 in the next chapter to see how
 to

open a file for output.
Each character that w

ould have been w
ritten to the text screen is w

ritten to the disk file
instead. W

henever the PRIN
T statem

ent w
ould have skipped to the start of a fresh line, the

character CH
R$(13) is w

ritten to the disk file. This is the standard end of line character used for all
text files and program

 source files on the A
pple IIG

S.

P
R
I
N
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

]

U
S
I
N
G

f
o
r
m
a
t
-
s
t
r
i
n
g

'
;
'

e
x
p
r
e
s
s
i
o
n

[

(

'
,
'

|

'
;
'

)

e
x
p
r
e
s
s
i
o
n

]
*

(

'
,
'

|

'
;
'

)

There are tw
o form

s of the PRIN
T statem

ent. The PRIN
T U

SIN
G

 statem
ent gives accurate

control over exactly how
 values w

ill be displayed on the screen. The standard PRIN
T statem

ent,
described above, doesn’t give m

uch control over the output, but it is m
uch easier to use than

PRIN
T U

SIN
G

.
Every PRIN

T U
SIN

G
 statem

ent has a form
at string right after U

SIN
G

. This form
at string

contains norm
al text plus form

at m
odels, w

hich are sequences of special characters that describe
how

 a value should be printed. The norm
al text is printed just as it appears; the form

at m
odels are

replaced by one of the values that follow
 the sem

icolon that appears after the form
at string. If there

is m
ore than one expression, you can separate the expressions w

ith either com
m

as or sem
icolons;

unlike PRIN
T. W

ith the PRIN
T statem

ent, the com
m

a and sem
icolon serve different purposes, but

w
ith PRIN

T U
SIN

G
, both punctuation m

arks sim
ply separate expressions.

Y
ou can use a sem

icolon or com
m

a after all of the expressions to indicate that a carriage
return should not be printed. A

s w
ith the sem

icolon used w
ith the sim

ple PRIN
T statem

ent, this
causes the next characters printed by a PRIN

T statem
ent or an IN

PU
T prom

pt to appear on the
sam

e line, right after the last character printed by the PRIN
T U

SIN
G

 statem
ent.

There is a w
ide variety of form

at m
odels available. The sections that follow

 start w
ith the

m
ost basic form

at m
odel for a num

ber, #, and gradually add the other characters that can be m
ixed

w
ith the # character to control the w

ay num
bers are form

atted. A
fter covering the form

at m
odels

used w
ith num

bers, the string form
at m

odels are explained. Each section ends w
ith a list of

exam
ples that show

 a form
at m

odel as a form
at string, a value, and the characters that are printed.

Language R
eference M

anual

170

To keep things sim
ple, these exam

ples only show
 one form

at m
odel per line, and don’t use

expressions, but m
ultiple form

at m
odels can be used in a single form

at string, and other characters
can be used, too. The exam

ples all use a vertical bar just before and just after the form
at m

odel.
These bars are not required, or even com

m
on, in real form

at strings; they are included here so you
can clearly see spaces and w

hat happens w
hen a value is too large for the form

at m
odel.

Exam
ples of real form

at strings that m
ix text and m

ultiple form
at m

odels appear at the end of
the description of the PRIN

T U
SIN

G
 statem

ent.

Form
atting

N
um

bers

O
ne or m

ore # characters set up a form
at m

odel for a num
ber. The num

ber of # characters used
determ

ines the m
inim

um
 w

idth of the output field. If the num
ber doesn’t need all of the output

field, spaces are printed before the num
ber; if there isn’t enough room

 for the num
ber, the entire

value is still w
ritten.

If the value is a floating-point num
ber, the num

ber is rounded to the closest integer value.
This doesn’t convert the value to an IN

TEG
ER, it sim

ply rounds the floating-point num
ber to the

closest w
hole num

ber.

Form
at M

odel
V

alue
Prints

"|##|"
1

| 1|
"|##|"

12
|12|

"|##|"
123

|123|
"|###|"

-3
| -3|

"|###|"
45.67

| 46|
"|###|"

0.25
| 0|

T
he D

ecim
al Point

Replacing one of the # characters in a num
eric form

at m
odel w

ith a period turns the output
from

 an integer to a fixed point output. The classic use for this form
at m

odel is to print a dollar
am

ount w
ith exactly tw

o digits to the right of the decim
al point.

If a num
ber is too large to represent in the available space, it prints as # characters.

SIN
G

LE num
bers are precise to slightly m

ore than seven significant digits, and D
O

U
BLE

num
bers are significant to m

ore than 13 significant digits. If you provide space for m
ore

significant digits than are available, you w
ill get som

ething, but the extra digits are artifacts of the
num

ber conversion, not valid values. This is show
n in the last exam

ple in the table, w
hich gets

the eighth digit right—
m

ore by accident than design—
but the ninth significant digit is clearly

m
ore than the available precision for a SIN

G
LE value.

C
hapter 13: Input and O

utput

171

Form
at M

odel
V

alue
Prints

"|##.##|"
1

| 1.00|
"|##.##|"

12
|12.00|

"|##.##|"
123

|##.##|
"|##.#|"

-3.4
|-3.4|

"|##.#|"
-23.4

|##.#|
"|##.##|"

45.678
|45.68|

"|##.##|"
9.999

|10.00|
"|##.##|"

0.0049
| 0.00|

"|###.######|"
123.456789

|123.456780|

A
dding C

om
m

as

Replacing one or m
ore of the # characters (except the first one!) w

ith a com
m

a causes the
num

ber to be printed w
ith a com

m
a betw

een every three digits of the w
hole num

ber part, counting
left from

 the decim
al place. W

hile it isn’t required, it m
akes sense to put the com

m
as in the sam

e
positions they w

ill print. This m
akes the form

at m
odel easier to read.

Substituting a com
m

a for a # character does not extend the num
ber of characters available to

print values, so be sure you leave enough room
 for the num

ber’s significant digits and for the
com

m
a characters. If you need to print eight significant digits, as show

n in the first exam
ple of the

table, you w
ill need a total of ten characters in the form

at m
odel—

eight for the num
eric digits, and

tw
o for com

m
as. A

s the second exam
ple show

s, the num
ber of com

m
as is not the issue. The issue

is how
 m

any com
m

as the PRIN
T U

SIN
G

 statem
ent w

ill need to insert to represent the value.

Form
at M

odel
V

alue
Prints

"|##,###,###|"
1e6

| 1,000,000|
"|#,########|"

1e6
| 1,000,000|

"|##,###,###.##|"
1.2345678912D7

|12,345,678.91|
"|##,###.####|"

1234.5678D0
| 1,234.5678|

C
ontrolling

Positive
and

N
egative

Signs

By default, if a num
ber is positive no sign is printed, and if a num

ber is negative a - character
is printed before the first digit. Y

ou can change this behavior tw
o w

ays.
First, you can indicate that both + and - characters should be used for the sign by substituting

a + character for the first # character. The num
ber w

ill alw
ays be preceded by a sign.

The second option is to replace the last # character w
ith a + character or - character. If you use

a - character, the last character w
ill be a - for negative num

bers and a space for positive num
bers. If

you use a + character, the last character w
ill still be - for negative num

bers, but it w
ill be + for

positive num
bers.

Leading - signs are not used in form
at m

odels. A
 - character appearing before a form

at m
odel

is treated like any other character that is not used in a form
at m

odel: It is sim
ply printed.

Language R
eference M

anual

172 Form
at M

odel
V

alue
Prints

"|####.##|"
-1.23

| -1.23|
"|+###.##|"

-1.23
| -1.23|

"|+###.##|"
1.23

| +1.23|
"|###.##-|"

-1.23
| 1.23-|

"|###.##-|"
1.23

| 1.23 |
"|###.##+|"

-1.23
| 1.23-|

"|###.##+|"
1.23

| 1.23+|

D
ollar

Signs

Replacing the first # character w
ith a $ character causes a $ to be printed before the num

ber
and all leading spaces. Replacing the first tw

o # characters w
ith tw

o $ characters causes a single $
character to be printed right before the first digit.

If you are using both a leading + sign and a leading $ or $$, you can put them
 in any order, so

long as they all com
e before the first # character.

Form
at M

odel
V

alue
Prints

"|$###.##|"
-1.23

|$ -1.23|
"|$###.##|"

1.23
|$ 1.23|

"|$+##.##|"
-1.23

|$ -1.23|
"|+$##.##|"

1.23
|$ +1.23|

"|$$##.##|"
1.23

| $1.23|
"|$$##.##|"

-1.23
| -$1.23|

"|$$+#.##|"
1.23

| +$1.23|

Filling Spaces in N
um

bers

If the form
at m

odel leaves m
ore space to the left of the decim

al point than is needed, the extra
space is filled w

ith blanks. In som
e applications, such as w

riting checks, it’s a good idea to fill in
any spaces so som

eone else doesn’t fill them
 in for you later!

Replacing the first # character w
ith an * prints an * in the first space. Replacing the first tw

o
characters w

ith ** prints an * in all leading spaces.
Y

ou can m
ix * characters, $ characters and + or - characters in any order, so long as they all

appear before the first # character, and so long as pairs of * or $ characters appear as a pair. In all
cases, dollar signs, positive signs and negative signs are placed in the available space just as they
alw

ays w
ere, and * characters fill any rem

aining spaces.

C
hapter 13: Input and O

utput

173

Form
at M

odel
V

alue
Prints

"|*###.##|"
-1.23

|* -1.23|
"|*###.##|"

1.23
|* 1.23|

"|**##.##|"
-1.23

|**-1.23|
"|**##.##|"

1.23
|***1.23|

"|**$#.##|"
-1.23

|$*-1.23|
"|$**#.##|"

1.23
|$**1.23|

"|$+**.##|"
-1.23

|$*-1.23|
"|+$**.##|"

1.23
|$*+1.23|

"|$$**.##|"
1.23

|**$1.23|
"|$$**.##|"

-1.23
|*-$1.23|

"|$$+**.##|"
1.23

|**+$1.23|
"|$$-**.##|"

-1.23
|-**$1.23|

Form
atting N

um
bers In Scientific N

otation

Follow
ing any num

ber form
at w

ith ^ prints the num
ber in scientific notation. The exponent

prints as the letter e, a + or - sign, and the num
eric exponent. U

se four ^ characters to hold any
SIN

G
LE exponent, and five to hold any D

O
U

BLE exponent. The form
at m

odel ##.######^^^^ w
ill

print all significant digits of any SIN
G

LE num
ber, along w

ith the sign and exponent. The form
at

m
odel ##.############^^^^^ does the sam

e for D
O

U
BLE values.

A
 m

inim
um

 of three characters are needed to print a one digit exponent; one character for the
“e”, one for the sign, and one for the digit. Because of this m

inim
um

 size, you m
ust use at least

three ^ characters to get scientific notation.

Form
at M

odel
V

alue
Prints

"|##.###^^^|"
1

| 1.000e+0|
"|##.###^^^|"

-0.1234
|-1.234e-1|

"|+#.######^^^^|"
123.45678

|+1.234568e+02|

Form
atting

Strings

There are three form
at m

odels for strings. The &
 character prints an entire string, printing all

characters, regardless of the size of the string. The ! character prints the first letter of a string. Tw
o

backslash characters w
ith any num

ber of intervening spaces prints as m
any of the characters as w

ill
fit. The backslashes count, so a backslash, tw

o spaces and a backslash prints the first four
characters from

 a string. If the form
at m

odel is w
ider than the string, the string is printed, then

blanks are printed to fill the available space.

Language R
eference M

anual

174 Form
at M

odel
V

alue
Prints

"|&|"
"testing"

|testing|
"|!|"

"testing"
|t|

"|\\|"
"testing"

|te|
"|\ \|"

"testing"
|tes|

"|\ \|"
"testing"

|test|
"|\ \|"

"testing"
|testing|

"|\ \|"
"testing"

|testing |
"|\ \|"

"testing"
|testing |

M
ixing T

ext and Form
at M

odels

A
ll of the exam

ples so far show
 m

ixing of text and form
at m

odels, but only to show
 w

here
the value being printed started and stopped, m

aking it clear w
here spaces w

ere printed. In actual
program

s it’s com
m

on to see a form
at string w

ith m
ore than one form

at m
odel, and to see

significant text m
ixed in w

ith the form
at m

odels.
For exam

ple, the program

PV = 100
Y = 7
I = 10
FV = PV * EXP (Y * LOG (1 + I / 100))
PRINT USING "$$##.## compounded for # years at #% interest returns

$$##.##."; PV, Y, I, FV

prints$100.00 compounded for 7 years at 10% interest returns $194.87.

Printing Form
at C

haracters as T
ext

Y
ou m

ay need to print one of the special form
at characters from

 the form
at string. To prevent

PRIN
T U

SIN
G

 from
 using a character as a form

at character, precede it w
ith the underscore

character. To print an underscore, place tw
o underscore characters in the form

at string.
For exam

ple,

PRINT USING "_\#_\"; 45

prints\45\

even though a backslash character is usually used as a fixed length string form
at m

odel.

C
hapter 13: Input and O

utput

175

Too M
any and Too Few

 Form
at M

odels

If there are few
er values than form

at m
odels, printing stops w

hen the first extra form
at m

odel
is found. For exam

ple,

PRINT USING "|#|#|#|"; 1, 2

prints|1|2|

Too m
any values for the available form

at m
odels reuses the form

at m
odel. This is actually a

useful feature, allow
ing you to create m

ulti-colum
n tables w

ith a single form
at m

odel. The line

PRINT USING "|#|"; 1, 2, 3

prints|1||2||3|

The only problem
 w

ith a form
at m

odel that w
ill cause the program

 to stop w
ith an error is

providing a string to a num
ber specifier or providing a num

ber to a string form
at m

odel.

Printing T
o D

isk Files

U
sing # follow

ed by a num
ber betw

een PRIN
T and U

SIN
G

 redirects the text that w
ould

norm
ally be printed to a disk file. The value that follow

s # m
ust m

atch one of the files currently
open for output. See O

PEN
 in the next chapter to see how

 to open a file for output.
Each character that w

ould have been w
ritten to the text screen is w

ritten to the disk file
instead. The character CH

R$(13) is w
ritten to the disk file at the end of each line. This is the

standard end of line character used for all text files and program
 source files on the A

pple IIG
S.

S
P
E
E
D

e
x
p
r
e
s
s
i
o
n

SPEED
 causes a slight pause right after each character is w

ritten to the screen. The expression
tells how

 long this pause should be.
A

 speed of 255 w
rites characters as rapidly as possible; this is the default. A

 value of 0
introduces a long delay after each character is w

ritten. Interm
ediate values cause progressively

longer or shorter delays. V
alues outside of the range 0 to 255 w

ill cause an “Illegal Q
uantity”

error.K
eep in m

ind that the speed applies to every character printed to the text screen, regardless of
the source, not just to PRIN

T and PRIN
T U

SIN
G

 statem
ents.

Snippet

Language R
eference M

anual

176

SPEED 255
PRINT "Wow! This is slow!"
SPEED 0

C
hoosing C

haracter Types
The A

SCII character set you norm
ally use to display characters uses 96 printable characters,

num
bered 32 to 127. Printing characters w

ith an ordinal value from
 0 to 31 som

etim
es causes

som
ething to happen, depending on the console driver, but it never results in a character being

displayed on the screen. (See A
ppendix B, Console Control Codes, for a description of w

hat
actually happens for these characters.)

The display hardw
are that paints characters on your m

onitor has 256 character im
ages. That

leaves room
 for 160 characters other than the A

SCII character set. W
hen A

pple’s engineers
designed the A

pple IIG
S RO

M
s, they m

ade use of those extra characters to give you a com
plete

inverse A
SCII character set, printing black on w

hite rather than the standard w
hite on black, as

w
ell as for 32 extra im

ages called m
ousetext characters that don’t look like any norm

al printing
character. That’s w

here their creativity ran out, though. There are still 32 available characters, but
rather than creating 32 new

 im
ages, A

pple’s engineers repeated the uppercase letters and a few
special characters that appear near them

 in the A
SCII character chart.

The com
m

ands described in this section give you access to all of these characters.
H

ere’s a short program
 that displays all of the characters in your com

puter’s character
generator, along w

ith the output from
 a standard A

pple IIG
S.

! Clear the screen
HOME
FOR I = 0 TO 16
 PRINT
NEXT
! Set up the line addresses
DIM L(15)
L(0) = 1024
L(8) = 1064
FOR I = 1 TO 7
 L(I) = L(0) + I * 128
 L(I + 8) = L(8) + I * 128
NEXT
! Display the characters
FOR R = 0 TO 15
 FOR C = 0 TO 15
 POKE L(R) + C, R + C * 16
 NEXT
NEXT

C
hapter 13: Input and O

utput

177

The A
pple IIG

S Printing Characters

I
N
V
E
R
S
E

A
fter using the IN

V
ERSE statem

ent, all of the norm
al printable characters print as black on

w
hite rather than w

hite on black.
To change back to standard characters, use N

O
RM

A
L.

Snippet
INVERSE
FOR I = 32 TO 127
 PRINT CHR$(I);
NEXT
NORMAL

M
O
U
S
E
T
E
X
T

A
fter using the M

O
U

SETEX
T statem

ent, all of the A
SCII characters from

 “@
” to “_”, w

hich
includes the uppercase alphabetic characters, print as a series of special display characters know

n as
the m

ousetext character set. These characters have ordinal values ranging from
 64 for “@

” to 95 for
“_”. A

ll other characters print as inverse characters.
For exam

ple, the lines

MOUSETEXT
PRINT "A";
NORMAL

w
ill print the open apple m

ousetext character on your screen.
The table show

s the m
ousetext characters next to the printing character you use to print the

given m
ousetext character. The snippet displays the entire A

SCII character set w
ith M

O
U

SETEX
T

Language R
eference M

anual

178

enabled, w
hich show

s all of these characters on your screen, plus the inverse characters you w
ill

see if you print other characters w
ith M

O
U

SETEX
T enabled.

M
ousetext Characters

Snippet
MOUSETEXT
FOR I = 32 TO 127
 PRINT CHR$(I);
NEXT
NORMAL

N
O
R
M
A
L

Sw
itches to standard A

SCII character output. N
O

RM
A

L is used after M
O

U
SETEX

T or
IN

V
ERSE to sw

itch back to the default character set.

R
eading T

ext

I
N
P
U
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

]

[

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
;
'

]

l
-
v
a
l
u
e

[

'
,
'

l
-
v
a
l
u
e

]
*

IN
PU

T is used to read values from
 the keyboard or a disk file. These values can be num

bers or
strings. M

ultiple inputs on the sam
e typed line or line from

 a disk file are separated w
ith com

m
as.

R
eading from

 D
isk Files

IN
PU

T norm
ally reads from

 the keyboard. To read from
 a disk file, follow

 IN
PU

T w
ith the #

character and a value that m
atches the file num

ber for an open file. For exam
ple, the statem

ent

C
hapter 13: Input and O

utput

179

INPUT #4, A$

reads a string from
 a disk file.

See O
PEN

 for details on file num
bers.

Prom
pts

IN
PU

T w
ill print a prom

pt on the screen to indicate it expects input. If you don’t do anything
special this prom

pt character is a question m
ark. For exam

ple, if you use the statem
ent

INPUT NAME$

IN
PU

T w
ill print a ? character on the screen, then w

ait for a typed response. Y
ou can supply your

ow
n prom

pt string, follow
ed by a sem

icolon, like this:

INPUT "What is your name? "; NAME$

Y
ou can use string expressions for the prom

pt, not just string constants. If the first string is
follow

ed by a sem
icolon, it is treated as a prom

pt and printed. If it is follow
ed by a com

m
a, it is

treated like an input variable. In that case, you get the ? prom
pt and the IN

PU
T statem

ent expects
a string value on the input line.

H
ere’s a couple of exam

ples to illustrate this subtle point. This first IN
PU

T statem
ent reads

tw
o com

m
a separated strings from

 the keyboard:

INPUT A$, NAME$

This IN
PU

T statem
ent uses A

$ as a prom
pt, reading one string from

 the keyboard:

A$ = "What is your name?"
INPUT A$; NAME$

O
f course, you don’t w

ant ? characters show
ing up all over the screen w

hile reading a disk file.
If you've specified a file num

ber using the # param
eter IN

PU
T w

on’t print a default prom
pt. Y

ou
can still add your ow

n prom
pt, perhaps as a debugging aid, and that w

ill still get printed to the text
screen.If you don’t w

ant a prom
pt and you’re reading input from

 the keyboard, code an em
pty string

as the prom
pt, like this:

INPUT ""; NAME$

Language R
eference M

anual

180

M
ultiple

Inputs

Y
ou can read several values w

ith a single IN
PU

T statem
ent. For each value you are reading,

the IN
PU

T statem
ent scans the text typed from

 the keyboard, form
ing a chunk of characters. This

chunk of characters starts w
ith the first unread character and extends until a com

m
a or end of line

m
ark is found. A

ll of the characters that are read are converted into a string or a num
ber, depending

on the type of the param
eter. The resulting value is saved.

The rules used to convert the text to num
bers are the sam

e as the rules used to convert
program

 sym
bols to num

bers. Y
ou can put spaces before the first character of the num

ber and after
the last, but not betw

een the characters of the num
ber. Y

ou can use leading plus or m
inus signs,

decim
al points, and exponents.

Putting this all together, here’s an exam
ple that show

s how
 to read three values from

 a line.

INPUT "Enter a point in 3 dimensions: "; X, Y, Z

This IN
PU

T statem
ent prints the prom

pt, then looks for three num
bers. The num

bers are separated
by com

m
as. O

ne acceptable response is

45, .098, 2.99E4

Several things can go w
rong w

ith the input process. The w
orst is typing m

ore inputs than the
program

 expects. For exam
ple, if you use the IN

PU
T statem

ent

INPUT "Please enter your name: "; A$

and the response is

Fred Pennymaker, Jr.

the IN
PU

T statem
ent sees tw

o values, one before the com
m

a and one after. This causes the
program

 to stop w
ith a run-tim

e error. Y
ou can intercept it w

ith an O
N

ERR-G
O

TO
, but that's a

lot of w
ork for such a sim

ple error.
A

lm
ost as bad is trying to read a num

ber, but getting input that isn’t a num
ber. For exam

ple,
if the IN

PU
T statem

ent

INPUT A

gets the response

4ever

C
hapter 13: Input and O

utput

181

it w
ill choke, beeping the speaker and printing the error m

essage “N
um

ber expected: Reenter”. The
program

 w
on’t m

ove on until it gets a valid num
ber.

If the IN
PU

T statem
ent expects m

ore inputs than it gets, it w
aits for m

ore input. If the
statem

ent

INPUT "Please enter your city and state: "; CITY$, STATE$

gets the response

Indianapolis

the program
 w

aits for m
ore input. If the person using the program

 realizes w
hat's happening, and

typesIndiana

the program
 continues along w

ith no problem
s. The end of line m

arker is a perfectly acceptable
substitute for a com

m
a. But a blank screen and an apparently frozen program

 can be fairly
confusing for an unsuspecting user of the program

.
A

ll of these problem
s m

ean that IN
PU

T is a great com
m

and for quickly hacking out a
solution to a problem

 w
hen you are the only person w

ho w
ould use the program

, or, at w
orst, you

w
ill be available to help and train the people w

ho w
ill use the program

. For program
s that w

ill be
used m

ore than a few
 tim

es, though, it's w
orth the extra w

ork to use LIN
E IN

PU
T and parse the

input yourself.

L
I
N
E

I
N
P
U
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

]

[

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
;
'

]

l
-
v
a
l
u
e

[

'
,
'

l
-
v
a
l
u
e

]
*

LIN
E IN

PU
T is alm

ost the sam
e com

m
and as IN

PU
T. The only difference is that it doesn’t

use the com
m

a to m
ark m

ultiple inputs. It can still use m
ultiple inputs, but each input m

ust be
typed on a separate line.

IN
PU

T is a sim
ple, effective w

ay to get typed responses into a program
. It w

orks w
ell if the

person using the program
 understands its lim

itations. But there are m
any lim

itations to the IN
PU

T
statem

ent, both in term
s of error handling and because you can never use a com

m
a in an input

string.LIN
E IN

PU
T solves these problem

s. For reading lines of text, it can’t be beat. The problem
s

arise w
hen you need to read values from

 the line—
in other w

ords, your application w
ould w

ork
better w

ith IN
PU

T, but you need to create a program
 that w

ill handle bogus typed responses better
than IN

PU
T allow

s.
In this situation, you can use LIN

E IN
PU

T to read lines of text, then parse it yourself. This
takes a fair am

ount of w
ork, and the techniques involved vary greatly from

 application to
application. In general, though, keep in m

ind that the V
A

L com
m

and can convert strings to
num

bers.

Language R
eference M

anual

182 If your application requires extrem
ely sophisticated parsing, consider com

piler books. They
deal w

ith the issue of taking a text stream
, breaking it into parts, handling errors, and acting on the

result in great detail. For m
ost applications, you w

on’t need all of the techniques you’ll find in a
good com

piler book, but there is no better place to learn how
 to handle text.

Positioning the C
ursor

Sim
ple program

s that don’t use the desktop environm
ent of the A

pple IIG
S display

inform
ation on the text screen. For m

any program
s, it’s a good choice, offering ease of

program
m

ing in exchange for a less capable user interface. There is an interm
ediate betw

een the
sim

ple printer style input and output that alw
ays places new

 text at the bottom
 of the screen and

the full desktop interface, though. It relies on accurately positioning text inform
ation on the screen

at specified positions. In fact, by com
bining the ability to place text anyw

here on the screen w
ith

the special m
ousetext character set, you can recreate a good substitute for the desktop environm

ent
using the text screen.

A
s used in this section, the cursor is the position on the text display w

here the next printed
character w

ill appear. W
hen a program

 expects input, this location is traditionally m
arked w

ith a
special character of som

e sort. G
Soft BA

SIC uses an inverted box; a flashing character and an
underscore character are also com

m
on. W

hen this section uses the term
 cursor, though, it is not

im
plying that the cursor position is m

arked in any special w
ay, it is sim

ply referring to a screen
position.

The com
m

ands in this section deal w
ith detecting the position of the cursor and changing it to

a new
 location. They all treat the text display m

ore or less like a graphics display that uses
characters instead of pixels. The top left position on the display is colum

n 1, row
 1; the low

er
right corner is colum

n 80, row
 24.

There are actually three w
ays to deal w

ith the text screen. The m
ethods described here are very

general across platform
s that use the BA

SIC language. W
hile the specific com

m
ands often vary

from
 one platform

 to another, the capabilities you see here are available in alm
ost all

im
plem

entations of BA
SIC.

A
nother m

ethod relies on the console driver used to place characters on the screen. A
lm

ost all
displays have a driver that places characters on the screen, scrolls text, and allow

s som
e other

cursor controls. The A
pple IIG

S is no exception; A
ppendix B, C

onsole C
ontrol C

odes, describes
the special characters you can use to control the screen in G

Soft BA
SIC.

Finally, you can resort to placing characters directly on the text display, bypassing all of the
console drivers. Y

ou can do this w
ith BA

SIC’s PO
K

E statem
ent, as show

n in the exam
ple for

Choosing Character Types, earlier in this chapter. Y
ou can find the addresses for the screen itself in

several places, including The Apple IIG
S H

ardware Reference.

C
S
R
L
I
N

Returns the vertical position, or line num
ber, of the cursor. Lines are num

bered starting from
1 at the top of the text display to 24 at the bottom

.

C
hapter 13: Input and O

utput

183

Snippet
SUB MOVEUP
! Move up one line, stopping at the top of the screen
IF CSRLIN > 1 THEN
 VTAB CSRLIN - 1
END IF
END SUB

H
O
M
EClears the screen, displaying spaces in all character positions, and sets the cursor position to

the top left corner of the display.

H
T
A
B

e
x
p
r
e
s
s
i
o
n

Sets the horizontal cursor position to the given value. This changes the cursor’s colum
n.

Colum
ns are num

bered starting from
 1 at the left side of the screen to 80 at the right side.

V
alues outside this range are allow

ed, as long as they can be converted to an IN
TEG

ER. V
alues

less than 1 are treated as 1, w
hile values greater than 80 are treated as 80.

Snippet
SUB MOVERIGHT
! Move right one column, stopping at the right edge of the screen
IF POS < 80 THEN
 HTAB POS + 1
END IF
END SUB

P
O
S

[

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

]

Returns the horizontal position, or colum
n num

ber, of the cursor. Colum
ns are num

bered
from

 1 at the left edge of the screen to 80 at the right edge.
Som

e im
plem

entations of BA
SIC require a dum

m
y param

eter for PO
S to function. It doesn’t

do anything, but it m
ust be there. G

Soft BA
SIC doesn’t require a param

eter to PO
S, but in the

interest of m
aking program

s easier to m
ove betw

een im
plem

entations of BA
SIC, it allow

s a
param

eter. In G
Soft BA

SIC, the expression can evaluate to anything at all, and is not used. The
value m

ust be an IN
TEG

ER in som
e im

plem
entations of BA

SIC, though, so if you use it at all,
use an IN

TEG
ER constant.

Snippet
SUB MOVELEFT
! Move left one column, stopping at the left edge of the screen
IF POS > 1 THEN
 HTAB POS - 1
END IF
END SUB

Language R
eference M

anual

184

V
T
A
B

e
x
p
r
e
s
s
i
o
n

Sets the vertical cursor position to the given value. This changes the cursor’s line.
Lines are num

bered from
 1 at the top of the screen to 24 at the bottom

. V
alues outside this

range are allow
ed, as long as they can be converted to an IN

TEG
ER. V

alues less than 1 are treated
as 1, w

hile values greater than 24 are treated as 24.

Snippet
SUB MOVEDOWN
! Move down one line, stopping at the bottom of the screen
IF CSRLIN < 24 THEN
 VTAB CSRLIN + 1
END IF
END SUB

Im
bedding D

ata In The Program
The statem

ents in this section are used to read data that is im
bedded in a program

. For
exam

ple, a program
 that calculates the positions of planets m

ight encode the orbital param
eters for

the planets in D
A

TA
 statem

ents, reading them
 into arrays using REA

D
.

D
A
T
A

a
n
y
-
a
s
c
i
i
-
c
h
a
r
a
c
t
e
r
s

D
A

TA
 statem

ents provide input for REA
D

 statem
ents. The inform

ation is stored exactly as
you type it, m

ore or less like a com
m

ent. This text is scanned by the REA
D

 statem
ent using

exactly the sam
e rules as for the IN

PU
T statem

ent.
In general, you w

ill place one or m
ore values in a D

A
TA

 statem
ent, separating the values

w
ith com

m
as.

D
A

TA
 statem

ents can hold either strings or num
bers. The strings can be enclosed in quote

m
arks, but this isn’t required. U

sing quote m
arks preserves leading space characters and the case of

characters; w
ithout them

, leading spaces are rem
oved and low

ercase letters are converted to
uppercase.

These sam
ple D

A
TA

 statem
ents review

 the rules for coding num
bers and strings, w

hich are
the sam

e for D
A

TA
 statem

ents as for lines in BA
SIC or for IN

PU
T. A

ny of the D
A

TA
 statem

ents
can be read as a string. The first three lines, w

hich contain tw
o strings each, contain D

A
TA

statem
ents that can only be read into a string; attem

pting to read a non-num
ber into a num

eric
value w

ill cause an error.

DATA Albany, New York
DATA Seattle, Washington
DATA "Santa Fe", "New Mexico"
DATA 1, $400, -32767
DATA 1000000, -123456
DATA 3.1415, .5, 1e9, -3.4D-6

C
hapter 13: Input and O

utput

185

R
E
A
D

l
-
v
a
l
u
e

[

'
,
'

l
-
v
a
l
u
e

]
*

REA
D

 reads one or m
ore values from

 D
A

TA
 statem

ents.
If REA

D
 is in a SU

B or FU
N

CTIO
N

, the D
A

TA
 statem

ent m
ust be in the sam

e SU
B or

FU
N

CTIO
N

, and if the D
A

TA
 statem

ent is in the m
ain program

, the REA
D

 m
ust be there, too.

D
A

TA
 statem

ents in other parts of the program
 are only visible to a REA

D
 in the sam

e part of the
program

.
The first REA

D
 statem

ent reads the first value from
 the first D

A
TA

 statem
ent, placing the

value from
 the D

A
TA

 statem
ent into the first variable in the REA

D
 statem

ent. This process
continues, w

ith the REA
D

 statem
ent reading data sequentially until all of the param

eters have been
filled in. The next REA

D
 statem

ent picks up w
here the first left off, reading the next available

piece of data from
 a D

A
TA

 statem
ent. The num

ber of param
eters in each REA

D
 and D

A
TA

statem
ents don’t have to m

atch. If a REA
D

 statem
ent only reads, say, tw

o of the available four
pieces of data in a D

A
TA

 statem
ent, the next REA

D
 starts w

ith the third value from
 the D

A
TA

statem
ent. Conversely, if a REA

D
 statem

ent reads tw
o values, but only one is left in the current

D
A

TA
 statem

ent, it skips ahead to read another value from
 the next available D

A
TA

 statem
ent.

There are tw
o possible errors, either of w

hich w
ill stop the program

 w
ith a run tim

e error.
Y

ou cannot read m
ore data than is available, although you can use RESTO

RE to start over. Y
ou

also can’t read a num
ber if the data supplied is not a valid num

ber after rem
oving leading and

trailing spaces.

Snippet
! Wavelength data
DATA "red", "orange", "yellow", "green", "blue", "violet"
DATA 760, 647, 585, 575, 491, 424, 380
DIM COLORS$(6)
DIM WAVELENGTH(6)
! Read the data
FOR I = 1 TO 6
 READ COLORS$(I)
NEXT
FOR I = 0 TO 6
 READ WAVELENGTH(I)
NEXT
! Print the table
PRINT "Color Wavelength (nm)"
PRINT "------ ---------------"
FOR I = 1 TO 6
 PRINT USING "\ \ ### to ###";COLORS$(I), WAVELENGTH(I - 1), WAVELENGTH(I)
NEXT

R
E
S
T
O
R
E

RESTO
RE resets the pointer used to track w

hich elem
ent of a D

A
TA

 statem
ent w

ill be read
next. A

fter RESTO
RE, the next REA

D
 statem

ent reads the first piece of data from
 the first

available D
A

TA
 statem

ent.

Language R
eference M

anual

186 RESTO
RE only resents the D

A
TA

 statem
ent pointer for the procedure in w

hich is appears.
For exam

ple, if you have D
A

TA
 statem

ents and REA
D

 statem
ents in the m

ain program
 and use

RESTO
RE in a subroutine, the REA

D
 statem

ent in the m
ain program

 is not affected.

Snippet
DATA 1, 2, 3, 4
FOR I = 1 TO 4
 RESTORE
 FOR J = 1 TO I
 READ N
 PRINT N,;
 NEXT
 PRINT
NEXT

187

C
hapter 14 – D

isk Files

This chapter covers disk access, including com
m

ands used to read from
 and w

rite to disk,
com

m
ands used to m

anipulate files on a disk, and com
m

ands used to m
anipulate the directory

structure of a disk.
M

any of the com
m

ands norm
ally used to read inform

ation from
 the keyboard and w

rite
inform

ation to the com
puter’s display can also be used to read and w

rite text to disk files. See the
previous chapter for inform

ation about these com
m

ands. The com
m

ands described in the last
chapter that can also read or w

rite disk files are IN
PU

T, LIN
E IN

PU
T, PRIN

T and PRIN
T

U
SIN

G
.

File N
am

es

ProD
O

S and H
FS N

am
es

Files, disks and directories are identified by nam
e. The nam

ing convention is tied to the w
ay

inform
ation is stored on disk, called the file system

. The A
pple IIG

S supports several file system
s,

each w
ith different requirem

ents for file nam
es. The tw

o m
ost com

m
on file system

s used w
ith the

A
pple IIG

S are the ProD
O

S file system
 and the H

FS file system
.

ProD
O

S is the older of the tw
o file system

s. It is used on both the A
pple][com

puters using
the ProD

O
S disk operating system

 and on the A
pple IIG

S using the ProD
O

S 16 and the G
S/O

S
disk operating system

s. The boot disk m
ust use the ProD

O
S file system

, and it’s still popular for
m

ost other uses because accessing ProD
O

S disks takes less tim
e than accessing H

FS disks.
ProD

O
S file nam

es, directory nam
es and volum

e nam
es are lim

ited to 15 characters. The first
character m

ust be an alphabetic character. The rem
aining characters can be any com

bination of
alphabetic characters, num

eric digits and periods. Letter case is preserved on the disk, so a file
nam

ed “bark” w
ill look different than a file nam

ed “Bark”, but the case of the letters is not
significant. W

hether you use the nam
e “Bark” or “bark”, you w

ill access the sam
e file.

H
FS is the dom

inant file system
 for the M

acintosh com
puter. H

FS has tw
o distinct

advantages over the ProD
O

S file system
. First, ProD

O
S disks are lim

ited to 32 m
egabytes, w

hile
standard H

FS disks can handle up to 2 gigabytes, w
hich is 2048 m

egabytes. V
ariants of H

FS now
available on the M

acintosh can handle even larger volum
es. The second advantage of H

FS is the
file nam

es, w
hich are longer and allow

 m
ore characters than ProD

O
S. This allow

s m
ore natural

file nam
es.

H
FS file nam

es and directory nam
es are lim

ited to 31 characters; volum
e nam

es are lim
ited to

27 characters. A
ny typable A

SCII character except the colon is allow
ed anyw

here in the nam
e.

(Technically, it is legal to use non-printing characters in an H
FS nam

e, but A
pple recom

m
ends

against it.) A
s w

ith ProD
O

S, letter case is preserved w
hen the file is created on disk, but it isn’t

significant.

Language R
eference M

anual

188

O
ther File System

s

W
hile ProD

O
S and H

FS form
at disks are by far the m

ost com
m

on on the A
pple IIG

S, the
G

S/O
S operating system

 actually supports several others to som
e extent, including M

icrosoft’s
D

O
S, A

pple Pascal, and A
pple D

O
S. G

Soft BA
SIC uses G

S/O
S for all file m

anipulation, and
w

ill support any disk form
at allow

ed by G
S/O

S to the extent G
S/O

S itself supports the file
system

.

D
evices

Each device that can be accessed by the G
S/O

S disk operating system
 has at least tw

o, and
som

etim
es three, nam

es. N
ot all devices are disks, either. It’s possible to use disk input and output

com
m

ands to drive the screen and keyboard, although that w
ould interfere w

ith the w
ay BA

SIC
handles input and output. Printers are handled using file com

m
ands; this is described in m

ore detail
in the section Printing, later in this chapter. Serial ports and netw

orks are also handled as if they
w

ere files. In fact, by w
riting your ow

n G
S/O

S file driver, you can use disk input and output
com

m
ands to handle input and output to absolutely any kind of device.

Each device has one nam
e based on the device num

ber assigned w
hen G

S/O
S starts. This

num
ber is dependent on the exact order the device drivers are loaded, and in som

e cases on w
hich

devices are started, w
hether they have disks inserted, and w

hich disk is inserted. This device nam
e

consists of a period, the letter D
, and the device num

ber. For exam
ple, device 14 is nam

ed “.D
14”.

Since these num
bers can change, A

pple recom
m

ends against using device nam
es based on the

device num
ber in m

ost situations.
The second device nam

e is assigned by the device driver. D
isks generally have nam

es like
“.D

EV
14”. A

 critical device nam
e for G

Soft BA
SIC program

m
ers is “.PRIN

TER”, w
hich allow

s
you to print to a printer.

Finally, devices like disk drives generally have one or m
ore volum

es. Each of these volum
es

has another nam
e; this is the nam

e you norm
ally think of for the disk itself. In cases w

here a disk
has a single partition, using the device nam

e based on the num
ber, the device nam

e assigned by the
device driver, and the volum

e nam
e are all equivalent in all of the G

Soft BA
SIC com

m
ands.

Path N
am

es

Files on disk are organized by directories, also called folders. A
 directory has a nam

e, just like
the disk and file. Each directory can hold files and other directories.

The full path nam
e is a com

bination of the volum
e nam

e, any directory nam
es that apply, and

the file nam
e. Y

ou need the full path nam
e of a file to uniquely identify the file. The full path

nam
e starts w

ith a colon, and the various file nam
es, volum

e nam
es and directory nam

es are
separated by colons. Y

ou can also use a slash character instead of the colon, but all of the
G

Soft BA
SIC com

m
ands return path nam

es w
ith colon characters separating the parts.

A
s an exam

ple of path nam
es, w

e’ll assum
e w

e have a disk w
ith inform

ation about various
cities. The inform

ation for each city is stored in a file w
hose nam

e m
atches the nam

e of the city.

Chapter 14: Disk Files

189

O
f course, there are situations w

here tw
o cities have the sam

e nam
e, although they w

ill be in
different countries or different states w

ithin the sam
e country.

Consider the case of M
anhattan, K

ansas. It’s located in the U
nited States, on the continent of

N
orth A

m
erica. W

e’ll choose the nam
e Earth for the disk itself. O

n the disk Earth is a directory
nam

ed N
orthA

m
erica; this in turn contains a directory nam

ed U
nitedStates, w

hich has a directory
nam

ed K
ansas. The directory K

ansas has a file nam
ed M

anhattan that holds inform
ation about that

city. The full path nam
e is

:Earth:NorthAmerica:UnitedStates:Kansas:Manhattan

A
nother file containing inform

ation about another city by the sam
e nam

e m
ight have the path

nam
e:Earth:NorthAmerica:UnitedStates:Illinois:Manhattan

The directory U
nitedStates contains at least tw

o directories, one nam
ed K

ansas and the other
nam

ed Illinois. Each of these directories contains a file nam
ed M

anhattan. The fact that the file
nam

e is the sam
e show

s w
hy the full path nam

e is often needed to uniquely identify a file.

The D
efault Prefix

In practice, w
e don’t generally use the full path nam

e. There is a prefix called the default prefix
that identifies a specific directory. In the exam

ple above, w
e m

ight identify a file by first setting
the default prefix to

:Earth:NorthAmerica:UnitedStates:Kansas:

and then using the file nam
e

Manhattan

This m
akes a lot of sense if w

e’re going to access several other files from
 the sam

e directory.
For exam

ple, if w
e’re doing a com

parison of cities in K
ansas, w

e m
ight also be accessing files

nam
ed Topeka, K

ansasCity and W
ichita. A

ll of these w
ould be in the sam

e directory as M
anhattan.

By setting the default prefix to K
ansas first, w

e can use the short file nam
es for the various cities.

A
nother w

ay to use the default prefix is to use partial path nam
es. If you are com

paring
M

anhattan, K
ansas to M

anhattan, Illinois, you can set the default prefix to
:Earth:NorthAmerica:UnitedStates:

and use the partial path nam
es

Kansas:Manhattan

Language R
eference M

anual

190

and

Illinois:Manhattan

to access inform
ation about the tw

o cities. The difference betw
een the partial path nam

e and a file
nam

ed M
anhattan on a disk nam

ed K
ansas is that the partial path nam

e does not start w
ith a colon.

Printing
G

Soft BA
SIC com

es w
ith a G

S/O
S device driver called “.PRIN

TER”. W
hen this driver is

properly installed in your System
 directory by the installer, you can open .PRIN

TER as a file and
w

rite text inform
ation to the file. In a nutshell, that’s how

 you print.
The .PRIN

TER driver is not a sophisticated graphics printer like the ones typically used w
ith

desktop program
s. That happens to be its m

ain advantage. Since it only handles text, and doesn’t
deal w

ith fonts, the .PRIN
TER driver is sim

ple to install and use. It w
ill w

ork w
ith alm

ost any
A

pple IIG
S printer, too. A

ny printer that can be used from
 A

ppleW
orks w

ill w
ork using the

.PRIN
TER driver.

For the m
ost part, printing w

orks just like printing text to a text file. The only special feature
you need to know

 about is ejecting pages. Printing the character CH
R$(12) ejects the current page,

starting the next line at the top of a fresh page. M
anually ejecting a page from

 som
e printers w

ill
confuse the printer driver, though, so you should w

rite your program
s so they eject pages by

printing CH
R$(12).

H
ere’s a short program

 that show
s just how

 easy it is to print using disk com
m

ands.

OPEN ".PRINTER" FOR OUTPUT AS #1
PRINT #1 "Hello, printer."
PRINT #1 CHR$(12)
CLOSE #1

V
arious printers respond in different w

ays to the non-printing characters. M
ost don’t do

anything w
ith tab characters, but G

Soft BA
SIC handles text output in such a w

ay that you don’t
generally need tab characters. Check w

ith your printer to see exactly w
hat special characters it

respects, then use CH
R$ to send them

 to the printer.

The G
S/O

S O
ption

There are tw
o different w

ays to deal w
ith files from

 G
Soft BA

SIC. The com
m

ands you see
described in this m

anual are fairly com
m

on in m
odern im

plem
entations of BA

SIC. They are
relatively easy to use and fairly pow

erful. Y
ou can bypass them

 entirely, though, using direct calls
to the G

S/O
S disk operating system

. Program
s that access G

S/O
S directly tend to be larger and

Chapter 14: Disk Files

191

m
ore com

plicated than program
s that use the G

Soft BA
SIC com

m
ands, but there are som

e things
you just can’t do from

 G
Soft BA

SIC. For som
e kinds of program

s, disk access is also
significantly faster if you use G

S/O
S com

m
ands.

In general, w
e recom

m
end using the built-in com

m
ands unless you have a com

pelling reason
for calling G

S/O
S directly. If you need to m

ake G
S/O

S calls, refer to Apple IIG
S G

S/O
S

Reference.

File N
um

bers
M

ost of the com
m

ands that deal w
ith files refer to the file by a num

ber. This num
ber usually

appears right after a # character.
The file num

ber is a num
ber you pick w

hen you open the file w
ith the O

PEN
 statem

ent. It
m

ust be an integer value from
 1 to 32767. W

hile alm
ost all of the exam

ples in this section w
ill

use the constant 1, this is not a requirem
ent. Y

ou can use an expression to calculate the file
num

ber, perhaps using a loop like

FOR I% = 1 TO 5
 CLOSE #I%
NEXT

to close several open files.

File Input and O
utput Exam

ples
Rather than inserting short, generally m

eaningless exam
ples of file input and output

throughout the chapter, m
ost of the exam

ples of file input and output are collected here. W
hile the

exam
ples tend to be short, they still illustrate the basic techniques used to create, w

rite and read
files in G

Soft B
A

SIC
.

Line O
riented Text Files

There are tw
o very sim

ple program
s below

. The first creates a new
 file and w

rites a few
 lines

of text. It uses the sim
ple PRIN

T statem
ent to create the inform

ation, but you could also use
PRIN

T U
SIN

G
 or PU

T to create the file.
The second program

 opens the file created by the first and w
rites the lines to the screen. LIN

E
IN

PU
T isn’t stopped by com

m
as, so it handles all of the lines gracefully. This show

s the basic
techniques for dealing w

ith any file organized as a series of variable length lines of text.
EO

F is used to test for the end of the file. The program
 can read any num

ber of lines of text
w

ithout know
ing in advance how

 m
any lines are in the file.

Language R
eference M

anual

192 Y
ou can open the file from

 m
ost editors, including the editor you use to edit G

Soft BA
SIC

program
s.

Program
 T

hat W
rites the File

! Create a new file and write some test lines.
OPEN "temp" FOR OUTPUT AS #1
PRINT #1, "This is a test."
PRINT #1, "This is only a test."
PRINT #1, "If this had been a real program, we would have written something

useful."
CLOSE #1

Program
 T

hat R
eads the File

! Read a text file and print its contents.
OPEN "temp" FOR INPUT AS #1
WHILE NOT EOF (1)
 LINE INPUT #1, A$
 PRINT A$
WEND
CLOSE #1

B
inary Files

There is a fundam
ental difference betw

een binary files and text files. In a text file, everything
is converted to A

SCII characters and saved in text representation. The IN
TEG

ER value 100, w
hich

norm
ally uses tw

o bytes of m
em

ory, is expanded to three one byte characters. The conversion
process takes tim

e, generally requires m
ore m

em
ory, and can lead to loss of precision if you are

reading and w
riting floating-point values.

Binary files save inform
ation in the sam

e raw
 internal form

at used to save the inform
ation in

the com
puter’s m

em
ory. A

n IN
TEG

ER takes tw
o bytes, regardless of the value. SIN

G
LE values

alw
ays use four bytes, and there is no loss of precision as the num

ber is w
ritten to disk and read

back in. Since the num
ber does not need to be converted to and from

 text, reading and w
riting the

value is m
uch, m

uch faster than reading and w
riting text files, and since each value has the sam

e
length, you have the option of using random

 access files.
This program

 creates a new
 binary file and w

rites three SIN
G

LE values to the file.

OPEN "temp" FOR BINARY AS #1
DIM A(2)
A(0) = 1.2
A(1) = 3.4
A(2) = 5.6
FOR I% = 0 TO 2
 PUT #1, , A(I%)
NEXT
CLOSE #1

Chapter 14: Disk Files

193

This program
 reads the file, w

riting the values to the text screen.

OPEN "temp" FOR BINARY AS #1
WHILE NOT EOF (1)
 GET #1, , A
 PRINT A
WEND
CLOSE #1

M
ost of the program

s in this section are rather short, but here's one very practical program
. It

reads any file and prints the contents. The contents of the file are printed both as hexadecim
al

values and, w
hen possible, as A

SCII values. Y
ou can use this program

 to exam
ine the various

files created by these sam
ples to see exactly how

 they are stored on disk.
The sam

ple is also on your G
Soft BA

SIC disk in the directory
:G

Soft:Sam
ples:Text.Sam

ples. If you have installed G
Soft BA

SIC on a hard drive, the file is also
in the Sam

ples folder there.

File D
um

p E
xam

ple
! ---
!! Dump a file
!! This program prints the contents of any file in
! both hexadecimal and ASCII form.
!! ---
!! Set up the variables
!DIM FILENAME AS STRING
DIM COUNT AS LONG
DIM BYTES(15) AS BYTE
DIM LINECOUNT AS INTEGER
!! Get the name of the file to dump
!INPUT "File to dump: ";FILENAME
!! Open and dump the file
!OPEN FILENAME FOR INPUT AS #1
LINECOUNT = 0

Language R
eference M

anual

194

WHILE NOT EOF (1)
 GET #1, , BYTES(LINECOUNT)
 LINECOUNT = LINECOUNT + 1
 IF LINECOUNT = 16 THEN
 CALL PRINTLINE(COUNT, BYTES(), LINECOUNT)
 COUNT = COUNT + 16
 LINECOUNT = 0
 END IF
WEND
IF LINECOUNT <> 0 THEN
 CALL PRINTLINE(COUNT, BYTES(), LINECOUNT)
END IF
CLOSE #1
END

! ---
!! PRINTLINE - Print one line from the file
!! Parameters:
! count - number of bytes before this line
! bytes - line of bytes
! lineCount - number of bytes in this line
!! ---
SUB PRINTLINE(COUNT AS LONG , BYTES() AS BYTE , LINECOUNT AS INTEGER)
!! Print the file displacement
!CALL PRINTBYTE(COUNT / 256)
CALL PRINTBYTE(COUNT)
PRINT ":";
!! Print the hexadecimal bytes
!FOR GROUP = 0 TO 3
 PRINT " ";
 FOR OFFSET = 0 TO 3
 IF GROUP * 4 + OFFSET < LINECOUNT THEN
 CALL PRINTBYTE(BYTES(GROUP * 4 + OFFSET))
 ELSE
 PRINT " ";
 END IF
 NEXT
NEXT

Chapter 14: Disk Files

195

!! Print the line as ASCII text
!PRINT " '";
FOR OFFSET = 0 TO 15
 IF OFFSET < LINECOUNT THEN
 IF (BYTES(OFFSET) >= 32) AND (BYTES(OFFSET) < 127) THEN
 PRINT CHR$ (BYTES(OFFSET));
 ELSE
 PRINT " ";
 END IF
 ELSE
 PRINT " ";
 END IF
NEXT
PRINT "'"
END SUB

! ---
!! PRINTBYTE - Print one byte
!! Parameters:
! b - byte to print
!! ---
SUB PRINTBYTE(B AS INTEGER)
DIM B1 AS INTEGER
!B = B - 256 * CINT (B / 256)
B1 = B / 16
B = B - B1 * 16
IF B1 > 9 THEN
 PRINT CHR$ (ASC ("A") + B1 - 10);
ELSE
 PRINT CHR$ (ASC ("0") + B1);
END IF
IF B > 9 THEN
 PRINT CHR$ (ASC ("A") + B - 10);
ELSE
 PRINT CHR$ (ASC ("0") + B);
END IF
END SUB

Backtracking in Files

M
any file form

ats hold a varying am
ount of inform

ation and use a length at the start of the
inform

ation to tell the program
 reading the file w

hat to expect. A
n exam

ple is the JPEG
 graphics

form
at, w

hich uses an integer value to indicate how
 m

uch graphic inform
ation follow

s.

Language R
eference M

anual

196

U
nfortunately, due to the fact the graphics files are frequently com

pressed as they are w
ritten to

disk, you m
ay not know

 how
 m

uch graphic data there is until it is w
ritten!

A
 com

m
on w

ay to handle this problem
 is to record your position in a file, w

rite a dum
m

y
length, then w

rite the data. O
nce the data has been w

ritten, you can determ
ine how

 m
any bytes

w
ere w

ritten, then m
ove back in the file and w

rite the length. This com
m

on technique illustrates
the use of the LO

C function to determ
ine w

here you are in the file, the position param
eter of the

PU
T function to w

rite the length to a specific location in the file, and EO
F and SEEK

 to m
ove to

the end of the file to continue w
riting a new

 block of inform
ation.

A
ssum

ing you have opened file 1 as an output file, your subroutine to w
rite the graphics data

can start w
ith the statem

ents

P1& = LOC (1)
L% = 0
PUT #1, , L%

This records the location in the file w
here the length of the data should be w

ritten, then w
rites a

value of 0 to occupy the correct num
ber of bytes for the length. The program

 w
ill fill this value in

later, w
hen it is know

n.
Y

our program
 w

ould continue w
ith the code that actually w

rites the inform
ation, possibly

calling subroutines to w
rite som

e of the data. There is no need to keep track of how
 m

any bytes
are w

ritten. O
nce all of the inform

ation is w
ritten, the program

 records the new
 file position, backs

up and fills in the length of the data, then resets the file position to the position after all of the
data, getting ready for any additional output. The code looks like this:

P2& = LOC (1)
L% = P2& - P1&
PUT #1, P1& + 1, L%
SEEK #1, LOF (1) + 1

The tw
o program

s that follow
 put this idea to w

ork in a sim
ple exam

ple. The first program
reads num

bers you type until you enter 0. These num
bers are w

ritten to a file that starts w
ith the

num
ber of IN

TEG
ER values in the file. It then repeats the process, so you end up w

ith a file
containing tw

o variable length lists of num
bers. The second program

 reads the file.

Chapter 14: Disk Files

197

Program
 T

hat W
rites the File

! ---
!! Read two variable length lists of integers from the
! keyboard and write them to a file.
!! The user indicates the end of a list by typing 0.
!! In the file, each list of integers is preceded by
! the number of integers in the list.
!! ---
!OPEN "temp" FOR BINARY AS #1
PRINT "Enter any number of integers; enter 0 to end the list."
CALL ENTERNUMBERS(1)
PRINT "Enter another list of integers, again using 0 to end the list."
CALL ENTERNUMBERS(1)
CLOSE #1
END

! ---
!! EnterNumbers - enter a variable length list of numbers
!! Parameters:
! file - file number to write the list to
!! ---
!SUB ENTERNUMBERS(FILE AS INTEGER)
DIM OFFSET AS LONG
DIM ENDOFFSET AS LONG
DIM COUNT AS INTEGER
DIM VALUE AS INTEGER
!! Record the file position & reserve space for the length
!OFFSET = LOC (FILE)
COUNT = 0
PUT #FILE, , COUNT
!! Get the list of integers and write them to the file
!DO INPUT "";VALUE
 IF VALUE <> 0 THEN PUT #FILE, , VALUE
LOOP UNTIL VALUE = 0

Language R
eference M

anual

198

!! Go back and write the length
!ENDOFFSET = LOC (FILE)
COUNT = (ENDOFFSET - OFFSET) / SIZEOF (INTEGER) - 1
PUT #FILE, OFFSET + 1, COUNT
SEEK #FILE, LOF (FILE) + 1
END SUB

Program
 T

hat R
eads the File

DIM COUNT AS INTEGER , I AS INTEGER , VALUE AS INTEGER
!OPEN "temp" FOR BINARY AS #1
WHILE NOT EOF (1)
 GET #1, , COUNT
 PRINT "List of ";COUNT;" numbers:"
 FOR I = 1 TO COUNT
 GET #1, , VALUE
 PRINT USING "######";VALUE
 NEXT
WEND
CLOSE #1

R
eading A

n Entire File

Reading a file in sm
all pieces is convenient, but generally slow

, especially if you need to
m

anipulate various pieces of a file in a m
ore or less random

 order. W
ith today’s com

puters and
their large am

ounts of m
em

ory, it’s often practical to read an entire file into m
em

ory at once,
m

anipulate the file, and w
rite it back to disk. The LO

F com
m

and m
akes this easy by reporting

how
 m

any bytes or records are in a file.
The program

s below
 put this idea to w

ork. The first program
 w

rites a random
 num

ber of
IN

TEG
ER values to a file. The num

ber of integers is betw
een 50 and 99. The second program

reads this file into an array w
hose size is set after the size of the file is know

n. It then sorts the list
of random

 num
bers and w

rites them
 back to the file and to the text screen.

Com
pare this exam

ple to the next one, w
hich uses RA

N
D

O
M

 files to do the sam
e thing.

Program
 T

hat W
rites the File

OPEN "temp" FOR BINARY AS #1
FOR I% = 1 TO 50 * (1.0 + RND (1))
 V% = CINT (10000 * RND (1))
 PUT #1, , V%
NEXT
CLOSE #1

Chapter 14: Disk Files

199

Program
 T

hat R
eads the File

DIM COUNT AS INTEGER
DIM I AS INTEGER , J AS INTEGER
DIM V AS INTEGER
! Read the file
OPEN "temp" FOR BINARY AS #1
COUNT = LOF (1) / 2
DIM A(COUNT - 1) AS INTEGER
FOR I = 0 TO COUNT - 1
 GET #1, , A(I)
NEXT
! Sort the numbers
FOR I = 0 TO COUNT - 2
 FOR J = I + 1 TO COUNT - 1
 IF A(J) < A(I) THEN
 V = A(I)
 A(I) = A(J)
 A(J) = V
 END IF
 NEXT
NEXT
! Write the values
SEEK #1, 1
FOR I = 0 TO COUNT - 1
 PUT #1, , A(I)
 PRINT A(I), ;
NEXT
CLOSE #1

R
andom

 A
ccess Files

Random
 access files use a fixed record size so a piece of inform

ation can be quickly located in
the file. A

 com
m

on application is a database, such as a m
ailing list or recipe file. O

ur exam
ple

w
ill use a sim

ple file of integers, perform
ing a disk based sort on the file. Com

pare this w
ith the

previous sam
ple, w

hich does essentially the sam
e thing, but reads the file into m

em
ory, sorts it in

m
em

ory, then w
rites it back to disk.

There are advantages and disadvantages to both m
ethods. Reading the entire file into m

em
ory

is definitely faster, and by using A
LLO

CA
TE to grab m

em
ory you can handle virtually any file

sm
aller than the available m

em
ory on your com

puter. Som
e files are bigger than available

m
em

ory, though, and in som
e cases you m

ay not w
ant to use all of the available m

em
ory even if

the file is sm
all enough. For exam

ple, a desk accessory shouldn’t grab all of the available
m

em
ory, since the m

ain application m
ay need it. Y

our application m
ay have need for other large

chunks of m
em

ory, too. Som
e databases are so large that the tim

e required to read the entire file
and w

rite it back to disk is also a serious problem
. In all situations w

here the im
pact of loading

the file into m
em

ory is inappropriate, random
 access files w

ork very w
ell.

Language R
eference M

anual

200 The program
 below

 w
orks on the sam

e file of random
 integers produced by the previous

exam
ple. It reads values from

 the file using random
 access, sorting the num

bers and w
riting them

back to the file.

R
andom

 A
ccess Program

DIM COUNT AS INTEGER
DIM I AS INTEGER , J AS INTEGER
DIM V1 AS INTEGER , V2 AS INTEGER
!OPEN "temp" FOR RANDOM AS #1 LEN SIZEOF (INTEGER)
COUNT = LOF (1)
FOR I = 1 TO COUNT - 1
 GET #1, I, V1
 FOR J = I + 1 TO COUNT
 GET #1, J, V2
 IF V2 < V1 THEN
 PUT #1, I, V2
 PUT #1, J, V1
 V1 = V2
 END IF
 NEXT
 PRINT V1, ;
NEXT
CLOSE #1

O
pening and C

losing Files

C
L
O
S
E

[

'
#
'

e
x
p
r
e
s
s
i
o
n

]

Closes a file previously opened w
ith O

PEN
.

If a file num
ber is used, CLO

SE closes the specific file specified by the expression. If no file
num

ber is used, CLO
SE closes all files that have been opened by O

PEN
. CLO

SE w
ith no file

num
ber is a quick, easy w

ay to close all open files, especially in a program
 that m

ay have exited
w

ith an error.
See File Input and O

utput Exam
ples, earlier in this chapter, for an exam

ple.

O
P
E
N

f
i
l
e
n
a
m
e

F
O
R

i
o
-
k
i
n
d

A
S

'
#
'

e
x
p
r
e
s
s
i
o
n

[

L
E
N

e
x
p
r
e
s
s
i
o
n

]

Files m
ust be opened before you can use m

ost disk operations. The O
PEN

 statem
ent opens

the file, assigning a file num
ber to the file in the process. From

 the tim
e the file is opened until

you are finished w
ith the file, all file com

m
ands w

ill use the num
ber you assign to identify the

file. O
nce you are finished w

ith a file, use CLO
SE to close the file.

Chapter 14: Disk Files

201

Files are also opened in one of five specific w
ays. Y

ou can read from
 a file opened for input,

but you can’t w
rite to it, for exam

ple. If you open a file for input and need to w
rite to it, you m

ust
close the file and open it again.

f
i
l
e
n
a
m
e is the nam

e of the file to open. See File N
am

es, earlier in this chapter, for
inform

ation about legal file nam
es.

The file m
ay be opened in any of the follow

ing w
ays by substituting the token show

n for the
i
o
-
k
i
n
d field.

token
use

O
U
T
P
U
T

The file is opened for output. If the file already exists, any old contents are
lost.

I
N
P
U
T

The file is opened for input. The file m
ust already exist, but the file type

does not m
atter. Input starts from

 the beginning of the file.
A
P
P
E
N
D

The file is opened for output. If the file already exists, the old contents are
not lost. N

ew
 inform

ation is w
ritten after all of the old inform

ation.
R
A
N
D
O
M

The file is opened for random
 access. The LEN

 field is required; each record
w

ritten to or read from
 the file w

ill use that num
ber of bytes.

B
I
N
A
R
Y

The file is opened for input and output. O
ld inform

ation is not lost. N
ew

inform
ation w

ritten im
m

ediately after the file is open w
ill overw

rite the
inform

ation at the start of the file.

The value follow
ing # is used in subsequent file com

m
ands to identify the opened file. This

value can range from
 1 to 32767. N

o tw
o open files m

ay use the sam
e file num

ber, but once the
file is closed, the num

ber is available for use by another O
PEN

 statem
ent. W

hile there are m
any

file num
bers available, only 8 files can be open at one tim

e.
If used, the L

E
N expression gives the internal buffer size used to cache input and output. This

field is required for random
 access files, and m

atches the length of one random
 access record. For all

other file types, larger values use m
ore RA

M
 but generally result in faster disk input and output,

w
hile low

er values save RA
M

 but result in slow
er input and output.

O
pening a file for IN

PU
T or A

PPEN
D

 im
plies that the file already exists. For all of the other

file kinds, the file m
ay exist or m

ay not exist. If it already exists, the old file type is not changed.
If a file is opened for O

U
TPU

T, and it doesn’t already exist, it w
ill be created as a new

 file
w

ith nothing in the file. The type of the file w
ill be TX

T, the generic text file type for the
A

pple IIG
S. N

orm
ally you’ll use com

m
ands like PRIN

T to fill this kind of file w
ith text. Pretty

m
uch any program

 that reads text w
ill be able to read the resulting file.

O
pening a file that doesn’t exist for RA

N
D

O
M

 or BIN
A

RY
 creates an em

pty file w
hose type

is BIN
. This is the generic A

pple IIG
S file type for files that contain som

ething other than text.
V

ery few
 program

s w
ill be able to read the resulting file, but you can read and process the file from

other G
Soft BA

SIC program
s.

See File Input and O
utput Exam

ples, earlier in this chapter, for an exam
ple.

Language R
eference M

anual

202

R
eading and W

riting Files

E
O
F

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns 0 if there is unread inform
ation in a file, and -1 if there is not.

EO
F is used to see if all of the inform

ation in a file has been read. Y
ou generally test for the

end of the file, and if the end of the file has not yet been reached, you read and process m
ore

inform
ation.

See Line O
riented Text Files, earlier in this chapter, for an exam

ple.

G
E
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

[

e
x
p
r
e
s
s
i
o
n

]

'
,
'

]

l
-
v
a
l
u
e

Reads a single value from
 the keyboard or a disk file.

The first expression is the file num
ber, assigned w

hen the file is opened w
ith O

PEN
.

The next expression is the location in the file to w
rite the value. For random

 access files, this
is the record num

ber; for all other files, this is a byte num
ber. In both cases, the first value in the

file is num
bered 1.

If no file is specified, the variable m
ust be a string. A

 single character is read from
 the

keyboard, converted to a string, and saved in the variable. If no characters have been typed, G
ET

w
aits for a key before returning.

If a file is given, G
ET reads binary inform

ation from
 the file. W

hile strings are still treated as
single characters, any other data type can be read, including integers, real num

bers, records or
pointers.

The ability of G
ET to read records as w

ell as the sim
ple data types m

akes it a very pow
erful

choice for binary file input. Coupled w
ith PU

T, you can quickly w
rite and read records in their

internal, binary form
at. W

hile you are restricted to fixed length record in random
 access files, there

is no such restriction w
ith other file types, so you can read any data w

ritten by other program
s,

too. If all else fails, G
ET can read the file byte by byte.

G
ET is used in several of the exam

ples in File Input and O
utput Exam

ples, earlier in this
chapter.

L
O
C

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Random
 access files use fixed length records. In a random

 access file, LO
C returns the num

ber
of the record m

ost recently read or w
ritten. Contrast this w

ith all other kinds of files, w
here LO

C
returns the num

ber of bytes that have been read or w
ritten.

W
hile LO

C can be used for m
any different purposes, the classic purpose is to record the

current position in a file. Com
bined w

ith SEEK
, this lets you w

rite subroutines that can
rem

em
ber a file location and return to it at a later point.

See Backtracking in Files, earlier in this chapter, for an exam
ple.

L
O
F

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the num
ber of records in a random

 access file, or bytes in any other kind of file.

Chapter 14: Disk Files

203

See Reading An Entire File, earlier in this chapter, for an exam
ple.

P
U
T

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

[

e
x
p
r
e
s
s
i
o
n

]

'
,
'

l
-
v
a
l
u
e

PU
T w

rites values to files. It is usually used for binary or random
 access files, although

technically it can be used w
ith any file type.

The first expression is the file num
ber, assigned w

hen the file is opened w
ith O

PEN
.

The next expression is the location in the file to w
rite the value. For random

 access files, this
is the record num

ber; for all other files, this is a byte num
ber. In both cases, the first value in the

file is num
bered 1.

l
-
v
a
l
u
e is the value to w

rite to the file.
PU

T is used in several of the exam
ples in File Input and O

utput Exam
ples, earlier in this

chapter.

S
E
E
K

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

Sets the file so the next read or w
rite occurs at the position indicated by the second expression.

For random
 access files, the file is divided into chunks based on the length specified w

hen the
file is opened. For all other file types, the file is divided into bytes. In each case, the first chunk is
num

bered 1, w
ith the rem

aining chunks num
bered sequentially.

SEEK
 is used in several of the exam

ples in File Input and O
utput Exam

ples, earlier in this
chapter.

D
ealing W

ith D
irectories and Files

C
H
D
I
R

p
a
t
h
n
a
m
e

Change the default prefix to p
a
t
h
n
a
m
e.

U
se this com

m
and to set the default prefix inside a program

. A
fter using this com

m
and, you

can use partial path nam
es or file nam

es to open or m
anipulate files.

See File N
am

es, earlier in this chapter, for an explanation of file nam
es, path nam

es and the
default prefix.

The snippet show
s a subroutine that m

oves up one level to the directory containing the
current directory.

Language R
eference M

anual

204

Snippet
SUB PARENT
D$ = CURDIR$
SEPARATOR$ = LEFT$ (D$, 1)
LAST% = 1
FOR I% = 1 TO LEN (D$) - 1
 IF MID$ (D$, I%, 1) = SEPARATOR$ THEN LAST% = I%
NEXT
CHDIR LEFT$ (D$, LAST%)
END SUB

C
U
R
D
I
R
$

Returns the nam
e of the current directory.

See File N
am

es, earlier in this chapter, for an explanation of file nam
es, path nam

es and the
current directory.

See CH
D

IR for a short sam
ple that show

s CU
RD

IR$ in action.

D
I
R
$

[

'
(
'

f
i
l
e
-
n
a
m
e

'
)
'

]

Returns file nam
es from

 a directory.
The first call should specify a param

eter. This can be the nam
e of a specific file or the w

ildcard
character “*”. Full or partial path nam

es m
ay be used. D

IR$ w
ill return the nam

e of the file if
there is a file by the given nam

e, or the nam
e of the first file in the directory if the w

ildcard
character is used.

If the w
ildcard character is used, subsequent calls m

ay be m
ade w

ithout a param
eter. These

calls return the nam
es of the rem

aining files in the directory. W
hen all files have been returned,

D
IR$ returns an em

pty string.
This sam

ple program
 uses D

IR$ to identify all of the files in a directory. It changes the nam
es

of all of the files to low
ercase using the N

A
M

E statem
ent. To understand how

 this w
orks, consider

a file nam
ed “FIN

A
N

CES”. Y
ou can use the statem

ents

NAME$ = “Finances”
NAME NAME$ AS NAME$

to change the file from
 all uppercase letters to an uppercase letter follow

ed by low
ercase letters.

This w
orks because file nam

es are case insensitive w
hen you look for an existing file, so the nam

e
“Finances” w

orks perfectly w
ell to open or identify the file “FIN

A
N

CES”, but letter case is
preserved w

hen a file is created or renam
ed, so the com

m
and does change the case you see w

hen
you catalog the disk.

Chapter 14: Disk Files

205

Snippet
NAME$ = DIR$ ("*")
WHILE NAME$ <> ""
 NAME2$ = ""
 WHILE NAME$ <> ""
 CH$ = LEFT$ (NAME$, 1)
 NAME$ = RIGHT$ (NAME$, LEN (NAME$) - 1)
 IF (CH$ >= "A") AND (CH$ <= "Z") THEN
 CH$ = CHR$ (ASC (CH$) - ASC ("A") + ASC ("a"))
 END IF
 NAME2$ = NAME2$ + CH$
 WEND
 NAME NAME2$ AS NAME2$
 NAME$ = DIR$
WEND

K
I
L
L

f
i
l
e
n
a
m
e

R
M
D
I
R

f
i
l
e
n
a
m
e

D
eletes the file f

i
l
e
n
a
m
e.

In som
e im

plem
entations of BA

SIC, RM
D

IR is used to delete directories and K
ILL is used to

delete files. There is no distinction betw
een these operations under G

S/O
S: The sam

e com
m

and
can delete a directory or a file. G

Soft BA
SIC supports both com

m
and nam

es, but RM
D

IR is
sim

ply an alias for K
ILL. Either com

m
and can delete a directory or a file.

The sam
ples in File Input and O

utput Exam
ples, earlier in this chapter, create a file called

TEM
P. Y

ou could delete this file from
 inside your BA

SIC program
 w

ith the com
m

and

KILL "temp"

M
K
D
I
R

p
a
t
h
n
a
m
e

Creates a new
 directory w

ith the nam
e p

a
t
h
n
a
m
e.

Snippet
MKDIR "MyDirectory"

N
A
M
E

f
i
l
e
n
a
m
e

A
S

f
i
l
e
n
a
m
e

Renam
es the file, directory or disk. The first file nam

e is the original file nam
e, and the

second is the new
 file nam

e.
A

s an exam
ple, consider the problem

 of safely w
riting an im

portant database file. Even if you
m

ake the outrageous assum
ption that your program

 has no errors, and the equally outrageous
assum

ption that G
Soft BA

SIC, the system
 softw

are, and the various other program
s running can

never fail, and that the com
puter itself w

ill never have an error, and that floppy disks can’t fail,
there’s alw

ays the off chance of a pow
er outage just as you’re beginning to save an all-im

portant
database that you’ve spent m

onths creating and hours m
odifying since the last backup. M

urphy’s
Law

 pretty m
uch assures you that the pow

er outage w
ill occur at the w

orst possible m
om

ent,

Language R
eference M

anual

206

leaving the entire file unusable. O
ne w

ay to solve this problem
 is to never overw

rite the original
file until the m

odified one is safely saved to disk.
A

ssum
ing the original file’s nam

e is in the variable N
A

M
E$, and that W

RITE w
rites the data

to a new
 file, returning TRU

E if there w
ere no errors w

riting the file, a safe save looks like this:

IF WRITE ("temp") THEN
 KILL NAME$
 NAME "temp" AS NAME$
END IF

The disadvantage of this kind of save is that the disk m
ust have enough room

 for both the old and
new

 versions of the file, but the distinct advantage is that a file error of alm
ost any kind w

hile
w

riting the file leaves the original version untouched.
See D

IR$ for an exam
ple of this com

m
and used to change the letter case of file nam

es.

207

C
hapter 15 – G

raphics

A
pplesoft B

A
SIC

 G
raphics

G
Soft BA

SIC supports a few
 of the old A

pplesoft BA
SIC graphics com

m
ands. U

nlike
A

pplesoft BA
SIC, these com

m
ands don’t draw

 on the old A
pple II H

igh Resolution G
raphics

Screen; instead, they draw
 on the A

pple IIG
S 320 m

ode graphics screen. The resolution of the
A

pple IIG
S screen, at 320 pixels w

ide and 200 pixels high, is very close to the older version,
w

hich is 280 by 192, so the rare old program
 that uses just these com

m
ands w

ill port w
ith little

or no problem
.

M
issing are low

 resolution graphics and shape tables. A
fter polling various people, w

e decided
to leave these old com

m
ands out. Leaving them

 out m
akes G

Soft BA
SIC slightly sm

aller and
faster, and it m

akes your program
s sm

aller and faster, too, since the old program
 tokens w

ere
available for use by new

 com
m

ands.
These graphics com

m
ands are closely related to the draw

ing com
m

ands in Q
uickD

raw
 II, the

graphics package for the A
pple IIG

S toolbox. Y
ou can safely m

ix these com
m

ands w
ith

Q
uickD

raw
 II com

m
ands. See Apple IIG

S Toolbox Reference, Volum
e 2 for a com

plete
description of Q

uickD
raw

 II, or Program
m

ing the Apple IIG
S Toolbox in G

Soft BASIC for a
tutorial introduction to toolbox program

m
ing that discusses Q

uickD
raw

 II, am
ong m

any other
tools. Both are available from

 the Byte W
orks, Inc.

G
raphics C

om
m

ands

H
C
O
L
O
R
=

e
x
p
r
e
s
s
i
o
n

Changes the color used to draw
 lines w

ith H
PLO

T. Y
ou m

ust use H
G

R at least once before
using H

CO
LO

R=.
A

pplesoft BA
SIC supported six colors, m

ore or less. The colors w
ere actually connected, so

you could not alw
ays use, say, green next to orange.

G
Soft BA

SIC m
atches these colors as close as practical. It also adds ten new

 colors, giving
you easy access to all sixteen A

pple IIG
S colors.

The table below
 show

s the sixteen color num
bers you can use w

ith H
CO

LO
R=, along w

ith
the colors you w

ould get in A
pplesoft BA

SIC. The table assum
es you are using the default 320

m
ode color palette, w

hich is w
hat you w

ill be using if you don’t deliberately change the color
palette using Q

uickD
raw

 II com
m

ands. The snippet show
s a short program

 that displays the actual
colors you can use. Press the return key after running the snippet to exit the program

.

Language R
eference M

anual

208 N
um

ber
A

pplesoft Color
G

Soft BA
SIC Color

0
black

black
1

green
green

2
violet

purple
3

w
hite

w
hite

4
black

dark gray
5

orange
orange

6
blue

blue
7

w
hite

red
8

beige
9

yellow
10

brow
n

11
light blue

12
lilac

13
Periw

inkle blue
14

light gray
15

dark green

Snippet
HGR
FOR COLOR = 0 TO 15
 HCOLOR= COLOR
 FOR H = COLOR * 20 TO COLOR * 20 + 20
 HPLOT H, 0 TO H, 200
 NEXT
NEXT
INPUT A$
TEXT

H
G
RH

G
R turns on the graphics m

ode and clears the graphics screen to black. Y
ou should use H

G
R

before using H
PLO

T or H
CO

LO
R=.

H
G

R also starts Q
uickD

raw
 II, the A

pple IIG
S toolbox used for draw

ing. A
fter using H

G
R

you can safely use any Q
uickD

raw
 II draw

ing com
m

ands. Technically, you could also start
Q

uickD
raw

 II using toolbox calls and then use H
PLO

T or H
CO

LO
R=.

If you use H
G

R to start Q
uickD

raw
 II, you don’t need to shut the tool dow

n. G
Soft BA

SIC
w

ill shut dow
n Q

uickD
raw

 II autom
atically w

hen the program
 stops. Y

ou also don’t have to use
TEX

T to sw
itch back to the text screen, since G

Soft BA
SIC also sw

itches to the text screen after
any program

 stops.
See H

CO
LO

R= for a sam
ple program

 that uses H
G

R.

Chapter 15: G
raphics

209

H
P
L
O
T

[

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

]

[

T
O

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

]
*

H
PLO

T draw
s a line from

 one location to another. Y
ou m

ust use H
G

R before draw
ing lines

w
ith H

PLO
T.

H
PLO

T draw
s lines to connect one or m

ore points on the graphics screen. Each of the points
is given as a horizontal coordinate follow

ed by a vertical coordinate. H
orizontal coordinates start at

the left side of the screen w
ith colum

n 0, and continue to colum
n 319 at the right of the screen.

The vertical coordinate starts at the top of the screen w
ith 0, and continues to the bottom

 of the
screen, at 199. There is nothing w

rong w
ith specifying a point that lies off of the screen, so long

as the value lies in the range -32768 to 32767, but only the points that are on the screen w
ill be

visible.
The sim

plest com
m

and draw
s a single point. The com

m
and

HPLOT 319, 0

draw
s a point at the top right of the screen. A

dding TO
 follow

ed by a second point draw
s a line

from
 the first point to the second. The com

m
and

HPLOT 0, 0 TO 319, 199

draw
s a diagonal line from

 the top left of the screen to the bottom
 right. Y

ou can add as m
any

points as you like to a single H
PLO

T com
m

and. The com
m

and

HPLOT 10, 10 TO 20, 10 TO 20, 20 TO 10, 20 TO 10, 10

draw
s a square near the top left of the screen.
The first coordinate can be om

itted, as long as at least one TO
 clause is used. In this case, a

line is draw
n from

 the last H
PLO

T location. For exam
ple, the com

m
ands

HPLOT 10, 10 TO 10, 10
HPLOT TO 20, 20

are allow
ed. They are equivalent to

HPLOT 10, 10 TO 10, 20 TO 20, 20

U
se H

CO
LO

R= to set the color before draw
ing your lines.

The snippet show
s an interference pattern form

ed by digital pixels overlapping as the lines are
draw

n. Press the return key after you’ve seen enough of the picture.

Language R
eference M

anual

210

Snippet
HGR
COLOR = 5
FOR V = 0 TO 199
 HCOLOR= COLOR
 HPLOT 0, 0 TO 319, V
 IF COLOR = 5 THEN
 COLOR = 6
 ELSE
 COLOR = 5
 END IF
NEXT
INPUT A$
TEXT

T
E
X
TSw

itches from
 the graphics display brought up by the H

G
R statem

ent to the text display
norm

ally used by G
Soft BA

SIC.
See H

CO
LO

R= or H
PLO

T for sam
ple program

s that use this com
m

and.

211

C
hapter 16 – U

tility Statem
ents

M
em

ory H
andling

A
L
L
O
C
A
T
E

'
(
'

l
-
v
a
l
u
e

[

'
,
'

e
x
p
r
e
s
s
i
o
n

]

'
)
'

A
llocates m

em
ory from

 the com
puter’s m

em
ory. l

-
v
a
l
u
e
 is set to a pointer to the

allocated m
em

ory. e
x
p
r
e
s
s
i
o
n is the num

ber of bytes of m
em

ory to reserve. If e
x
p
r
e
s
s
i
o
n

is not used, enough m
em

ory is reserved for one value of the type l-value.
M

em
ory allocated by A

LLO
CA

TE com
es from

 unallocated m
em

ory in the A
pple IIG

S, not
from

 the m
em

ory already set aside for variables and strings. This allow
s you to allocate large

chunks of m
em

ory that don’t interfere w
ith the variable space or string pool. It also gives your

program
 access to all of the m

em
ory in the A

pple IIG
S, w

hich allow
s you to set the m

em
ory size

for variables and strings fairly low
, yet gives you access to m

ore m
em

ory if the program
 needs

it—
say, to load a large database.
O

nce m
em

ory is allocated, it stays allocated until you use D
ISPO

SE to free the m
em

ory or
until you exit G

Soft BA
SIC. Restarting the program

 w
ith RU

N
 or using CLEA

R w
ill erase all

variables and strings, but m
em

ory allocated w
ith A

LLO
CA

TE is still reserved until you actually
leave G

Soft BA
SIC.

In m
ost cases A

LLO
CA

TE is used to reserve a chunk of m
em

ory for a record. The classic
exam

ple is allocating an elem
ent in a linked list. For the type and variable declarations

TYPE NUMBER
 AFTER AS POINTER TO NUMBER
 VALUE AS INTEGER
END TYPE
DIM TEMP AS POINTER TO NUMBER

the A
LLO

CA
TE statem

ent to allocate one record for the linked list is

ALLOCATE (TEMP)

For a com
plete sam

ple program
 that show

s linked lists in action, see U
sing the Record Type In

The Record (Linked Lists) in Chapter 10.
The second, optional param

eter to A
LLO

CA
TE is generally used for allocating m

em
ory for

variant records or for allocating large chunks of m
em

ory that are m
anipulated w

ith pointers.
For a sim

ple exam
ple of how

 the param
eter is used w

ith variant records, consider the
declarations

Language R
eference M

anual

212

TYPE COLLECTABLE
 COST
 DESCRIPTION$
 CASE COIN
 YEAR AS LONG
 DENOMINATION AS INTEGER
 CASE BEANIE_BABY
 CONDITION AS INTEGER
END
DIM THING AS POINTER TO COLLECTABLE

A
 record holding inform

ation about a coin needs 14 bytes, w
hile a record holding inform

ation
about a Beanie Baby needs 10 bytes. In cases w

here saving m
em

ory is of the utm
ost im

portance,
you can use this fact to allocate exactly the am

ount of m
em

ory you need for a particular record.
For exam

ple, to allocate a new
 record for a Beanie Baby, you w

ould use the statem
ent

ALLOCATE (THING, 10)

There are tw
o potential pitfalls to avoid. First, using a size that is too sm

all can quickly lead
to disaster. If you only allocated 8 bytes for the Beanie Baby, then filled in the CO

N
D

ITIO
N

 field,
you w

ould w
rite over m

em
ory that does not belong to this record. The resulting bug m

ay not
show

 up during routine testing, and becom
es very hard to track dow

n later. The best insurance
against this kind of bug is to collect all of the sizes you use in one location, storing them

 in
variables, and alw

ays use the variable w
hen allocating m

em
ory. This gives you a single point in

the program
 to change if the record ever changes.

U
sing this idea, the A

LLO
CA

TE call looks like this. A
t som

e point in your program
, you set

up the size as

DIM BBSIZE AS INTEGER
BBSIZE = 10

Later, the A
LLO

CA
TE uses this size:

ALLOCATE (THING, BBSIZE)

The second pitfall is changing the contents of a record. W
ith a statem

ent like

ALLOCATE (THING)

A
LLO

CA
TE allocates enough m

em
ory to hold the largest variant part, in this case 14 bytes. If

you override this value, like w
e did in the exam

ple above, but later change the value in the record
and fill in inform

ation for a coin, you w
ill again w

rite into m
em

ory that has not been reserved for
the record.

C
hapter 16: U

tility Statem
ents

213

D
I
S
P
O
S
E

'
(
'

l
-
v
a
l
u
e

'
)
'

D
isposes of m

em
ory previously allocated w

ith A
LLO

CA
TE.

It is an error to dispose of m
em

ory using a pointer that w
as not assigned by A

LLO
CA

TE or
to dispose of the sam

e m
em

ory tw
ice. BA

SIC cannot catch this error. A
n error of this type m

ay
eventually lead to corrupted m

em
ory or a crash.

For a com
plete sam

ple program
 that show

s D
ISPO

SE used to get rid of a linked list, see
U

sing the Record Type In The Record (Linked Lists) in Chapter 10. The snippet show
s a recursive

subroutine that disposes of a binary tree.

Snippet
TYPE TREE
 LEFT AS POINTER TO TREE
 RIGHT AS POINTER TO TREE
 NAME$
END TYPE

SUB DUMP (T AS TREE)
IF T^.RIGHT <> NIL THEN CALL DUMP (T^.RIGHT)
IF T^.LEFT <> NIL THEN CALL DUMP (T^.LEFT)
DISPOSE (T)
END SUB

N
I
LReturns a pointer value that is type com

patible w
ith all pointers, and that indicates a pointer

w
hich is not pointing to any m

em
ory location.

A
ll pointers are initially set to N

IL.
The ordinal value for N

IL is 0.
See the snippet for D

ISPO
SE for an exam

ple that uses N
IL. N

IL is universally used to
indicate that a pointer doesn’t point to anything. The recursive subroutine that is disposing of the
binary tree tests for N

IL so it can stop w
henever it gets to a pointer that doesn’t point to another

record.

S
E
T
M
E
M

'
(
'

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Sets the size of a m
em

ory buffer. The first expression is the m
em

ory buffer to set; this is 0
for the variable buffer and 1 for the program

 buffer. The second expression is the new
 size for the

buffer in bytes.
It is not an error to use som

ething other than 0 or 1 for the first param
eter, but if you do the

com
m

and is ignored. This allow
s future versions of G

Soft BA
SIC to add other buffers w

hose size
can be set w

ith SETM
EM

, yet the program
s w

ill still w
ork w

ith this version of G
Soft BA

SIC.
SETM

EM
 m

ust be used in the m
ain part of a program

, not in subroutines or functions. In
general, SETM

EM
 should be the first com

m
and in the program

.
M

em
ory buffer 0 is used for variables, types, strings, and som

e record keeping involved in
subroutine calls. The default size for this buffer is 64K

. If you get out of m
em

ory errors w
hen you

Language R
eference M

anual

214

are not using A
LLO

CA
TE, use SETM

EM
 to change the size of the variable buffer. U

sing
SETM

EM
 also deletes any existing variables; in this respect it w

orks exactly like CLEA
R.

M
em

ory buffer 1 is used for the program
 itself. Like the variable buffer, this buffer defaults to

64K
 bytes. If your program

 is larger than about 32K
, consider setting the buffer to about tw

ice the
size of your program

. Y
ou generally do this from

 the com
m

and line. O
ne w

ay to get an idea of the
size of your program

 is to look at the program
 on disk w

ith the CA
TA

LO
G

 com
m

and.
CA

TA
LO

G
 show

s the num
ber of blocks used by the program

. O
n a ProD

O
S form

at disk, the
m

em
ory used by the program

 w
ill be a little sm

aller than the num
ber of blocks tim

es 512.
If you are using the version of G

Soft BA
SIC that runs from

 O
RCA

, or if you create a stand-
alone program

 w
ith the M

akeRuntim
e utility, the program

 buffer is set to the actual size of the
program

. Y
ou should not need SETM

EM
 to change the size of the program

 buffer in these cases,
but it is available.

Snippet
! Double the size of the variable buffer, setting it to 128K.
SETMEM (0, CLNG (128) * 1024)

S
I
Z
E
O
F

'
(
'

(

t
y
p
e

|

i
d
e
n
t
i
f
i
e
r

)

'
)
'

Returns the size required to store one value of a given type, or the size used by the variable
i
d
e
n
t
i
f
i
e
r. The size is given in bytes.

SIZEO
F is generally used as the LEN

 param
eter to an O

PEN
 statem

ent or as the second
param

eter to A
LLO

CA
TE. For exam

ple, to open a file for random
 access that w

ill hold a record
called PERSO

N
, you w

ould use the com
m

and

OPEN "MailingList" FOR INPUT AS #1 LEN SIZEOF (PERSON)

If you w
ant to reserve m

em
ory to read this entire file into m

em
ory at once, you could follow

this up w
ith

ALLOCATE (PERSON_POINTER, LOF (1) * SIZEOF (PERSON))

Y
ou can use any type nam

e, including the built-in types. For exam
ple, SIZEO

F (IN
TEG

ER)
returns 2.

Peeks and Pokes
The com

m
ands in this section are used to read and w

rite inform
ation directly to specific

m
em

ory locations. This is generally done for one of tw
o reasons: Either the program

 needs to read
or w

rite to a m
em

ory location that is m
apped to an external device, or the program

 has been ported
from

 A
pplesoft BA

SIC, w
hich relied heavily on PEEK

s and PO
K

Es for operations that are
com

m
ands in G

Soft BA
SIC.

C
hapter 16: U

tility Statem
ents

215

See A
ppendix E, C

onverting Applesoft BASIC
 Program

s to G
Soft BASIC, for som

e
com

m
on hardw

are locations on the A
pple IIG

S, as w
ell as for a table show

ing som
e com

m
on

A
pplesoft BA

SIC PEEK
s and PO

K
Es and their equivalent G

Soft BA
SIC com

m
ands.

For a com
plete list of the various docum

ented m
em

ory locations that you m
ight w

ant to use
w

ith PEEK
 or PO

K
E, see Apple IIG

S H
ardware Reference and Apple IIG

S Firm
ware Reference.

Reprints of both books are available from
 the Byte W

orks. Y
ou m

ight also w
ant to use PEEK

 and
PO

K
E to control som

e hardw
are cards; see the docum

entation that com
es w

ith the card itself for a
list of the appropriate m

em
ory locations.

P
E
E
K

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the value of the byte located at the address e
x
p
r
e
s
s
i
o
n.

The expression can address any m
em

ory location, w
hich, in general, requires a LO

N
G

 value.
M

em
ory locations on the A

pple IIG
S range from

 0 to 16777215 ($00FFFFFF hexadecim
al). It is

best to avoid floating-point values for the expression, since a round-off error could easily cause you
to read the w

rong value from
 m

em
ory.

The snippet show
s a subroutine that looks to see if a keypress is available. This subroutine

should not be used if the Event M
anager is active; it looks directly at the keyboard strobe, w

hich is
som

ething the Event M
anager also does.

Snippet
FUNCTION KEYPRESS AS INTEGER
KEYPRESS = PEEK ($00C000) > 127
END FUNCTION

P
O
K
E

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

The least significant 8 bits of the value in the second expression are stored in the m
em

ory
location specified by the first expression.

PO
K

E can address any m
em

ory location, w
hich, in general, requires a LO

N
G

 value. M
em

ory
locations on the A

pple IIG
S range from

 0 to 16777215 ($00FFFFFF hexadecim
al). It is best to

avoid floating-point values for the expression, since a round-off error could easily cause you to
w

rite the value to the w
rong location in m

em
ory.

The value poked into m
em

ory should be in the range 0 to 255, w
hich is all a byte of m

em
ory

can hold. If the value lies outside this range, it is converted to the range 0 to 255 by converting the
second expression to an IN

TEG
ER, then using the least significant 8 bits of the result. If you

understand the tw
o’s com

plem
ent representation used to represent integers in m

em
ory, it’s easy

enough to figure out w
hat the resulting value w

ill be—
if you don’t, it’s best to m

ake sure the
value being poked is in the expected range.

The snippet reads a character from
 the keyboard. This m

ethod should not be used if the Event
M

anager is being used. G
Soft BA

SIC does not norm
ally use the Event M

anager, but you can turn
it on from

 your G
Soft BA

SIC program
.

Language R
eference M

anual

216

Snippet
FUNCTION READKEY AS STRING
WHILE PEEK ($00C0000) < 128
WEND
READKEY = CHR$ (PEEK ($00C0000) - 128)
POKE $00C010, 0 : ! Clear the key
END FUNCTION

C
learing the W

orkspace

C
L
E
A
R

Erases all types, variables and strings. V
ariables are rem

oved w
hether they w

ere created w
ith

the D
IM

 statem
ent or by being used w

ithout encountering a D
IM

 statem
ent.

This statem
ent is generally used to com

pletely reset a program
. This is occasionally handy

during debugging or w
hen w

riting an O
N

ERR G
O

TO
 error handler.

G
Soft V

ersion N
um

ber

V
E
R
S
I
O
N

Returns the G
Soft BA

SIC version num
ber encoded as a long integer. This long integer can be

easily com
pared to see if the version of G

Soft BA
SIC contains som

e critical new
 feature. W

hen
properly form

atted and printed, this version num
ber w

ill m
atch the version num

ber printed w
hen

the G
Soft BA

SIC shell starts, as w
ell as the version num

ber show
n by the Finder for

G
Soft.Sys16.

The G
Soft BA

SIC version num
ber consists of five parts. These are:

m
ajor version

This is the m
ajor version release num

ber. This num
ber doesn't change very

often, and w
hen it does, it indicates m

ajor changes. This probably includes a
new

 m
anual, and m

ay include changes that m
ay som

e old program
s fail

under the new
 version of the language. This num

ber starts at 1.
m

inor version
This version num

ber changes w
henever a new

 feature is added to
G

Soft BA
SIC or a change to an existing feature is m

ade that affects the
docum

entation. These changes are generally m
inor changes. They are

typically docum
ented in a release notes file, and do not require a new

m
anual, although an updated m

anual m
ay be available. This num

ber starts
at 0 each tim

e the m
ajor version num

ber changes.
bug version

This version num
ber is changed each tim

e G
Soft BA

SIC changes, no m
atter

how
 m

inor the change m
ight be. A

 change in the bug version usually
indicates a release that fixes errors or expands lim

itations in an earlier

C
hapter 16: U

tility Statem
ents

217

release. N
othing in the docum

entation changes, but the changes to the
program

 w
ill be listed in the release notes file that accom

panies each release.
This num

ber starts at 0 each tim
e the m

inor version num
ber changes.

release type
The release type is one of four values.
0

Indicates a com
m

ercial release of G
Soft BA

SIC. This is the m
ost

com
m

on value.
1

D
evelopm

ent release. This designation is used for versions that are in
the early stages of developm

ent. A
ll planned features are not

im
plem

ented and testing is incom
plete. Program

m
ing errors are

expected in a developm
ent release.

2
A

lpha release. A
n alpha release contains all of the features initially

planned for the com
m

ercial release, although som
e of the features m

ay
not be in their final form

. M
ost testing is com

plete, and m
ajor bugs are

either elim
inated or clearly identified.

3
Beta release. A

 beta release is a nearly com
plete com

m
ercial release. A

ll
planned features are im

plem
ented, and no changes to these features is

anticipated by the program
m

ers or testers, although subsequent beta
testing m

ay identify areas that still need to be changed. A
ll know

n bugs
are elim

inated. Form
al testing is com

plete.
release version

This indicates the developm
ent, alpha or beta release level. It starts at 1 each

tim
e the release designation changes.

The initial release of G
Soft BA

SIC, and the one this m
anual describes, is 1.0.0. V

ERSIO
N

returns the value 10000000.
A

 typical use of the V
ERSIO

N
 com

m
and is to check to see if a particular feature is available.

For exam
ple, let’s assum

e you are w
riting a program

 using a later version of G
Soft BA

SIC, say
version 1.1.0, and your program

 uses a feature that w
as not im

plem
ented in this release. Y

ou could
start your program

 by calling this subroutine to m
ake sure the version of G

Soft BA
SIC is

appropriate.

FUNCTION CHECK_VERSION AS INTEGER
IF VERSION >= 10100000
 CHECK_VERSION = 1
ELSE
 PRINT "This program requires GSoft BASIC 1.1.0 or later."
 INPUT "Press the RETURN key to continue."; A$
 CHECK_VERSION = 0
END IF
END FUNCTION

H
ere is a short program

 that changes the version num
ber into a string.

Language R
eference M

anual

218

PRINT VERSION$

FUNCTION VERSION$ AS STRING
DIM V AS LONG
V$ = STR$ (CLNG (VERSION / 10000000))
V = VERSION - CLNG (VERSION / 10000000) * 10000000
V$ = V$ + "." + STR$ (CLNG (V / 100000))
V = V - CLNG (V / 100000) * 100000
V$ = V$ + "." + STR$ (CLNG (V / 1000))
V = V - CLNG (V / 1000) * 1000
IF V <> 0 THEN
 SELECT CASE CLNG (V / 100)
 CASE 1:V$ = V$ + " D"
 CASE 2:V$ = V$ + " A"
 CASE 3:V$ = V$ + " B"
 END SELECT
 V$ = V$ + STR$ (V - CLNG (V / 100) * 100)
END IF
VERSION$ = V$
END FUNCTION

219

C
hapter 17 – Subroutines

G
O

SU
B Subroutines

Subroutines based on G
O

SU
B are sim

ple to im
plem

ent and easy to understand. They are also
a part of virtually every im

plem
entation of BA

SIC. G
O

SU
B statem

ents do require the use of line
num

bers, the line num
ber doesn’t tell you as m

uch as a SU
B nam

e about w
hat a call does, and in

long program
s the tim

e required to find the line num
ber can significantly slow

 dow
n a program

that calls lots of subroutines. For these reasons, SU
B is generally a better w

ay to handle
subroutines in G

Soft BA
SIC.

G
O
S
U
B

l
i
n
e
-
n
u
m
b
e
r

Control jum
ps to the first line w

hose num
ber m

atches l
i
n
e
-
n
u
m
b
e
r. l

i
n
e
-
n
u
m
b
e
r

m
ust be an integer constant. W

hen a RETU
RN

 statem
ent is encountered, control jum

ps to the
statem

ent after G
O

SU
B. The follow

ing program
 illustrates this by printing 1, 2 and 3 using

subroutine calls.

 I = 1
 GOSUB 10
 I = I + 1
 GOSUB 10
 I = I + 1
 GOSUB 10
 END

 10 PRINT I
 END

Subroutines can be nested up to 24 levels deep. Recursion is allow
ed so long as this lim

it is
not exceeded. H

ere’s a sim
ple exam

ple of a recursive subroutine that calculates a positive integer
exponent. The m

axim
um

 exponent that can be used is 23, as show
n, since adding 1 to the

exponent w
ould cause a 25th subroutine call.

 X = 3
 R = 1
 E = 23
 GOSUB 10
 PRINT R
 END

Language R
eference M

anual

220

 10 IF E = 0 THEN RETURN
 E = E - 1
 R = R * X
 GOSUB 10
 RETURN

The variables used in the subroutine are identical to the variables used in the rest of the
program

, so in

 I = 4
 GOSUB 10
 PRINT I
 END
 10 I = 5
 RETURN

the value printed is 5, not 4.
If G

O
SU

B is used in a subroutine or function, the destination line m
ust be in the sam

e
procedure. If G

O
SU

B is used in the m
ain program

, the destination line m
ust also be in the m

ain
program

.

O
N

e
x
p
r
e
s
s
i
o
n

G
O
S
U
B

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

l
i
n
e
-
n
u
m
b
e
r

]
*

The O
N

-G
O

SU
B statem

ent is sim
ilar to the O

N
-G

O
TO

 statem
ent. It uses an index to jum

p to
one of several locations in a program

.
The expression is evaluated, then truncated to an integer. Counting from

 one, one of the line
num

bers is selected from
 the list of line num

bers im
m

ediately after G
O

SU
B, and the program

 does
a G

O
SU

B call to that line. If there are no m
atching line num

bers, execution continues w
ith the

line after the O
N

-G
O

SU
B statem

ent.
Just as w

ith the G
O

SU
B statem

ent, RETU
RN

 is used to return from
 the subroutine call.

Control continues w
ith the statem

ent im
m

ediately after the O
N

-G
O

SU
B statem

ent.

Snippet
 FOR I = 1 TO 3
 ON I GOSUB 10, 20, 30
 NEXT
 END

 10 PRINT "one"
 RETURN
 20 PRINT "two"
 RETURN
 30 PRINT "three"
 RETURN

C
hapter 17: Subroutines

221

P
O
PRem

oves one G
O

SU
B return address from

 the stack. In effect, this turns the m
ost recent

G
O

SU
B into a G

O
TO

.

R
E
T
U
R
N

Returns from
 the m

ost recent G
O

SU
B or O

N
-G

O
SU

B, transferring control to the statem
ent

follow
ing the G

O
SU

B statem
ent.

See G
O

SU
B for exam

ples of RETU
RN

.

D
EF FN

 Functions

D
E
F

F
N

i
d
e
n
t
i
f
i
e
r

'
(
'

i
d
e
n
t
i
f
i
e
r

[

'
,
'

i
d
e
n
t
i
f
i
e
r

]
*

'
)
'

'
=
'

e
x
p
r
e
s
s
i
o
n

Creates a local function. The function is called using FN
 follow

ed by the function nam
e and a

param
eter list.

The function definition m
ust be encountered before the first tim

e it is used, so

DEF FN SQUARE(X) = X * X
PRINT FN SQUARE(2)

w
orks fine, printing 4, but

PRINT FN SQUARE(2)
DEF FN SQUARE(X) = X * X

fails.Param
eters and the value returned by the function can be any num

eric or string type. Types are
assigned using trailing type characters, as in A

$ for a string. For exam
ple,

DEF FN PATH$(PREFIX$, FILE$) = PREFIX$ + ":" + FILE$
PRINT FN PATH$(":mydisk:myfolder", "myfile")

prints the full path nam
e

:mydisk:myfolder:myfile

W
hen the function is called using a FN

 term
 in an expression, each param

eter in the call is
evaluated and assigned to the corresponding param

eter variable. The expression is then evaluated.
The expression m

ust result in a value that is type com
patible w

ith the function nam
e. The

Language R
eference M

anual

222

expression can use constants, param
eter variables, other variables that do not have the sam

e nam
e

as a param
eter, and other functions—

but recursive calls are not allow
ed.

If the function uses variables that are not param
eters, the variables are shared w

ith the program
or procedure containing the function. For exam

ple

DEF FN F(X) = X * Y
Y = 4
X = 5
PRINT FN F(2), X

prints 8, then 5. The value of Y
 used by the function com

es from
 the m

ain program
, and is set to

4. The value of the param
eter X

 is 2, set w
hen the function is called by the PRIN

T statem
ent; the

param
eter X

 is com
pletely different from

 the variable X
 in the program

.
Functions created w

ith D
EF FN

 are local to the m
ain program

 or procedure in w
hich they are

created.
Y

ou can redefine a D
EF FN

 function; the latest definition is the one used. Thus

DEF FN F(X) = X * X
DEF FN F(X) = X * X * X
PRINT FN F(2)

is legal, and prints 8. The first function is replaced by the second. A
 m

ore com
m

on use for this
feature is to define the function based on som

e input param
eter. For exam

ple,

IF SQUARE THEN
 DEF FN F(X) = X * X
ELSE
 DEF FN F(X) = X * X * X
END IF

W
hile this short exam

ple is a bit contrived, practical exam
ples are not difficult to com

e by.
For exam

ple, you m
ight create several functions for calculating interest, then choose the

appropriate function using a condition like the one show
n. A

ll of the calculations in the rest of the
program

 w
ould be the sam

e, and there w
ould be no tim

e consum
ing testing in the program

 itself
to choose the correct interest calculation.

D
EF FN

 functions are lim
ited to a single line w

ith no control statem
ents. Essentially, the

function m
ust be som

ething that could be handled w
ith a LET statem

ent. This disadvantage is
offset som

ew
hat by tw

o advantages: D
EF FN

 functions are generally faster than an equivalent
function defined w

ith the FU
N

CTIO
N

 statem
ent; and you can have m

ore than one function w
ith

the sam
e nam

e, choosing the correct one as the program
 runs or even replacing a function that is

in use w
ith a new

 one by the sam
e nam

e.

C
hapter 17: Subroutines

223

Subroutines and Functions

SU
B and FU

N
C

TIO
N

 Param
eter Lists

Both SU
B subroutines and FU

N
CTIO

N
 functions support param

eter lists. The rules for
param

eter lists are the sam
e for both. In this section, subroutines and functions w

ill be referred to
as procedures, a nam

e that encom
passes both subroutines and functions.

Param
eter lists follow

 the procedure nam
e, enclosed in parentheses. A

 param
eter list consists

of one or m
ore param

eter declarations separated by com
m

as. Each param
eter declaration is a

variable, optionally follow
ed by A

S and a type. If no type is given explicitly, the type is derived
from

 the nam
e of the variable.

For exam
ple, this function returns the hyperbolic sine of a value. Like all of the procedures in

this section, it’s show
n w

ith a sim
ple test program

, w
hich show

s how
 a param

eter is coded w
hen

the procedure is called. The exam
ples form

 very short program
s, but they are com

plete and w
ill run

as show
n, so you can type them

 in and try variations to explore how
 procedures w

ork.

PRINT SINH (2)
END

FUNCTION SINH (X)
SINH = 0.5 * (EXP (X) - EXP (- X))
END FUNCTION

The param
eter doesn’t have an A

S type clause, so the type is assum
ed from

 the variable nam
e.

Just as w
ith a variable anyw

here else in the program
, a nam

e w
ith no trailing type character is

SIN
G

LE. For that m
atter, the function itself returns a SIN

G
LE value for the sam

e reason.
There are tw

o w
ays to create a sim

ilar function that takes a D
O

U
BLE argum

ent and returns a
D

O
U

BLE result. The first uses type characters, like this:

PRINT SINH# (2)
END

FUNCTION SINH# (X#)
SINH# = 0.5D0 * (EXP (X#) - EXP (- X#))
END FUNCTION

The other m
ethod requires a bit m

ore typing, but you don’t have to type # after the nam
e

w
hen you use the function. It looks like this:

PRINT SINH (2)
END

Language R
eference M

anual

224

FUNCTION SINH (X AS DOUBLE) AS DOUBLE
SINH = 0.5D0 * (EXP (X) - EXP (- X))
END FUNCTION

A
rrays, records, pointers, strings and all num

eric types are allow
ed as param

eters. A
ll of the

num
eric types and strings w

ork exactly like the exam
ple of SIN

G
LE and D

O
U

BLE in the SIN
H

function, above.
Y

ou can declare a pointer param
eter tw

o w
ays. The first is to create a type nam

e in the m
ain

part of the program
, then use the type nam

e in the param
eter list, like this:

TYPE IPTR AS POINTER TO INTEGER
DIM I AS INTEGER
DIM IP AS IPTR
IP = @I
I = 4
CALL TEST(IP)
END

SUB TEST(P AS IPTR)
PRINT P^
END SUB

The second w
ay to declare a pointer param

eter is m
ore direct. It uses the PO

IN
TER TO

 type
qualifier, like this:

DIM I AS INTEGER
DIM IP AS POINTER TO INTEGER
IP = @I
I = 4
CALL TEST(IP)
END

SUB TEST(P AS POINTER TO INTEGER)
PRINT P^
END SUB

Passing records is just as straight forw
ard. In the case of a record, the type m

ust be predefined.
Types defined in the m

ain part of the program
 can be used in the param

eter list—
or in the

procedure itself, for that m
atter. The issue of global and local variables is discussed m

ore
com

pletely in the section Local Variables and Types, below
. H

ere’s a short sam
ple that

dem
onstrates how

 records are passed.

C
hapter 17: Subroutines

225

TYPE POINT3D
 X:Y:Z
END TYPE
DIM P AS POINT3D
P.X = 1.2
P.Y = 3.4
P.Z = 5.6
CALL PRINTPOINT(P)
END

SUB PRINTPOINT(P AS POINT3D)
PRINT USING "(#.# #.# #.#)";P.X, P.Y, P.Z
END SUB

The only param
eter type that isn’t com

pletely straight forw
ard is an array. There are tw

o
problem

s that contribute to the rather odd w
ay arrays are passed, and one unexpected benefit. The

first problem
 is that BA

SIC traditionally doesn’t support types, and even G
Soft BA

SIC doesn’t
support types that are an array of som

ething. Because of this historical lim
itation, the designers of

early im
plem

entations of BA
SIC had to com

e up w
ith a w

ay of passing arrays that did not depend
on types. In addition, you can have an array and a non-array w

ith the sam
e nam

e;

DIM A, A(4)

is perfectly legal. It creates tw
o variables, both nam

ed A
, but one is a SIN

G
LE variable and the

other is an array of five SIN
G

LE values.
To solve these tw

in problem
s, BA

SIC uses parentheses im
m

ediately after the nam
e of the

array, both w
hen the procedure is declared and w

hen it is called. N
othing goes inside the

parentheses in either case, though. U
sing A

(4) as a param
eter w

hen you call a procedure passes the
specific SIN

G
LE value at that index, just as printing A

(4) prints a specific SIN
G

LE value from
the array. Specifying the m

axim
um

 length of the array in the procedure declaration w
ould have

w
orked, but the designers of BA

SIC chose not to.
A

ll of this leads to the rather odd looking em
pty subscripts you see in the follow

ing exam
ple

of array param
eter passing, but it also leads to a pow

erful benefit. Since there is no m
axim

um
subscript in the procedure declaration, w

e don’t have to lim
it procedure calls to arrays of a specific

length, as the exam
ple show

s. W
e can use the sam

e procedure to handle arrays of several sizes.
This exam

ple uses a single procedure to calculate the length of a vector, but the subroutine can
handle vectors in tw

o or three dim
ensions—

or m
ore, for that m

atter.

DIM V2(1), V3(2)
V2(0) = 3
V2(1) = 4
V3(0) = 2
V3(1) = 2
V3(2) = 2
PRINT LENGTH(V2(), 2), LENGTH(V3(), 3)
END

Language R
eference M

anual

226

FUNCTION LENGTH(V(), DIMENSIONS AS INTEGER)
SQUARES = 0.0
FOR I% = 0 TO DIMENSIONS - 1
 SQUARES = SQUARES + V(I%) * V(I%)
NEXT
LENGTH = SQR (SQUARES)
END FUNCTION

Surprisingly, this flexibility is not accom
panied by the danger of an array overflow

, as it is in
C. If you try to access an illegal array subscript, perhaps because you passed the w

rong dim
ension

in the exam
ple above, BA

SIC detects the error and stops the program
.

M
ultiply subscripted arrays are handled exactly the sam

e w
ay, as the exam

ple below
 show

s.
This exam

ple com
putes the determ

inant of a m
atrix w

ith tw
o or m

ore row
s and colum

ns using
cofactor reduction. The im

portant point here isn’t w
hether you know

 w
hat cofactor reduction is, or

even w
hat the determ

inant of a m
atrix is. The im

portant point is that the sam
ple show

s clearly
how

 a m
ulti-dim

ensional array is passed as a procedure param
eter. It also show

s a clever use of
BA

SIC’s ability to handle variable dim
ensioned arrays, since the procedure calls itself w

ith
successively sm

aller arrays until the 2 by 2 case is reached. This is som
ething that C can’t do.

M
ost Pascal im

plem
entations can’t do this, either.

DIM I AS INTEGER , J AS INTEGER
DIM DIMENSIONS AS INTEGER
!DIMENSIONS = 3
DIM A(DIMENSIONS - 1, DIMENSIONS - 1)
!FOR I = 0 TO DIMENSIONS - 1
 FOR J = 0 TO DIMENSIONS - 1
 A(I, J) = 10 * I + J
 NEXT
NEXT
PRINT DETERMINANT(A(), DIMENSIONS)
END

FUNCTION DETERMINANT(A(), DIMENSIONS AS INTEGER)
IF DIMENSIONS = 2 THEN
 DETERMINANT = A(0, 0) * A(1, 1) - A(0, 1) * A(1, 0)
ELSE
 DIM B(DIMENSIONS - 1, DIMENSIONS - 1)
 DIM I AS INTEGER , J AS INTEGER
 DIM R AS INTEGER , C AS INTEGER
 !

C
hapter 17: Subroutines

227

 SIGN = 1.0
 SUM = 0.0
 FOR I = 0 TO DIMENSIONS - 1
 R = 0
 FOR J = 0 TO DIMENSIONS - 1
 IF J <> I THEN
 FOR C = 1 TO DIMENSIONS - 1
 B(R, C - 1) = A(J, C)
 NEXT
 R = R + 1
 END IF
 NEXT
 SUM = SUM + SIGN * A(I, 0) * DETERMINANT(B(), DIMENSIONS - 1)
 SIGN =- SIGN
 NEXT
 DETERMINANT = SUM
END IF
END FUNCTION

Passing Param
eters by R

eference and V
alue

There are tw
o fundam

entally different w
ays to pass a param

eter to a subroutine, and
G

Soft BA
SIC allow

s them
 both.

The first is called pass by reference. W
hen you pass a param

eter by reference, changes m
ade

inside the subroutine affect the original variable, too. For exam
ple, the program

I = 4
J = 5
CALL DOUBLE(I)
CALL DOUBLE(J)
PRINT I, J
END

SUB DOUBLE(X)
X = X + X
END SUB

prints 8 and 10; changes m
ade to the variable X

 inside the subroutine also change the original
variable. A

ny tim
e you pass the nam

e of a variable as a param
eter, you are passing the param

eter
by reference.

The second w
ay to pass a param

eter is by value. W
hen you pass a param

eter by value, changes
m

ade inside the subroutine have no effect on the original value passed. In BA
SIC, all expressions,

no m
atter how

 sim
ple, are passed by value. It’s traditional to enclose a variable in parentheses to

pass it by value. Recoding the sam
ple,

Language R
eference M

anual

228

I = 4
J = 5
CALL DOUBLE((I))
CALL DOUBLE((J))
PRINT I, J
END

SUB DOUBLE(X)
X = X + X
END SUB

prints 4 and 5.
There is one subtle point about num

eric variables passed as param
eters. Forcing BA

SIC to
convert from

 one type to another is an expression. If you pass, say, an integer variable to a
procedure that expects a SIN

G
LE variable, the value is converted. W

hen this happens, the variable
is passed by value, never by reference, so

I% = 4
J# = 5
CALL DOUBLE(I%)
CALL DOUBLE(J#)
PRINT I%, J#
END

SUB DOUBLE(X)
X = X + X
END SUB

prints 4 and 5.
A

rrays and records m
ust be passed by reference, since they cannot be used in an expression.

V
ariables of all other types can be passed either w

ay.

U
sing Param

eters

Inside a procedure, a param
eter w

orks just like any other variable. Y
ou can use the param

eters
in expressions, change the value of a param

eter, or pass the param
eter as a param

eter to yet another
procedure.

Space used by param
eters vanishes as soon as the procedure returns.

Local V
ariables and Types

V
ariables declared inside the procedure survive until the procedure returns, but no longer. If the

procedure is called again, an entirely new
 set of variables is allocated. This prevents you from

storing values inside a subroutine for later use. For exam
ple, the program

C
hapter 17: Subroutines

229

FOR I = 1 TO 10
 CALL TEST
NEXT
END

SUB TEST
J = J + 1
PRINT J
END SUB

looks, at first glance, like it m
ight print the num

bers 1 to 10. In fact, it prints 1 ten tim
es. Every

tim
e the subroutine TEST returns to the m

ain program
, the value J vanishes; each tim

e TEST is
called again, a new

 variable nam
ed J is created and initialized to zero.

V
ariables from

 outside the procedure cannot be accessed from
 inside, although passing

param
eters by reference does give you a w

ay to change values outside the procedure. The program

X = 5
CALL TEST
PRINT X
END

SUB TEST
PRINT X
END SUB

prints 0 and 5, not 5 and 5. The variable X
 from

 the m
ain program

 is not available inside the
subroutine. U

sing X
 in the PRIN

T statem
ent creates a new

 variable called X
 inside the subroutine

and initializes it to 0. The PRIN
T statem

ent prints 0. U
pon return to the m

ain program
, the

variable X
 that w

as created inside the subroutine vanishes, so the PRIN
T statem

ent in the m
ain

program
 prints the original variable called X

 w
hose value is 5.

Types defined in the m
ain program

 are, how
ever, available in procedures as w

ell as the
program

, as are types declared in tool interface files. This allow
s you to use a type declared in the

m
ain program

 as the type of a param
eter, and to declare variables that are type com

patible w
ith the

param
eter inside the procedure.

R
ecursion w

ith SU
B and FU

N
C

TIO
N

Recursion is a process w
here a procedure calls itself. It is usually used to break a problem

dow
n into sm

aller pieces. BA
SIC supports recursion, as you can see from

 the m
any exam

ples
throughout the book, including the determ

inant exam
ple from

 SU
B and FU

NCTIO
N Param

eter
Lists, earlier in this chapter.

The only lim
it on recursion depth is the m

em
ory available in the variables buffer. Each tim

e
you call a procedure, som

e m
em

ory is used to store various values, like the location of the line to
return to after the procedure com

pletes. Space is also used for param
eters and local variables. If you

Language R
eference M

anual

230

try to call a procedure and there isn’t enough m
em

ory left to store these values, your program
 w

ill
stop w

ith an out of m
em

ory error.
Y

ou can use FRE to check the available m
em

ory in a recursive subroutine, sw
itching to a

non-recursive substitute or handling the error in som
e other w

ay if m
em

ory runs low
.

C
A
L
L

i
d
e
n
t
i
f
i
e
r

[

p
a
r
a
m
e
t
e
r
-
l
i
s
t

]

Calls a subroutine defined by a SU
B statem

ent. See SU
B for details, or SU

B and FU
NCTIO

N
Param

eter Lists for several exam
ples.

F
U
N
C
T
I
O
N

i
d
e
n
t
i
f
i
e
r

[

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n
-
l
i
s
t

]

[

A
S

t
y
p
e

]

[

s
t
a
t
e
m
e
n
t

]
*

E
N
D

F
U
N
C
T
I
O
N

D
efines a function. The FU

N
CTIO

N
 definition appears after the BA

SIC program
, m

ixed w
ith

any SU
B definition and other FU

N
CTIO

N
 definition in any order. The program

 m
ust not execute a

FU
N

CTIO
N

 statem
ent, so the program

 itself should end w
ith an EN

D
 statem

ent. For exam
ple, the

program

PRINT SQUARE (2)
END

FUNCTION SQUARE (X)
SQUARE = X * X
END FUNCTION

w
orks just fine, but leaving the EN

D
 statem

ent out w
ould cause an error. The program

 w
ould run,

and it w
ould still print 4, but right after the PRIN

T statem
ent the program

 w
ould try to execute

the FU
N

CTIO
N

 declaration, and that w
ould cause an error.

The identifier is the nam
e of the function. This is follow

ed by the param
eter list, if any, and

the type returned by the function. The statem
ents that appear betw

een the FU
N

CTIO
N

 statem
ent

and the EN
D

 FU
N

CTIO
N

 statem
ent are executed as if they w

ere a program
, then the last value set

for the function is returned to the caller.
The param

eter list appears after the function nam
e in parentheses. Param

eter lists for
FU

N
CTIO

N
 and SU

B procedures follow
 the sam

e rules. These rules are discussed in SU
B and

FU
NCTIO

N Param
eter Lists, earlier in this chapter.

Last is the type of the function, coded as A
S follow

ed by a type nam
e. A

 function can return
any sim

ple type, such as LO
N

G
 or STRIN

G
; and it can return a pointer. Functions cannot return

records or arrays, although they can return pointers to either a record or an array. If no type is
given, the type is assum

ed from
 the function nam

e, just as it is for a variable nam
e. Follow

ing
these rules,

FUNCTION F (X)

C
hapter 17: Subroutines

231

is a function that returns a SIN
G

LE value.

FUNCTION F% (X)

and

FUNCTION F (X) AS INTEGER

both return an IN
TEG

ER value.
The value returned by the function is set by assigning a value to the function nam

e. This can
be done m

ore than one tim
e; the last value set is the one returned. If no value is set, 0 is returned

for num
eric functions, a null string for strings, and a null pointer for pointers.

A
 function returns to the m

ain program
 w

hen the EN
D

 FU
N

CTIO
N

 statem
ent executes.

See Local Variables and Types for a discussion of local variables, and Recursion with SU
B

and FU
NCTIO

N for a discussion of recursion. These sections and SU
B and FU

NCTIO
N Param

eter
Lists, appear earlier in this chapter; all three have extensive exam

ples of functions.

S
U
B

i
d
e
n
t
i
f
i
e
r

[

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n
-
l
i
s
t

]

[

s
t
a
t
e
m
e
n
t

]
*

E
N
D

S
U
B

D
efines a subroutine.

The SU
B definition appears after the BA

SIC program
, m

ixed w
ith any FU

N
CTIO

N
definitions and other SU

B definitions in any order. The program
 m

ust not execute a SU
B

statem
ent, so the program

 itself should end w
ith an EN

D
 statem

ent. For exam
ple, the program

CALL HELLO
END

SUB HELLO
PRINT "Hello, world."
END SUB

w
orks just fine, but leaving the EN

D
 statem

ent out w
ould cause an error. The program

 w
ould run,

and it w
ould still print “H

ello, w
orld.”, but right after the CA

LL statem
ent the program

 w
ould try

to execute the SU
B declaration, and that w

ould cause an error.
The identifier is the nam

e of the subroutine, used w
hen it is called. This is follow

ed by the
param

eter list, if any. The statem
ents that appear betw

een the SU
B statem

ent and the EN
D

 SU
B

statem
ent are executed as if they w

ere a program
.

The param
eter list appears after the subroutine nam

e in parentheses. Param
eter lists for

FU
N

CTIO
N

 and SU
B procedures follow

 the sam
e rules. These rules are discussed in SU

B and
FU

NCTIO
N Param

eter Lists, earlier in this chapter.

Language R
eference M

anual

232 Subroutines are called w
ith the CA

LL statem
ent. This is follow

ed by the nam
e of the

subroutine and any param
eters.

A
 subroutine returns to the m

ain program
 w

hen the EN
D

 SU
B statem

ent executes.
See Local Variables and Types for a discussion of local variables, and Recursion with SU

B
and FU

NCTIO
N for a discussion of recursion. These sections and SU

B and FU
NCTIO

N Param
eter

Lists, appear earlier in this chapter; all three have extensive exam
ples of subroutines.

233

C
hapter 18 – Standard Libraries

W
hen G

Soft BA
SIC is properly installed, the com

m
ands you see in this chapter w

ork just
like the com

m
ands built into the G

Soft BA
SIC language, yet these com

m
ands are not a part of

G
Soft BA

SIC. They are part of the standard libraries package that w
e expect to im

plem
ent on all

platform
s that have the hardw

are necessary to support these features.
These libraries are installed for you by the installer that ships w

ith G
Soft BA

SIC. See
Installing G

Soft BASIC
 on a H

ard D
isk in Chapter 2 for m

ore inform
ation about the installer.

M
ore in-depth inform

ation about how
 libraries are constructed and installed can be found in

A
ppendix D

, W
riting U

ser Tools for G
Soft BASIC. For the m

ost part, the only detail you need to
be aw

are of is that the libraries require user tools that are not built into the G
Soft BA

SIC
language, so if your program

s w
ill be used by people w

ho do not have G
Soft BA

SIC, you need to
rem

em
ber to include the user tools w

ith your program
. The Byte W

orks, Inc. grants a royalty free
license to include these tools w

ith any program
 w

ritten in G
Soft BA

SIC. See Including Libraries
w

ith G
Soft BASIC

 Program
s in Chapter 4 for details.

The G
am

e Paddle Library
Libraries in G

Soft BA
SIC are num

bered. The G
am

e Paddle Library is library num
ber 1.

O
ne capability that is built into A

pplesoft BA
SIC but not G

Soft BA
SIC is a com

m
and to

read joysticks and gam
e paddles connected to the gam

e paddle port. O
ne of the problem

s w
ith the

gam
e paddle port is that subroutines have to be fine tuned for the processor speed you are actually

using. For that reason, com
m

ands to read the gam
e paddle port are not built into the language

itself.The G
am

e Paddle Library does m
ore than read the paddle values like A

pplesoft BA
SIC’s PD

L
com

m
and, though. It also adds com

m
ands to read the four TTL sw

itches on the gam
e paddle port,

as w
ell as the ability to set and clear the four TTL annunciators. Y

ou can also do this w
ith PEEK

and PO
K

E com
m

ands, but the G
am

e Paddle Library gives you a cleaner interface.
Refer to the Apple IIG

S H
ardware Reference for inform

ation about the gam
e paddle port itself,

including pinout diagram
s that you can use to build your ow

n TTL and resistor based devices to
connect to the gam

e paddle port.

S
U
B

G
T
B
o
o
t
I
n
i
t

This call is m
ade at boot tim

e. It doesn’t do anything in this library.

S
U
B

G
T
S
t
a
r
t
u
p

Y
ou should m

ake this call im
m

ediately after loading the library w
ith LO

A
D

LIBRA
RY

.
G

TStartup does any required initialization. It doesn’t do anything in the G
am

e Paddle Library, but
it’s a good idea to m

ake the startup call for any library you load.

Language R
eference M

anual

234

S
U
B

G
T
S
h
u
t
D
o
w
n

Y
ou should m

ake this call just before you use U
N

LO
A

D
LIBRA

RY
 to unload the G

am
e

Paddle Library. G
TShutD

ow
n does any required clean up. This call doesn’t do anything in the

G
am

e Paddle Library, but it’s a good idea to m
ake this call w

hen you are finished w
ith any library.

F
U
N
C
T
I
O
N

G
T
V
e
r
s
i
o
n

A
S

I
N
T
E
G
E
R

Returns the version num
ber for the library. The m

ost significant byte is the m
ajor version,

and the least significant byte is the m
inor version. Y

ou can print the version num
ber in the

com
m

on form
 of m

ajor.m
inor this w

ay:

VERSION% = GTVERSION
MAJOR% = VERSION% / 256
MINOR% = VERSION% - MAJOR% * 256
PRINT USING "The Game Paddle Library version number is #.#."; MAJOR%,

MINOR%

F
U
N
C
T
I
O
N

G
T
S
t
a
t
u
s

A
S

I
N
T
E
G
E
R

Returns true (a value of 1) if the G
am

e Paddle Library has been started w
ith G

TStartup and has
not yet been shut dow

n, or false (a value of 0) if the G
am

e Paddle Library is not started.

F
U
N
C
T
I
O
N

G
T
G
e
t
S
w
i
t
c
h

(
S
W
I
T
C
H

A
S

I
N
T
E
G
E
R
)

A
S

I
N
T
E
G
E
R
)

Returns the current setting of one of the four TTL input sw
itches. The sw

itches are num
bered

0 to 3.If SW
ITCH

 is outside the range 0 to 3, G
TG

etSw
itch sets TO

O
LERRO

R to $0101.

S
U
B

G
T
C
l
e
a
r
A
n
n
u
n
c
i
a
t
o
r

(
A
N
N
U
N
C
I
A
T
O
R

A
S

I
N
T
E
G
E
R
)

Clears (turns off) one of the four TTL output annunciators. The annunciators are num
bered 0

to 3.If A
N

N
U

N
CIA

TO
R is outside the range 0 to 3, G

TClearA
nnunciator sets TO

O
LERRO

R to
$0101.

S
U
B

G
T
S
e
t
A
n
n
u
n
c
i
a
t
o
r

(
A
N
N
U
N
C
I
A
T
O
R

A
S

I
N
T
E
G
E
R
)

Sets (turns on) one of the four TTL output annunciators. The annunciators are num
bered 0 to

3.
If A

N
N

U
N

CIA
TO

R is outside the range 0 to 3, G
TSetA

nnunciator sets TO
O

LERRO
R to

$0101.

F
U
N
C
T
I
O
N

G
T
G
e
t
P
a
d
d
l
e

(
P
A
D
D
L
E

A
S

I
N
T
E
G
E
R
)

A
S

I
N
T
E
G
E
R

Reads one of the four resistor inputs to the gam
e paddle port. The resistor inputs are num

bered
0 to 3. A

 single joystick uses paddle 0 for the X
 axis and paddle 1 for the Y

 axis; a system
 that

C
hapter 18: Standard Libraries

235

supports tw
o joysticks w

ill use paddles 2 and 3 for the X
 and Y

 axis, respectively. G
am

e paddles
are generally num

bered, and also use inputs 0 and 1 for the standard configuration of tw
o paddles.

G
TG

etPaddle returns a value from
 0 to 255, depending on the resistance across the port. G

am
e

paddles generally return low
er values w

hen turned counterclockw
ise and higher values w

hen turned
clockw

ise; joysticks generally return low
er values w

hen pushed up or left, and higher values w
hen

pushed right or dow
n.

The routines used to read the gam
e paddle port are sensitive to the CPU

 speed of the com
puter.

The G
am

e Paddle Library is tim
ed for an unaccelerated A

pple IIG
S running at fast speed (about 2.7

M
H

z). If you are using an accelerator card, the range of values reported by G
TG

etPaddle m
ay be

too low
. Check your accelerator card—

som
e have a configurable sw

itch that slow
s dow

n
m

om
entarily w

hen the gam
e paddle ports are read, allow

ing tim
ed routines to w

ork correctly. M
ake

sure this setting is enabled.
If PA

D
D

LE is outside the range 0 to 3, G
TG

etPaddle sets TO
O

LERRO
R to $0101.

U
sing the G

am
e Paddle Library

H
ere’s a short program

 that show
s how

 to use the G
am

e Paddle Library to read the positions
on a joystick or a pair of gam

e paddles. It show
s the proper w

ay to initialize and shut dow
n the

library.

LOADLIBRARY 1
GTSTARTUP
FOR I = 1 TO 300
 PRINT GTGETPADDLE (0), GTGETPADDLE (1)
NEXT
GTSHUTDOWN
UNLOADLIBRARY 1

The Tim
e Library

Libraries in G
Soft BA

SIC are num
bered. The Tim

e Library is library num
ber 2.

The Tim
e Library provides com

m
ands that tell you the current tim

e and date.

S
U
B

T
T
B
o
o
t
I
n
i
t

This call is m
ade at boot tim

e. It doesn’t do anything in this library.

S
U
B

T
T
S
t
a
r
t
u
p

Y
ou should m

ake this call im
m

ediately after loading the library w
ith LO

A
D

LIBRA
RY

.
TTStartup does any required initialization. It doesn’t do anything in the Tim

e Library, but it’s a
good idea to m

ake the startup call for any library you load.

Language R
eference M

anual

236

S
U
B

T
T
S
h
u
t
D
o
w
n

Y
ou should m

ake this call just before you use U
N

LO
A

D
LIBRA

RY
 to unload the Tim

e
Library. TTShutD

ow
n does any required clean up. This call doesn’t do anything in the Tim

e
Library, but it’s a good idea to m

ake this call w
hen you are finished w

ith any library.

F
U
N
C
T
I
O
N

T
T
V
e
r
s
i
o
n

A
S

I
N
T
E
G
E
R

Returns the version num
ber for the library. The m

ost significant byte is the m
ajor version,

and the least significant byte is the m
inor version. Y

ou can print the version num
ber in the

com
m

on form
 of m

ajor.m
inor this w

ay:

VERSION% = TTVERSION
MAJOR% = VERSION% / 256
MINOR% = VERSION% - MAJOR% * 256
PRINT USING "The Time Library version number is #.#."; MAJOR%, MINOR%

F
U
N
C
T
I
O
N

T
T
S
t
a
t
u
s

A
S

I
N
T
E
G
E
R

Returns true (a value of 1) if the Tim
e Library has been started w

ith TTStartup and has not yet
been shut dow

n, or false (a value of 0) if the Tim
e Library is not started.

F
U
N
C
T
I
O
N

D
a
t
e
S
t
r
i
n
g

A
S

S
T
R
I
N
G

Returns the current date as a string.
The string contains the full m

onth nam
e, the date, a com

m
a, and the four digit year. For

exam
ple, the com

m
and

PRINT DATESTRING

w
ould print

July 22, 1998

if the date w
as, in fact, set to July 22, 1998 on the com

puter’s clock.
There has been a lot of attention in the press about the Y

ear 2000 bug (also know
n as the

Y
2K

 bug), w
hen the com

puter w
orld is apparently scheduled to end. In general, this bug does not

exist on the A
pple IIG

S, although certain applications m
ay contain the bug. W

hile the A
pple IIG

S
clock is lim

ited to a tw
o digit year, the operating system

 starts the cycle at 1940, returning dates
from

 January 1, 1940 to D
ecem

ber 30, 2039. O
f course, this m

eans there is a Y
ear 2040 bug on

the A
pple IIG

S, but at this point w
e can only hope w

e’re around to care!

F
U
N
C
T
I
O
N

T
i
m
e
S
t
r
i
n
g

A
S

S
T
R
I
N
G

Returns the current tim
e as a string.

C
hapter 18: Standard Libraries

237

The tim
e is returned as a tw

o-digit hour, a colon, a tw
o digit m

inute, a colon, and a tw
o digit

second. For exam
ple, at half past noon, TIM

ESTRIN
G

 w
ould return “12:30:00”.

The hour is alw
ays form

atted w
ith tw

o digits, even if they are zero. For exam
ple, 9:00 A

M
 is

“09:00:00”, and 15 m
inutes past m

idnight is “00:15:00”. The hour is also returned in 24 hour
form

at, so 1 PM
 is “13:00:00”.

S
U
B

T
i
m
e

(
(
t
i
m
e
R
e
c
o
r
d
)
)

Returns the current date and tim
e in a tim

e record. The record, declared in Tim
eTool.gst, looks

like this:

type timeRecord
 year as integer ; -32768 to 32767; always 1940 to 2039
 month as integer ; 1 to 12
 day as integer ; 1 to 31
 hour as integer ; 0 to 23
 minute as integer ; 0 to 59
 second as integer ; 0 to 59
 millisecond as integer ; 0 to 999; always 0
end type

W
hen you call TIM

E, you pass a variable declared as TIM
ERECO

RD
 as the param

eter. The
record is filled in w

ith the current date and tim
e, as set on the com

puter’s built-in clock.
For the m

ost part, these fields are self-explanatory. O
nly tw

o deserve special com
m

ent.
The year can range over the entire valid range of integers, but this com

m
and w

ill never return
a value outside of the range 1940 to 2039. A

s discussed in the description of the D
A

TESTRIN
G

function, this m
eans there is no Y

ear 2000 bug. The w
ide range of years is intended for future

expansion, w
here other tim

e com
m

ands that m
anipulate dates m

ight return values the com
puter’s

clock cannot.
The m

illisecond field is not used on the A
pple IIG

S, since the A
pple IIG

S clock doesn’t
provide the tim

e to that level of accuracy. The field w
ill alw

ays be set to 0. It is included for use
by m

ore accurate clocks and for use on other com
puters that G

Soft BA
SIC m

ight be ported to.

Language R
eference M

anual

238

U
sing the Tim

e Library

H
ere’s a short program

 that show
s how

 to use the Tim
e Library to read the date and tim

e. It
show

s the proper w
ay to initialize and shut dow

n the library.

LOADLIBRARY 2
DIM T AS TIMERECORD
PRINT "The current time is "; TIMESTRING
PRINT "The date is "; DATESTRING
TIME (T)
PRINT
PRINT "The year is ";T.YEAR
PRINT "The month number is ";T.MONTH
PRINT "The date is ";T.DAY
PRINT "The hour is ";T.HOUR
PRINT "The minute is ";T.MINUTE
PRINT "The second is ";T.SECOND
PRINT "The millisecond is ";T.MILLISECOND
UNLOADLIBRARY 2

239

C
hapter 19 – Tool Interface

Thanks to its support for records and pointers, G
Soft BA

SIC is the first BA
SIC to offer

support for the toolbox that is as natural and com
plete as the support in other languages, like C,

Pascal and M
odula-2.

This chapter describes how
 the toolbox interface w

orks and how
 to interpret A

pple’s toolbox
docum

entation, w
ritten for C and assem

bly language, for use w
ith G

Soft BA
SIC. It also covers

calls to G
S/O

S, the disk operating system
 of the A

pple IIG
S.

This chapter does not docum
ent the toolbox or G

S/O
S, of course. A

pple’s docum
entation of

the A
pple IIG

S toolbox and G
S/O

S is in five volum
es, totaling over 3500 pages. These books are

available as reprints from
 the Byte W

orks. The com
plete set includes these books:

Apple IIG
S Toolbox Reference Volum

e 1
Apple IIG

S Toolbox Reference Volum
e 2

Apple IIG
S Toolbox Reference Volum

e 3
Program

m
er’s Reference for System

 6.0.1
Apple IIG

S G
S/O

S Reference

This chapter also doesn’t teach toolbox program
m

ing, and neither do the reference books
m

entioned above. W
e offer a self-study course in toolbox and G

S/O
S program

m
ing:

Toolbox Program
m

ing in G
Soft BASIC

This introduction to toolbox program
m

ing contains an appendix w
ith an abridged version of the

toolbox and G
S/O

S reference m
anuals. Y

ou do not need to buy the five reference books to use this
course.

T
he T

oolbox Interface

U
sing the T

oolbox

G
Soft BA

SIC m
akes use of one or m

ore com
piled toolbox interface files to handle tool calls.

It com
es w

ith a tool interface file that handles the A
pple IIG

S toolbox, G
S/O

S, the O
RCA

 Shell
and Talking Tools. From

 your standpoint of w
riting a program

, all of these interfaces w
ork as if

they w
ere built right into the G

Soft BA
SIC language.

A
s a quick exam

ple to show
 how

 this w
orks, and give a basis for the rest of the chapter,

here’s a short program
 that m

akes use of Q
uickD

raw
 II calls. M

ost toolbox program
s create

Language R
eference M

anual

240

program
s that use the A

pple desktop interface, w
ith m

enu bars, w
indow

s, and so forth. In the
interest of brevity, this exam

ple doesn’t. It m
akes use of the fact that G

Soft BA
SIC’s H

G
R

statem
ent starts Q

uickD
raw

 II to create a very short program
.

HGR
DIM R AS RECT
FOR I = 1 TO 1000
 R.H1 = RND (1) * 320
 R.H2 = RND (1) * 320
 IF R.H2 < R.H1 THEN
 T% = R.H1
 R.H1 = R.H2
 R.H2 = T%
 END IF
 R.V1 = RND (1) * 200
 R.V2 = RND (1) * 200
 IF R.V2 < R.V1 THEN
 T% = R.V1
 R.V1 = R.V2
 R.V2 = T%
 END IF
 SET640COLOR (RND (1) * 16)
 PAINTOVAL (R)
NEXT
GET A$

There are three item
s in this program

 that com
e from

 the toolbox interface files rather than
from

 G
Soft BA

SIC. The first is the RECT type. Rectangles are used extensively throughout the
toolbox for everything from

 w
indow

 sizes to ovals—
w

hich is how
 they are used here.

N
ear the end of the program

 you’ll see tw
o calls to Q

uickD
raw

 II. The first is
SET640CO

LO
R; it sets the pen color to one of the 16 available colors. In this program

 it sets
them

 random
ly. The next is PA

IN
TO

V
A

L, w
hich paints an oval that’s inside the RECT

param
eter.

A
s a w

hole, the program
 draw

s 1000 random
 size ovals at random

 locations using random
colors. W

hen it finishes, it w
aits for you to press the return key, then exits.

W
e’ll refer back to this program

 later in this chapter.

T
he G

Soft B
A

SIC
 T

oolbox Interface

There is no need to include the tool interface files, as in other languages. Instead,
G

Soft BA
SIC loads the tool interface file autom

atically as it starts.
O

f course, to do that, it needs to know
 w

here the tool interface file is located. G
Soft BA

SIC
searches for tool interface files in three locations. The nam

es of these prefixes, in the order they are
searched, are:

C
hapter 19: Tool Interface

241

13:GSoftDefs:
9:8:The first prefix is the O

RCA
 library prefix. This is the natural place to put the tool interface

files if you are using the shell version of G
Soft BA

SIC, running it as a language from
 the O

RCA
shell.Prefix 9: is set to the prefix of the executing application, in this case either the O

RCA
 shell

for the shell version of G
Soft BA

SIC, or G
Soft.Sys16 for the Finder version. This is the natural

place to put the tool interface files for the Finder version of G
Soft BA

SIC.
The last prefix searched is 8:, w

hich is the default prefix w
hen the G

Soft BA
SIC program

starts to execute. Y
ou can put com

piled tool interface files here for user tools used only w
ith a

specific program
 you are developing.

For each directory, G
Soft BA

SIC searches all of the files looking for tool interface files. Tool
interface files are created w

ith Com
pileTool, docum

ented in Chapter 4. Each tool interface file has
a file type of $5E and an auxiliary file type of $8007. The files are loaded in the sam

e order show
n

by the CA
TA

LO
G

 com
m

and.
A

n im
portant point about this process is that duplicate tool nam

es and records can exist.
W

hen they do, the m
ost recently loaded definition is used. This m

eans you can replace existing
calls or records w

ith new
 versions by putting the declarations in your ow

n tool file, com
piling the

tool file, and placing the com
piled tool file in the sam

e directory as your program
. The new

er
declaration overrides the original declaration, but the original tool interface file is left unchanged,
so it still w

orks w
ith other program

s that expect the unm
odified tool interface file.

The tool interface file is com
piled into a form

 that takes little space and loads quickly, but this
form

 can’t be read. The text version of the standard tool interface file is called G
SoftTools.int. If

you are using the Finder version of G
Soft BA

SIC, you can find this file in the sam
e folder as

G
Soft.Sys16; for the shell version, look in the O

RCA
 Libraries folder.

U
sing A

pple’s D
ocum

entation

There w
ere only tw

o A
pple IIG

S program
m

ing languages available w
hen A

pple’s toolbox
reference m

anuals w
ere w

ritten: The A
PW

 A
ssem

bler (also released under the nam
e O

RCA
/M

) and
A

PW
 C. Several program

m
ing languages w

ere eventually released for the A
pple IIG

S, but a
toolbox reference m

anual w
as not released for each language. That’s because, w

ith a little practice,
you can read A

pple’s docum
entation and use it from

 any language.
There are tw

o sources of inform
ation about how

 to m
ake a particular tool call. The first is the

toolbox reference m
anuals them

selves. Looking at the docum
entation for PaintO

val in Apple IIG
S

Toolbox Reference Volum
e 2, page 16-189, you see that this call has a single param

eter. Y
ou can

see this either from
 the stack diagram

 used by assem
bly language program

m
ers, or from

 the
exam

ple for C program
m

ers at the bottom
 of the page.

The assem
bly language docum

entation is generally the easiest to read, since it is presented as a
diagram

. Still looking at PaintO
val, you see that the param

eter is labeled “PO
IN

TER to RECT
defining enclosing rectangle.” This tells you the call expects a pointer to a RECT for its

Language R
eference M

anual

242

param
eter. This illustrates the one big difference betw

een pretty m
uch every language around and

the tw
o languages used in the toolbox reference m

anual, assem
bly language and C. In m

ost other
languages, including BA

SIC, it m
akes m

ore sense to pass a RECT as a reference param
eter than as

a pointer. (V
alue and reference param

eters are covered in Passing Param
eters by Reference and

Value in Chapter 17.) A
s far as the toolbox is concerned, there’s no difference: it gets a pointer to

a RECT either w
ay, since BA

SIC and other languages im
plem

ent reference param
eters by passing

a pointer; the difference is entirely in how
 you w

rite the program
.

The second m
ajor source of inform

ation about m
aking tool calls is the G

Soft BA
SIC tool

interface file, G
SoftTools.int. Looking in that file, you see this declaration for PaintO

val:

TOOL $04, $59 SUB PaintOval((Rect))

The parentheses around the param
eter type tell you the param

eter is passed by reference, and
param

eters passed to the toolbox by reference are alw
ays passed as a pointer. Y

ou can ignore the
inform

ation before SU
B; that’s the tool num

ber and tool call num
ber, needed by G

Soft BA
SIC

but not by you w
hen you are w

riting BA
SIC program

s.
Putting these facts together, you can see w

hy the call to PaintO
val in the sam

ple program
 at

the start of this chapter looks like

PAINTOVAL (R)

R is a RECT record variable. Since the tool interface file tells us the param
eter is passed by

reference, w
e don’t need to pass it as a pointer.

W
ith a little experience, you’ll be able to predict w

hether a pointer param
eter is passed by

reference, like this exam
ple, or by value, in w

hich case you need to pass a pointer. A
s a general

rule, param
eters are passed by reference w

hen the value is a record you fill in, and they are passed
by value w

hen the value is likely to be a pointer passed to you by the toolbox itself. For exam
ple,

w
indow

 pointers are passed by value, so you actually pass a pointer. The original w
indow

 pointer
w

as created by the W
indow

 M
anager and passed to you as a pointer—

it’s not a record you should,
or even can, create and fill in yourself.

M
any tool calls use m

ore than one param
eter. PaintA

rc is one such exam
ple; it’s on the page

right before PaintO
val in the toolbox reference m

anual. The three param
eters are listed top to

bottom
; that’s the order you code them

 in the param
eter list. The toolbox docum

entation tells you
the param

eters are a pointer to a RECT and tw
o integers. The G

SoftTools.int file show
s the call

like this:

TOOL $04, $63 SUB PaintArc((Rect), %, %)

The first param
eter is a RECT, just like it w

as for PaintO
val. The next tw

o param
eters are

IN
TEG

ER values. A
 typical call w

ould look like this:

PAINTARC (R, 45, 90)

C
hapter 19: Tool Interface

243

Som
e tool calls return a value. O

ne of the m
any exam

ples is TextW
idth, a Q

uickD
raw

 II call
that returns the w

idth of a text string in pixels. This w
idth takes the current graphical font into

account. Looking on page 16-270 of Apple IIG
S Toolbox Reference Volum

e 2, you see three
values show

n on the stack before the call, and one after. Y
ou w

ill only see a value on the stack
after the tool call if the tool is a FU

N
CTIO

N
 rather than a SU

B; the value left on the stack is the
value the tool call returns. This value is also on the stack before the call, but it is not a param

eter.
Y

ou can see this easily by looking at the declaration in G
SoftTools.int:

TOOL $04, $AB FUNCTION TextWidth(Univ, %)

w
hich clearly show

s that TextW
idth is a FU

N
CTIO

N
 that takes tw

o param
eters.

The first param
eter is a special case. U

niv param
eters are used w

hen the toolbox call can
accept several different types of values, or w

hen there is no clear correlation betw
een the value the

toolbox expects and the types available in G
Soft BA

SIC. In this case, the toolbox expects a
pointer to a sequence of characters. It turns out you can pass a pointer to a string for this
param

eter, since G
Soft BA

SIC strings are also a sequence of characters. The second param
eter is

the num
ber of characters in the string. A

 typical call looks like

S$ = "Hello, toolbox."
WIDTH% = TEXTWIDTH (@S$, LEN(S$))

Som
e tool calls expect C strings or P strings, nam

ed after C and Pascal. C strings are
sequences of characters ending w

ith a null character, w
hich is the character CH

R$(0). This is the
kind of string G

Soft BA
SIC uses. P strings start w

ith one byte that tells how
 long the string is,

follow
ed by the characters in the string. Since a byte can only hold values from

 0 to 255, this
lim

its the length of a P string to 255 characters. Fortunately, it’s pretty easy to add the length byte
to the front of a G

Soft BA
SIC string to fool the toolbox. The line

S$ = CHR$ (LEN (S$)) + S$

adds the required length byte to a string.
O

ne dirty little secret of the toolbox is that som
e calls w

ere not designed for use from
 a high-

level language. These calls return m
ultiple values or return values that are not 2 or 4 bytes long.

The vast m
ajority of these calls are concentrated in the Integer M

ath Tool Set, SA
N

E, and the
Loader. Fortunately, integer m

ath is built right into G
Soft BA

SIC; and SA
N

E, A
pple’s floating-

point libraries, aren’t used at all. G
Soft BA

SIC’s floating-point routines are m
uch faster than

A
pple’s. If you need to m

ake any of these calls, though, you’ll have to do it using a user tool that
is w

ritten in assem
bly language and converts the toolbox param

eters into som
ething m

eaningful in
G

Soft B
A

SIC
.

Language R
eference M

anual

244

G
S/O

S and the O
R

C
A

 Shell C
alls

G
S/O

S and O
RCA

 Shell calls are handled the sam
e w

ay as tool calls. True, they are not tools,
but the interfaces are created the sam

e w
ay and the calls are m

ade the sam
e w

ay. A
s a

G
Soft BA

SIC program
m

er, A
pple’s system

 tools, your user tools, G
S/O

S and the O
RCA

 Shell
calls all w

ork exactly the sam
e w

ay.

The R
ole of U

ser Tools

G
Soft BA

SIC is interpreted, so it can’t actually call or be called from
 other A

pple IIG
S

languages. O
n the other hand, it supports user w

ritten tools in a w
ay no other A

pple IIG
S

language does, providing sim
ple calls to load and unload user tools. If you need to w

rite a few
subroutines in assem

bly language, you can package them
 in a user tool and call them

 from
G

Soft BA
SIC. Even better, the sam

e subroutines can be used from
 any other A

pple IIG
S language

that supports user tools. A
ll of the O

RCA
 languages do.

See Loading and U
nloading Libraries, later in this chapter, for the com

m
ands used to set up

user tools. A
ppendix D

, W
riting U

ser Tools for G
Soft BASIC, show

s how
 the tool is actually

created. O
nce created and loaded, you use a user tool just like a tool created by A

pple.

Tool and G
S/O

S Errors

T
O
O
L
E
R
R
O
R

Returns the error code from
 the m

ost recent tool, user tool or G
S/O

S call. A
 value of zero

indicates there w
as no error.

A
pple’s tools, user tools, G

S/O
S and O

RCA
 Shell calls all return an error code. The error

code is returned by each and every call. From
 the tim

e the call com
pletes until the next call is

m
ade you can use TO

O
LERRO

R to find out w
hat the error code w

as.
Zero is universally used to indicate that no error occurred. If an error does occur, the error code

tells you tw
o things. First, dividing the error by 256 and converting the result to an integer by

truncation tells you the tool num
ber for the tool that flagged the error. For exam

ple,

TOOLNUMBER% = TOOLERROR / 256

sets the IN
TEG

ER variable TO
O

LN
U

M
BER%

 to the num
ber of the tool that flagged the error.

The tool that flagged the error m
ight seem

 obvious, since TO
O

LERRO
R is used right after a tool

call, but tool errors don’t alw
ays originate w

ith the tool you call. For exam
ple, it’s quite possible

to get error 513 ($0201), w
hich is a M

em
ory M

anager error indicating insufficient m
em

ory, from
 a

N
EW

W
IN

D
O

W
 call, w

hich is a W
indow

 M
anager tool call.

G
S/O

S errors are reported just like tool errors. The tool num
ber for a G

S/O
S error w

ill be 0.

C
hapter 19: Tool Interface

245

U
ser tool errors are also reported the sam

e w
ay as A

pple’s toolbox errors. The tool num
ber

w
ill m

atch the user tool num
ber, w

hich could duplicate an A
pple tool num

ber.
The error num

bers them
selves are docum

ented w
ith the tools. Y

ou can find a sum
m

ary of all
of the error num

bers used by A
pple’s toolbox and G

S/O
S calls in A

ppendix E of Program
m

er’s
Reference for System

 6.0.

Loading and U
nloading Libraries

L
O
A
D
L
I
B
R
A
R
Y

e
x
p
r
e
s
s
i
o
n

Loads a user tool from
 disk.

The com
m

and nam
e refers to a user tool as a library for com

patibility w
ith other versions of

G
Soft BA

SIC that m
ay som

eday exist on platform
s other than the A

pple IIG
S. The generic term

"library" m
akes sense across all platform

s, although libraries are alw
ays im

plem
ented as user tools

in the A
pple IIG

S version of G
Soft BA

SIC.
e
x
p
r
e
s
s
i
o
n is the tool num

ber to load. U
ser tools are num

bered 0 to 255; this num
ber is

coded as part of the file nam
e and is used in the interface file.

G
Soft BA

SIC looks for a file w
ith the nam

e U
serToolX

X
X

, w
here X

X
X

 is the tool num
ber.

It looks first in the local directory, w
hich defaults to the location of the G

Soft BA
SIC interpreter.

The local directory can be changed before using LO
A

D
LIBRA

RY
 using the CH

D
IR com

m
and. If

the tool is not found in the local directory, G
Soft BA

SIC looks in the System
 directory using the

path *:System
:Tools:U

serToolX
X

X
.

See A
ppendix D

 for m
ore inform

ation about w
riting user tools.

See also U
N

LO
A

D
LIBRA

RY
.

U
N
L
O
A
D
L
I
B
R
A
R
Y

e
x
p
r
e
s
s
i
o
n

U
nloads the specified user tool, freeing the RA

M
 used by the tool.

The com
m

and nam
e refers to a user tool as a library for com

patibility w
ith other versions of

G
Soft BA

SIC that m
ay som

eday exist on platform
s other than the A

pple IIG
S. The generic term

"library" m
akes sense across all platform

s, although libraries are alw
ays im

plem
ented as user tools

in the A
pple IIG

S version of G
Soft BA

SIC.
See also LO

A
D

LIBRA
RY

.

TO
O

L and G
SO

S Tokens

G
S
O
SW

hen you use a G
S/O

S call in a G
Soft BA

SIC program
, the G

S/O
S call nam

e is converted
into a three byte sequence. These bytes are the G

SO
S token, w

hich m
arks the start of the call

Language R
eference M

anual

246

sequence; and a tw
o byte call num

ber, coded as tw
o individual bytes, least significant byte first.

These three bytes are follow
ed by the param

eter list, if any.
Except for the substitution of the w

ord G
SO

S for TO
O

L, these tokens are used in exactly the
sam

e w
ay as TO

O
L tokens, described below

.

T
O
O
LW

hen you use a tool call in a G
Soft BA

SIC program
, the tool nam

e is converted into a three
byte sequence. These bytes are the TO

O
L token, w

hich m
arks the start of the tool call sequence;

the tool num
ber; and the tool call num

ber. These three bytes are follow
ed by the param

eter list, if
any.If the tool interface file is available w

hen you edit or list the program
, G

Soft BA
SIC

autom
atically looks the nam

e up based on the tool and tool call num
bers, displaying the nam

e of
the tool call. If the tool call file is m

issing for som
e reason, the tool call is listed like this:

TOOL<$04,$DB>

The first num
ber is the tool num

ber, w
hile the second is the tool call num

ber. This particular
token is for tool 4, Q

uickD
raw

 II; and tool call $D
B, Set640Color.

Y
ou can type tool calls using this form

at, too. This feature actually exists so you can edit a
file w

ithout the tool interface file, som
ething that m

ight happen if you edit a program
 that uses a

user tool you don’t have installed. G
Soft BA

SIC needs to be able to read a token in the sam
e form

so it is possible to convert the program
 back to its tokenized form

. TO
O

L tokens m
ust be typed

exactly as show
n, though. N

o spaces can be inserted, and tw
o digit hexadecim

al num
bers m

ust be
used for the tool num

ber and tool call num
ber.

Fortunately, this isn’t a big issue, since you’ll norm
ally have tool interface files for any tools

you use, and w
ith the tool interface file installed, you can use the tool call nam

e rather than the
num

bers.

L
I
B
R
A
R
Y

W
hen you use a tool call in a G

Soft BA
SIC program

, the user tool nam
e is converted into a

three byte sequence. These bytes are the LIBRA
RY

 token, w
hich m

arks the start of the tool call
sequence; the user tool num

ber; and the user tool call num
ber. These three bytes are follow

ed by
the param

eter list, if any.
Except for the substitution of the w

ord LIBRA
RY

 for TO
O

L, these tokens are used in exactly
the sam

e w
ay as TO

O
L tokens, described above.

247

A
ppendix A

 – Error M
essages

This appendix show
s all of the errors that G

Soft BA
SIC can generate. In starts w

ith a table
that show

s the error num
ber and error m

essage. The error num
ber show

n is the error num
ber

returned by the ERR function.
N

ext is an expanded description of the short text error m
essage printed by G

Soft BA
SIC,

along w
ith com

m
on causes for the error.

Error
M

essage
0

U
ndefined statem

ent
1 *

U
nim

plem
ented com

m
and

2
Syntax error

3
The line is too long

4
Line num

bers m
ust range from

 1 to 65535
5

The program
 is too long

6
Expression too com

plex
7

O
ut of variable table space

8
Type m

ism
atch

9
N

ot enough subscripts
10

Too m
any subscripts

11
Invalid subscript

12
R

edim
ensioned variable error

13
The size of a value exceeded 32767 bytes

14
M

ore than 10 nested control statem
ents

15
N

EX
T w

ithout FO
R

16
Too m

any nested subroutine calls
17

RETU
RN

 w
ithout G

O
SU

B
18

Expected an integer
19

Integer overflow
20

G
O

SU
B w

ithout RETU
RN

21
FO

R w
ithout N

EX
T

22
PO

P w
ithout G

O
SU

B
23

Invalid function param
eter

24
A

 string value exceeded 32767 characters
25

Illegal quantity error
26 *

M
ath result is inexact

27
REN

U
M

BER overlaps old and new
 lines

28
Expected a string

29
IN

PU
T or D

A
TA

 is too long

Appendices

248 30
IN

PU
T or D

A
TA

 contains an em
pty or m

isform
ed num

ber
31

O
ut of data

32
Could not start Q

uickD
raw

33
W

H
ILE w

ithout W
EN

D
34

W
EN

D
 w

ithout W
H

ILE
35

ELSE w
ithout IF

36
Block IF w

ithout EN
D

 IF
37

EN
D

 IF w
ithout IF

38
M

ultiple ELSE clause
39

D
O

 w
ithout LO

O
P

40
LO

O
P w

ithout D
O

41
M

issing CA
SE

42
SELECT CA

SE w
ithout EN

D
 SELECT

43
EN

D
 SELECT w

ithout SELECT CA
SE

44
CA

SE w
ithout SELECT CA

SE
45

PRIN
T U

SIN
G

 form
at string has no form

at m
odels

46
PRIN

T U
SIN

G
 form

at string has \ w
ithout closing \

47
PRIN

T U
SIN

G
 form

at string has m
ore than 24 characters in a num

ber m
odel

48
U

ndefined function
49

Incorrect num
ber of param

eters
50

A
SCII file could not be w

ritten
51

A
SCII file could not be read

52
File num

bers m
ust be in the range 1 to 32767

53
U

nopened file referenced
54

Too m
any open files

55
The file is already open

56
File I/O

 error
57

O
ut of m

em
ory

58
O

utput attem
pted to a file opened for input

59
Input attem

pted to a file opened for output
60

Illegal file nam
e

61
U

ndefined subroutine
62

Inappropriate EN
D

 SU
B or EN

D
 FU

N
CTIO

N
63

Param
eter type m

ism
atch

64
SETM

EM
 and CLEA

R cannot be used in a procedure
65

D
uplicate field

66
Redefined type

67
Expected type

68
Illegal use of a nil pointer

69
U

ndefined field
70

Record used inside itself
71

Functions cannot return records

Appendix A: Error M
essages

249

72
U

nknow
n tool

73
Could not load the library

74
H

exadecim
al num

bers cannot exceed $FFFFFFFF
75

M
isuse of a constant

76
M

isform
ed tool or G

S/O
S token

77
H

G
R m

ust be used before graphics com
m

ands
78

LEN
 is required for RA

N
D

O
M

 files

*
Com

m
ands m

arked w
ith an asterisk can be generated by the ERRO

R com
m

and, but w
ill not be

generated by G
Soft BA

SIC. These errors are used in specialized, non-com
m

ercial versions of
the interpreter.

A

s
t
r
i
n
g

v
a
l
u
e

e
x
c
e
e
d
e
d

3
2
7
6
7

c
h
a
r
a
c
t
e
r
s

Strings are lim
ited to 32767 characters; an operation w

as attem
pted that w

ould have created a
longer string.

Change the program
 so all strings are sm

aller than 32767 characters.

A
S
C
I
I

f
i
l
e

c
o
u
l
d

n
o
t

b
e

r
e
a
d

A
fter using the ED

IT com
m

and and an editor to m
ake changes to your BA

SIC program
, the

editor w
rites the edited program

 as an A
SCII file. W

hen the editor returns control to
G

Soft BA
SIC, G

Soft BA
SIC tries to read that file. This error indicates that the file could not be

read.The m
ost likely reason for this error is a dam

aged disk, although lack of m
em

ory could cause
the error. If you see this error, use a program

 that checks disk for bad blocks. If you have a
program

 that w
ill do it, check the structure of the disk, too.

A
S
C
I
I

f
i
l
e

c
o
u
l
d

n
o
t

b
e

w
r
i
t
t
e
n

G
Soft BA

SIC converts the tokenized BA
SIC program

 to an A
SCII file w

hen you use a full
screen editor via the ED

IT com
m

and or w
hen you debug a program

 using the D
EBU

G
 com

m
and.

This error indicates that the file could not be w
ritten.

There are a variety of reasons w
hy the file m

ight not be w
ritten. The m

ost com
m

on are a lack
of space on the disk w

here the program
 is located, a disk error, or a lack of free m

em
ory.

B
l
o
c
k

I
F

w
i
t
h
o
u
t

E
N
D

I
F

A
n IF-TH

EN
 statem

ent w
as started, but no EN

D
 IF w

as found.
Rem

em
ber to include an EN

D
 IF for all block IF statem

ents. For exam
ple,

IF FOUND THEN CALL PROCESS

is a perfectly legal BA
SIC statem

ent, contained entirely on one line, but

Appendices

250

IF FOUND THEN
 CALL PROCESS

needs an EN
D

 IF.

C
A
S
E

w
i
t
h
o
u
t

S
E
L
E
C
T

C
A
S
E

A
 CA

SE statem
ent w

as found outside of a SELECT CA
SE.

M
ake sure all CA

SE statem
ents appear betw

een a SELECT CA
SE and an EN

D
 SELECT.

K
eep in m

ind that other m
ism

atched statem
ents m

ight cause this error even if the CA
SE statem

ent
appears betw

een a SELECT CA
SE and EN

D
 SELECT. For exam

ple,

SELECT CASE COLOR
 CASE RED
 IF SHORT THEN
 PRINT "R";
 ELSE
 PRINT "RED";
 CASE GREEN
 IF SHORT THEN
 PRINT "G";
 ELSE
 PRINT "GREEN";
END SELECT

could cause this error, even though the real error is that the IF statem
ent has no m

atching EN
D

 IF.

C
o
u
l
d

n
o
t

l
o
a
d

t
h
e

u
s
e
r

t
o
o
l

The LO
A

D
LIBRA

RY
 com

m
and w

as unable to load the user tool.
M

ake sure the user tool file is in the Tools folder, inside the System
 folder. Check to insure

there is enough m
em

ory to load the tool. Check the system
 disk for bad blocks.

C
o
u
l
d

n
o
t

s
t
a
r
t

Q
u
i
c
k
D
r
a
w

The H
G

R statem
ent encountered an error starting Q

uickD
raw

 II. This is generally caused by
lack of m

em
ory.

If you are using a program
 that allow

s m
ore than one program

 to run, shut dow
n the other

program
s. Try shift-booting to prevent desk accessories and inits from

 using m
em

ory—
possibly

m
em

ory critical to Q
uickD

raw
 II.

D
O

w
i
t
h
o
u
t

L
O
O
P

A
 D

O
 statem

ent w
as started, but the program

 or procedure finished w
ithout finding a m

atching
LO

O
P.

M
ake sure there is exactly one LO

O
P for each D

O
. K

eep in m
ind that other m

ism
atched

statem
ents m

ight cause this error even if there is a m
atching LO

O
P for the D

O
. For exam

ple,

Appendix A: Error M
essages

251

DO GET #1, CH
 IF CH = 13 THEN
 PRINT
LOOP WHILE NOT EOF(1)

w
ould cause this error if the first value read is not 13, even though the real error is that the IF

statem
ent has no m

atching EN
D

 IF.

D
u
p
l
i
c
a
t
e

f
i
e
l
d

A
 record contains tw

o fields w
ith the sam

e nam
e.

M
ake all field nam

es in a given record unique.

E
L
S
E

w
i
t
h
o
u
t

I
F

A
n ELSE statem

ent w
as encountered w

hen no IF statem
ent w

as active.
M

ake sure ELSE statem
ents are only used w

hen an IF statem
ent is active.

E
N
D

I
F

w
i
t
h
o
u
t

I
F

A
n EN

D
 IF w

as found w
ith no m

atching IF-TH
EN

 statem
ent.

M
ake sure IF-TH

EN
 statem

ents have exactly one m
atching EN

D
 IF statem

ent. Check for
other incom

plete statem
ents that m

ight cause this error, such as

IF NOT DONE THEN
 WHILE P <> NIL
END IF

E
N
D

S
E
L
E
C
T

w
i
t
h
o
u
t

S
E
L
E
C
T

C
A
S
E

A
n EN

D
 SELECT statem

ent w
as found w

ithout a m
atching SELECT CA

SE statem
ent.

M
ake sure there is exactly one EN

D
 SELECT for each SELECT CA

SE. K
eep in m

ind that
other m

ism
atched statem

ents m
ight cause this error even if there is a m

atching EN
D

 SELECT for
the SELECT CA

SE. For exam
ple,

Appendices

252

SELECT CASE COLOR
 CASE RED
 IF SHORT THEN
 PRINT "R";
 ELSE
 PRINT "RED";
 CASE GREEN
 IF SHORT THEN
 PRINT "G";
 ELSE
 PRINT "GREEN";
END SELECT

could cause this error, even though the real error is that the IF statem
ent has no m

atching EN
D

 IF.

E
x
p
e
c
t
e
d

a
n

i
n
t
e
g
e
r

A
n IN

TEG
ER value w

as expected, but a value that could not be converted to an IN
TEG

ER
w

as encountered. For exam
ple, this error w

ould occur if a string w
ere used as an array subscript.

Change the expression so an IN
TEG

ER or a num
ber that can be converted to an IN

TEG
ER is

created. For exam
ple, you could convert a string representing a num

ber to a num
ber using V

A
L, as

in

GET A$
PRINT A(VAL(A$))

E
x
p
e
c
t
e
d

a

s
t
r
i
n
g

A
 string value w

as expected, but som
e other type of value w

as encountered. For exam
ple, this

error w
ould occur if a num

ber w
as used as the file nam

e in an O
PEN

 statem
ent.

Change the expression so a string appears in the required position.

E
x
p
e
c
t
e
d

t
y
p
e

A
 statem

ent expected a type, such as IN
TEG

ER or the nam
e of a record, but som

e other token
w

as found.
Check for spelling errors or other typographical errors. Check the docum

entation for the
statem

ent involved to m
ake sure it is entered correctly. If the statem

ent is using a type you
declared, m

ake sure the statem
ent that declares the type is executed before the statem

ent that uses
the type.

E
x
p
r
e
s
s
i
o
n

t
o
o

c
o
m
p
l
e
x

The expression stack overflow
ed during evaluation of the expression.

M
ake the expression shorter by using tem

porary variables.

Appendix A: Error M
essages

253

F
i
l
e

I
/
O

e
r
r
o
r

G
S/O

S reported an error w
hile reading or w

riting a file.
This can be caused by any num

ber of reasons. The m
ost com

m
on occur w

hen w
riting a file.

Problem
s to look for include:

•
W

riting to a full disk.
•

Creating a new
 file in the root directory of a ProD

O
S form

at disk that already has 51
entries.

•
A

 disk error. Check for bad blocks or a bad directory structure.
•

A
 lack of free m

em
ory to open or m

anipulate the file.

F
i
l
e

n
u
m
b
e
r
s

m
u
s
t

b
e

i
n

t
h
e

r
a
n
g
e

1

t
o

3
2
7
6
7

The program
s used a file num

ber outside the allow
ed range.

Change the file num
ber to a num

ber in the allow
ed range.

F
O
R

w
i
t
h
o
u
t

N
E
X
T

The program
 ended after starting a FO

R loop, but w
ithout finishing w

ith a N
EX

T.
A

n obvious w
ay to m

ake this error is forgetting a N
EX

T, but it can also occur if you jum
p

out of an unfinished FO
R loop. For exam

ple,

10 FOR I = 1 TO 10
20 GOTO 40
30 NEXT
40 END

is not legal, and w
ill cause this error.

F
u
n
c
t
i
o
n
s

c
a
n
n
o
t

r
e
t
u
r
n

r
e
c
o
r
d
s

A
 FU

N
CTIO

N
 declaration has a function return type that is a record.

Functions can return pointers to records, but not records. Change the return type so it is
som

ething other than a record, or so it is a pointer to a record.

G
O
S
U
B

w
i
t
h
o
u
t

R
E
T
U
R
N

The program
 ended after m

aking a G
O

SU
B call, but w

ithout a m
atching RETU

RN
.

The m
ost likely cause of this error is forgetting the RETU

RN
 at the end of a subroutine. In

any case, m
ake sure each subroutine called w

ith G
O

SU
B returns w

ith a RETU
RN

 or rem
oves the

call w
ith PO

P.

H
e
x
a
d
e
c
i
m
a
l

n
u
m
b
e
r
s

c
a
n
n
o
t

e
x
c
e
e
d

$
F
F
F
F
F
F
F
F

A
 hexadecim

al constant exceeds the m
axim

um
 allow

ed value.
Change the hexadecim

al value to an allow
ed value.

Appendices

254

H
G
R

m
u
s
t

b
e

u
s
e
d

b
e
f
o
r
e

g
r
a
p
h
i
c
s

c
o
m
m
a
n
d
s

A
 graphics com

m
and, such as H

PLO
T, w

as used before the H
G

R com
m

and.
G

raphics com
m

ands use A
pple’s Q

uickD
raw

 II tool set, w
hich m

ust be initialized before any
of the graphics com

m
ands can be used. The easiest w

ay to initialize Q
uickD

raw
 II is w

ith the
H

G
R com

m
and, although starting the tool m

anually w
ill also w

ork, and w
ill avoid this error.

I
l
l
e
g
a
l

f
i
l
e

n
a
m
e

A
 file nam

e w
as form

ed im
properly.

Check the file nam
e to m

ake sure it conform
s to the requirem

ents for the file system
 in use.

K
eep in m

ind that G
S/O

S can use m
any file system

s, and each has unique requirem
ents. If you are

using D
IR$, check to m

ake sure the w
ildcard characters used m

atch the requirem
ents for D

IR$.

I
l
l
e
g
a
l

q
u
a
n
t
i
t
y

e
r
r
o
r

A
 valid num

ber that is not allow
ed for a particular purpose has been passed to a built-in

com
m

and. For exam
ple, using a negative num

ber for a param
eter to M

ID
$ w

ould cause this error.
U

se a correct num
ber for the param

eter.

I
l
l
e
g
a
l

u
s
e

o
f

a

n
i
l

p
o
i
n
t
e
r

The program
 attem

pted to use the value pointed to by a pointer, but the pointer itself w
as set

to N
IL.
For exam

ple, the program

DIM P AS POINTER TO INTEGER
PRINT P^

w
ould generate this error. The pointer has not been set to point to anything.

G
ive the pointer a value.

I
n
a
p
p
r
o
p
r
i
a
t
e

E
N
D

S
U
B

o
r

E
N
D

F
U
N
C
T
I
O
N

A
n EN

D
 SU

B w
as found at the end of a FU

N
CTIO

N
 or in the m

ain program
, or an EN

D
FU

N
CTIO

N
 w

as found at the end of a SU
B or in the m

ain program
.

M
ake sure exactly one EN

D
 SU

B appears at the end of every subroutine defined w
ith SU

B,
and one EN

D
 FU

N
CTIO

N
 appears at the end of every function defined w

ith FU
N

CTIO
N

. M
ake

sure neither is used in any other w
ay.

I
n
c
o
r
r
e
c
t

n
u
m
b
e
r

o
f

p
a
r
a
m
e
t
e
r
s

A
 procedure call does not have the sam

e num
ber of param

eters as the corresponding procedure
declaration.

M
ake sure both the call and declaration use the sam

e num
ber of param

eters.

Appendix A: Error M
essages

255

I
n
p
u
t

a
t
t
e
m
p
t
e
d

t
o

a

f
i
l
e

o
p
e
n
e
d

f
o
r

o
u
t
p
u
t

A
 com

m
and that reads from

 a file w
as used w

ith a file num
ber for a file opened for output

only.M
ake sure the file num

ber is correct. If you need to read and w
rite a file, open it as BIN

A
RY

or RA
N

D
O

M
.

I
N
P
U
T

o
r

D
A
T
A

c
o
n
t
a
i
n
s

a
n

e
m
p
t
y

o
r

m
i
s
f
o
r
m
e
d

n
u
m
b
e
r

A
n IN

PU
T statem

ent or D
A

TA
 statem

ent had a num
eric variable, so it tried to read a num

ber,
but found non-num

eric inform
ation.

Either the input data is incorrect or the program
 is incorrect. Change one or the other so

IN
PU

T and D
A

TA
 get the kind of values they need.

If you need to read a value that m
ight be a num

ber, but you can’t tell beforehand, read the
value as a string. Scan w

hat you get to see if it is a valid num
ber. If so, you can use V

A
L to

convert the string to a num
ber.

I
N
P
U
T

o
r

D
A
T
A

i
s

t
o
o

l
o
n
g

A
 single piece of inform

ation is longer than 255 characters. G
enerally that w

ill be a string
that is too long in an input file, but it could be a num

ber w
ith lots of unnecessary leading zeros,

or a num
ber that is longer than need be because of unneeded fraction digits.

In files containing strings, consider reading the file character by character and assem
bling the

string inside the program
.

For num
bers, try using scientific notation. K

eep in m
ind that even D

O
U

BLE num
bers are

only accurate to about 15 decim
al digits, so any m

ore than 16 significant digits w
on’t change the

final D
O

U
BLE value.

I
n
t
e
g
e
r

o
v
e
r
f
l
o
w

This error occurs due to a num
eric overflow

 w
hen converting to an IN

TEG
ER or LO

N
G

value, such as

I% = 38000.0

Y
ou can reduce the value or use a different kind of value. K

eep in m
ind that G

Soft BA
SIC

does handle infinity, so you can’t overflow
 a SIN

G
LE or D

O
U

BLE value.

I
n
v
a
l
i
d

f
u
n
c
t
i
o
n

p
a
r
a
m
e
t
e
r

A
 type m

ism
atch occurred in a built-in BA

SIC function; for exam
ple, a string m

ay have been
passed to a function that only accepts num

bers.
Change the param

eter so the types m
atch. If you need to use a value that is not the correct

type, consider type casting or converting the value to the correct type w
ith functions like CIN

T or
STR

$.

Appendices

256

I
n
v
a
l
i
d

s
u
b
s
c
r
i
p
t

A
 subscript is less than zero or greater than the m

axim
um

 subscript for the array. For
exam

ple,

DIM A(5)
A(6) = 6

w
ould cause this error.

Change the size of the array or the subscript used.

L
i
n
e

n
u
m
b
e
r
s

m
u
s
t

r
a
n
g
e

f
r
o
m

1

t
o

6
5
5
3
5

A
 line num

ber w
as found that lay outside the allow

ed range.
Change the line num

ber so it is in the allow
ed range.

L
E
N

i
s

r
e
q
u
i
r
e
d

f
o
r

R
A
N
D
O
M

f
i
l
e
s

A
 file is being opened for RA

N
D

O
M

 input and output w
ith the O

PEN
 statem

ent. RA
N

D
O

M
files m

ust have a record length, specified w
ith the LEN

 param
eter, but no LEN

 param
eter is

present.
A

dd a LEN
 param

eter to the open statem
ent. The length should be the size of one record in the

random
 access file.

L
O
O
P

w
i
t
h
o
u
t

D
O

A
 LO

O
P statem

ent w
as encountered w

ithout a m
atching D

O
.

M
ake sure there is exactly one LO

O
P for each D

O
. K

eep in m
ind that other m

ism
atched

statem
ents m

ight cause this error even if there is a D
O

 for the LO
O

P statem
ent. For exam

ple,

DO GET #1, CH
 IF CH = 13 THEN
 PRINT
LOOP WHILE NOT EOF(1)

w
ould cause this error if the first value read is 13, even though the real error is that the IF

statem
ent has no m

atching EN
D

 IF.

M
a
t
h

r
e
s
u
l
t

i
s

i
n
e
x
a
c
t

A
 valid num

ber has been passed to a m
ath function, but the result is not valid.

The com
m

ercial version of G
Soft BA

SIC does not use this error. It is reserved for specialized
versions that report m

ath errors in different w
ays than the com

m
ercial version.

Appendix A: Error M
essages

257

M
i
s
f
o
r
m
e
d

t
o
o
l

o
r

G
S
/
O
S

t
o
k
e
n

A
 tool token in a source file does not follow

 the rules for w
riting a token.

Review
 the rules for coding tokens in the description of TO

O
L in Chapter 19.

M
i
s
s
i
n
g

C
A
S
E

SELECT w
as used, but there w

as no CA
SE im

m
ediately after.

The correct syntax for the SELECT statem
ent is

SELECT CASE expression

M
i
s
u
s
e

o
f

a

c
o
n
s
t
a
n
t

A
n attem

pt w
as m

ade to assign a value to a constant, extract the address of a constant, or find
the size of a constant.

These operations are either forbidden on constants or m
ake no sense w

hen applied to a
constant. If the error occurs w

hen a constant is passed as a param
eter, m

ake sure the constant is
passed by value, not by reference. (A

 sim
ple w

ay to do this is to enclose the constant in
parentheses.)

M
o
r
e

t
h
a
n

1
0

n
e
s
t
e
d

c
o
n
t
r
o
l

s
t
a
t
e
m
e
n
t
s

Control statem
ents w

ere nested too deeply.
U

se subroutines to handle inner nested statem
ents or redesign the logic so the nested

statem
ents are not so deep.

M
u
l
t
i
p
l
e

E
L
S
E

c
l
a
u
s
e

Tw
o ELSE statem

ents w
ere found for a single IF statem

ent.
M

ake sure there is only one ELSE clause for each IF-TH
EN

 statem
ent. Y

ou can use m
ultiple

ELSE IF statem
ents after IF-TH

EN
 and before ELSE, but only one ELSE.

N
E
X
T

w
i
t
h
o
u
t

F
O
R

A
 N

EX
T statem

ent w
as encountered w

ithout a m
atching FO

R statem
ent.

This error can occur due to an unfinished statem
ent. If you think the FO

R-N
EX

T statem
ents

are m
atched, look for m

isform
ed statem

ents inside the loop, like

FOR I = 1 TO 10
 IF A(I) < 0.0 THEN
 A(I) = 0.0
NEXT I

In this case, the IF statem
ent is not com

plete. The N
EX

T appears w
hen BA

SIC expects an
EN

D
 IF, but the actual error is a N

EX
T w

ith no m
atching FO

R.

Appendices

258

N
o
t

e
n
o
u
g
h

s
u
b
s
c
r
i
p
t
s

M
ore subscripts are expected for the array than are supplied. For exam

ple,

DIM A(5, 5)
A(5) = 6

w
ould cause this error.

Supply the required num
ber of subscripts. M

ake sure you do not have m
ore than one array

w
ith the sam

e nam
e.

O
u
t

o
f

d
a
t
a

A
 REA

D
 statem

ent tried to read inform
ation from

 a D
A

TA
 statem

ent, but there w
ere no

unused D
A

TA
 statem

ents.
M

ake sure the D
A

TA
 statem

ents are in the sam
e procedure as the REA

D
 statem

ents, or that
both are in the m

ain program
. If you need to reuse data, use RESTO

RE.

O
u
t

o
f

m
e
m
o
r
y

SETM
EM

 or a disk I/O
 com

m
and needed free m

em
ory, but could not find a large enough

continuous piece of free m
em

ory to satisfy the need.
This error does not occur for A

LLO
CA

TE. W
hile A

LLO
CA

TE gets m
em

ory from
 the sam

e
m

em
ory pool as SETM

EM
 and the disk com

m
ands, it does not flag an error if there is not enough

m
em

ory. Instead, A
LLO

CA
TE returns the N

IL pointer, allow
ing you to check for the error and

handle it inside your program
.

Som
e possible solutions are:

•
Reduce the am

ount of m
em

ory used for the program
 or variable space.

•
Reduce the m

em
ory used by A

LLO
CA

TE statem
ents.

•
If you are using a program

 that allow
s you to run m

ultiple program
s, quit the other

program
s before running G

Soft BA
SIC.

•
Shift-boot to reduce the m

em
ory used by desk accessories and inits.

O
u
t

o
f

v
a
r
i
a
b
l
e

t
a
b
l
e

s
p
a
c
e

The variables, variable values, strings and local variable space for procedures exceeded the
m

em
ory set aside for variables.
Increase the m

em
ory used for variables using the SETM

EM
 com

m
and.

O
u
t
p
u
t

a
t
t
e
m
p
t
e
d

t
o

a

f
i
l
e

o
p
e
n
e
d

f
o
r

i
n
p
u
t

A
 com

m
and that w

rites to a file w
as used w

ith a file num
ber for a file opened for input only.

M
ake sure the file num

ber is correct. If you need to read and w
rite a file, open it as BIN

A
RY

or RA
N

D
O

M
.

Appendix A: Error M
essages

259

P
a
r
a
m
e
t
e
r

t
y
p
e

m
i
s
m
a
t
c
h

The type of a param
eter to a subroutine or function w

as not the sam
e as the type of the

param
eter passed to the procedure, and the types could not be converted using default type

conversion rules.
M

ake sure all param
eters are present in the procedure call, and that no extra param

eters have
been inserted. M

ake sure the values passed can be converted to the type of the declared param
eter.

Check SU
B and FU

NCTIO
N Param

eter Lists in Chapter 17 for the rules that apply to param
eter

types.

P
O
P

w
i
t
h
o
u
t

G
O
S
U
B

A
 PO

P statem
ent w

as encountered w
hen no G

O
SU

B w
as active.

Change the program
 so PO

P is only used after a G
O

SU
B, and m

ultiple PO
P statem

ents are
not used for a single G

O
SU

B.

P
R
I
N
T

U
S
I
N
G

f
o
r
m
a
t

s
t
r
i
n
g

h
a
s

\

w
i
t
h
o
u
t

c
l
o
s
i
n
g

\

A
 PRIN

T U
SIN

G
 form

at string contained a \ character, starting the form
at m

odel for a fixed
length string field, but no m

atching \ character w
as found to end the form

at m
odel.

M
ake sure only space characters appear betw

een the \ characters in a fixed length string form
at

m
odel. If you are trying to print a \ character from

 the form
at string, precede the \ character w

ith a
_ character, as in

PRINT USING "_\#"; 45

P
R
I
N
T

U
S
I
N
G

f
o
r
m
a
t

s
t
r
i
n
g

h
a
s

m
o
r
e

t
h
a
n

2
4

c
h
a
r
a
c
t
e
r
s

i
n

a

n
u
m
b
e
r

m
o
d
e
l

A
 num

eric form
at m

odel has m
ore than 24 form

at characters.
Form

at m
odels for num

bers are lim
ited to 24 characters. Reduce the num

ber of characters in
the form

at m
odel.

P
R
I
N
T

U
S
I
N
G

f
o
r
m
a
t

s
t
r
i
n
g

h
a
s

n
o

f
o
r
m
a
t

m
o
d
e
l
s

A
 PRIN

T U
SIN

G
 statem

ent has a form
at string, but there are no form

at m
odels in the string.

If you don't need to form
at any num

bers or strings, use a PRIN
T statem

ent to print a string
constant, not PRIN

T U
SIN

G
. If you intended to use a form

at m
odel, check the form

at string—
no

form
at m

odels w
ere found in the form

at string.

R
e
c
o
r
d

u
s
e
d

i
n
s
i
d
e

i
t
s
e
l
f

A
 record declaration appears inside the declaration of the sam

e record, as in

Appendices

260

TYPE POINTS
 SUCC AS POINTS
 H AS INTEGER
 V AS INTEGER
END TYPE

Records can contain fields that are records, but not if the field is the sam
e as the record it

appears in. If you w
ant to create m

ultiple records, use an array of records or a linked list of records,
as inDIM POINTS(30) AS POINT

TYPE POINTLIST
 SUCC AS POINTER TO POINTLIST
 H AS INTEGER
 V AS INTEGER
END TYPE

See U
sing the Record Type In The Record (Linked Lists) in Chapter 10 for an explanation that

tells w
hy the declaration of PO

IN
TLIST is valid, but the declaration of PO

IN
TS is not.

R
e
d
e
f
i
n
e
d

t
y
p
e

A
 type w

as defined using a type nam
e already in use.

M
ake sure all type nam

es are unique, and that types are defined only once.

R
e
d
i
m
e
n
s
i
o
n
e
d

v
a
r
i
a
b
l
e

e
r
r
o
r

A
n array or record w

as declared tw
ice, or the sam

e nam
e w

as used for tw
o different arrays or

records.
In general, all arrays and records should appear in D

IM
 statem

ents at the top of a program
 or

procedure. If they are all collected in one location, it’s easy to avoid, or at least track dow
n, this

sort of error.

R
E
N
U
M
B
E
R

o
v
e
r
l
a
p
s

o
l
d

a
n
d

n
e
w

l
i
n
e
s

The REN
U

M
BER com

m
and w

as used, but a renum
bered line had a new

 line num
ber larger

than the first succeeding non-renum
bered line.

Renum
ber the program

 a different w
ay, or elim

inate line num
bers com

pletely.

R
E
T
U
R
N

w
i
t
h
o
u
t

G
O
S
U
B

A
 RETU

RN
 statem

ent w
as encountered w

hen no G
O

SU
B w

as active.
Be careful of a program

 that drops into a subroutine, like this:

Appendix A: Error M
essages

261

10 FOR I = 1 TO 10
20 GOSUB 50
30 NEXT
50 PRINT I
60 RETURN

A
dding the line

40 END

w
ill create a w

orking program
.

S
E
L
E
C
T

C
A
S
E

w
i
t
h
o
u
t

E
N
D

S
E
L
E
C
T

A
 SELECT CA

SE statem
ent w

as started, but the program
 or procedure finished w

ithout
finding a m

atching EN
D

 SELECT.
M

ake sure there is exactly one EN
D

 SELECT for each SELECT CA
SE. K

eep in m
ind that

other m
ism

atched statem
ents m

ight cause this error even if there is a m
atching EN

D
 SELECT for

the SELECT CA
SE. For exam

ple,

SELECT CASE COLOR
 CASE RED
 IF SHORT THEN
 PRINT "R";
 ELSE
 PRINT "RED";
 CASE GREEN
 IF SHORT THEN
 PRINT "G";
 ELSE
 PRINT "GREEN";
END SELECT

could cause this error, even though the real error is that the IF statem
ent has no m

atching EN
D

 IF.

S
E
T
M
E
M

a
n
d

C
L
E
A
R

c
a
n
n
o
t

b
e

u
s
e
d

i
n

a

p
r
o
c
e
d
u
r
e

The SETM
EM

 com
m

and or CLEA
R com

m
and w

as used in a procedure. These com
m

ands can
only be used in the m

ain body of the program
, and should be used before D

IM
 statem

ents and type
declarations.

S
y
n
t
a
x

e
r
r
o
r

The line is not a legal BA
SIC statem

ent.
This is a general catch-all m

essage for m
isform

ed lines. Exam
ine the line carefully for

problem
s, rem

em
bering that the problem

 m
ay be subtle, like a com

m
a used w

here a sem
icolon is

expected.

Appendices

262

T
h
e

f
i
l
e

i
s

a
l
r
e
a
d
y

o
p
e
n

A
n O

PEN
 statem

ent w
as used to open a file, but the file w

as already open.
M

ake sure the file is only opened one tim
e, or that it is closed before another O

PEN
 statem

ent
is used. Y

ou m
ight w

ant to close and reopen a file if it w
as originally open for input, and you need

to w
rite new

 inform
ation to the file, for exam

ple.

T
h
e

l
i
n
e

i
s

t
o
o

l
o
n
g

G
Soft BA

SIC lines are lim
ited to 255 tokenized bytes during the conversion from

 A
SCII text

to tokenized G
Soft BA

SIC program
s. The lim

it doesn’t technically apply to a tokenized file,
although G

Soft BA
SIC doesn’t give you any w

ay to create a line longer than this lim
it. This error

is flagged as a file is loaded from
 an editor or from

 a disk file, not w
hile the program

 executes.
In general, tokens are shorter than A

SCII text typed from
 the com

m
and line or in an editor, so

this error w
on’t occur until the typed line is far longer than 255 characters.

Shorten the line until this error does not occur. If you are using long strings, consider
building the string from

 shorter strings on m
ultiple lines using string concatenation, like this:

A$ = "Hello, "
A$ = A$ + "world."

T
h
e

p
r
o
g
r
a
m

i
s

t
o
o

l
o
n
g

The program
 is too big to fit in the program

 buffer.
Increase the size of the program

 buffer using the SETM
EM

 com
m

and.

T
h
e

s
i
z
e

o
f

a

v
a
l
u
e

e
x
c
e
e
d
e
d

3
2
7
6
7

b
y
t
e
s

A
rrays and records are lim

ited to 32767 bytes each. Y
ou can have m

ultiple arrays or records
that, added together, exceed this size, but no single array or record can be larger than 32767 bytes.

Reduce the size of the array or record. Consider using linked lists rather than a large array.

T
o
o

m
a
n
y

n
e
s
t
e
d

s
u
b
r
o
u
t
i
n
e

c
a
l
l
s

G
O

SU
B or O

N
-G

O
SU

B statem
ents w

ere nested m
ore than 24 levels deep.

Check for unw
anted recursive subroutine calls. If you need to nest subroutines m

ore than 24
levels deep, sw

itch to subroutines created w
ith SU

B.

T
o
o

m
a
n
y

o
p
e
n

f
i
l
e
s

G
Soft BA

SIC can open up to 8 files at one tim
e. This error occurs w

hen an O
PEN

 statem
ent

is used w
hile 8 files are already open.

Reduce the num
ber of open files. K

eep in m
ind that you can close a file, open another, close

it, then reopen the first—
the lim

it is on the num
ber of files that are open at one tim

e, not on the
total num

ber of files opened by the program
.

Appendix A: Error M
essages

263

T
o
o

m
a
n
y

s
u
b
s
c
r
i
p
t
s

Few
er subscripts are expected for the array than are supplied. For exam

ple,

DIM A(5)
A(5, 2) = 6

w
ould cause this error.

Supply the proper num
ber of subscripts. M

ake sure you do not have m
ore than one array w

ith
the sam

e nam
e.

T
y
p
e

m
i
s
m
a
t
c
h

A
 value w

as used in an incorrect w
ay, such as adding a string to a num

ber or using a pointer
that points to a different kind of value than expected.

Change the expression so the types m
atch. If you need to use a value that is not the correct

type, consider type casting or converting the value to the correct type w
ith functions like CIN

T or
STR

$.

U
n
d
e
f
i
n
e
d

f
i
e
l
d

A
n attem

pt w
as m

ade to reference a field of a record, but the field does not exist in the record.
Check the spelling for the record field. M

ake sure you are using a value of the kind of record
you expect.

U
n
d
e
f
i
n
e
d

f
u
n
c
t
i
o
n

A
 FN

 function w
as used, as in

PRINT FN SQUARE (4)

but no D
EF FN

 statem
ent had been found w

hich defined the function.
D

ouble-check the spelling in the function declaration and its use. M
ake sure the D

EF FN
appears in the sam

e procedure as the line containing the D
EF FN

 function call, or that both appear
in the m

ain program
. M

ake sure the D
EF FN

 declaration is executed before the function is used the
first tim

e.

U
n
d
e
f
i
n
e
d

s
t
a
t
e
m
e
n
t

A
 com

m
and that uses a line num

ber as a destination, such as

GOTO 500

referred to a line num
ber that w

as not found.

Appendices

264 Change the com
m

and to refer to a line num
ber that exists, or add the appropriate line num

ber
to a statem

ent. If the line num
ber exists, but the line num

ber is not in the sam
e procedure as the

statem
ent that uses it, m

ove both statem
ents to the sam

e procedure.

U
n
d
e
f
i
n
e
d

s
u
b
r
o
u
t
i
n
e

A
 CA

LL statem
ent w

as used, but the identifier that follow
s is not the nam

e of a subroutine
defined w

ith a SU
B statem

ent.
Check spelling to m

ake sure the subroutine nam
e is spelled correctly. M

ake sure the
subroutine is in the program

 file. K
eep in m

ind that tool calls and G
S/O

S calls do not need a
CA

LL statem
ent, just the identifier.

U
n
i
m
p
l
e
m
e
n
t
e
d

c
o
m
m
a
n
d

A
 com

m
and that is recognized by som

e versions of G
Soft BA

SIC is not available in this
version.

Y
ou can generate this com

m
and deliberately w

ith the ERRO
R com

m
and, but it is not

generated by the com
m

ercial release of G
Soft BA

SIC 1.0.

U
n
k
n
o
w
n

t
o
o
l

A
 tool, user tool, or G

S/O
S call w

as encountered in the program
, but the tool w

as not found
in the tool sym

bol table.
M

ake sure the G
SoftTools.int file is in the correct location. (It can appear in several places;

see Chapter 19.) If the program
 uses additional tool files, be sure they are also in place. If the

program
 w

as w
ritten w

ith a later version of G
Soft BA

SIC than the one you are using, upgrade
your copy.

U
n
o
p
e
n
e
d

f
i
l
e

r
e
f
e
r
e
n
c
e
d

The program
 used a file num

ber in a com
m

and that only w
orks on an open file, but no file

w
ith the given num

ber w
as open.

U
se O

PEN
 to open a file before using any other com

m
and to m

anipulate the file. M
ake sure

you have not closed the file w
ith CLO

SE.

W
E
N
D

w
i
t
h
o
u
t

W
H
I
L
E

A
 W

EN
D

 w
as encountered w

hen no W
H

ILE statem
ent w

as active.
M

ake sure W
EN

D
 is only used w

hen a W
H

ILE loop is active. K
eep in m

ind that other
m

ism
atched statem

ents can m
ake a correct W

H
ILE-W

EN
D

 loop generate this error. See the
exam

ple for “W
H

ILE w
ithout W

EN
D

,” for one w
ay this can happen.

W
H
I
L
E

w
i
t
h
o
u
t

W
E
N
D

The end of the program
 or subroutine w

as reached w
hile a W

H
ILE statem

ent w
as active, but

no W
EN

D
 w

as found.

Appendix A: Error M
essages

265

M
ake sure all W

H
ILE statem

ents have a m
atching W

EN
D

. M
ake sure the m

atching W
EN

D
 is

not hidden by another unfinished statem
ent. For exam

ple,

P = CUSTOMERS
WHILE P <> NIL
 IF P.NAME = NAME THEN
 CALL MATCHFOUND(P)
 P = NIL
 ELSE
 P = P^.SUCC
WEND

w
ill generate this error if P is N

IL right aw
ay, even though the real error is that the IF has no

m
atching EN

D
 IF.

267

A
ppendix B – C

onsole C
ontrol C

odes

W
hen you are w

riting program
s that w

ill be executed in the G
Soft BA

SIC shell or from
 the

Finder after using M
akeRuntim

e, you have several special console control codes available. These
are special characters w

hich cause the console to take som
e action, like m

oving the cursor or
turning the cursor off. This appendix lists those console control codes.

K
eep in m

ind that these codes are specific to the console driver used w
ith G

Soft BA
SIC.

W
hile they are fairly com

m
on on A

pple IIG
S console drivers, they are not universal. These codes

don’t apply at all if you are w
riting text to the graphics screen, printing to a printer, or w

riting to
a disk file.

U
se the CH

R$ function to convert these codes to characters, and any output statem
ent to send

them
 to the console. For exam

ple,

PRINT CHR$(7);

w
ill beep the speaker.

Character codes in the range 0 to 31 that are not listed in the table are ignored.
Character codes from

 32 to 127 are A
SCII characters. Sending them

 to the console driver
displays the character and m

oves the cursor forw
ard one position. If the cursor starts in the

rightm
ost position on a line, it m

oves to the first position of the follow
ing line, scrolling the

screen if necessary.
If you send a code from

 128 to 255 to the console driver, it starts by subtracting 128. The
result is in the range 0 to 127, and is treated as described above.

In m
any cases, there is a built-in BA

SIC com
m

and that does the sam
e thing as the control

codes. Y
ou can find these com

m
ands scattered throughout Chapter 13, Input and O

utput.

Code
D

escription
5

Turn the cursor on. The character under the cursor is displayed as an inverse
character. Y

ou w
ould norm

ally use this code to indicate that the user should type
a character.

6
Turn the cursor off. This is the default; the cursor position is rem

em
bered, but

there is no visible indication of the cursor position on the screen.
7

Beep the speaker.
8

M
ove the cursor one space to the left. D

oes nothing if the cursor is in the
leftm

ost colum
n.

10
M

ove the cursor dow
n one line. The cursor is not m

oved to the leftm
ost

colum
n; it sim

ply m
oves dow

n. If the cursor starts in the low
est line, the screen

scrolls up one line, losing the topm
ost line and replacing the bottom

m
ost line

w
ith spaces; in this case the relative position of the cursor does not change.

Appendices

268 11
Clear to the end of the screen. A

ll characters under the cursor, to the right of the
cursor, or on lines below

 the cursor are replaced w
ith spaces.

12
Clear the screen and hom

e the cursor. A
ll characters are replaced w

ith spaces, and
the cursor is m

oved to the top left position on the screen. This does the sam
e

thing as BA
SIC’s H

O
M

E statem
ent.

13
Carriage return. The cursor m

oves to the leftm
ost colum

n on the current line.
14

Standard characters. A
ll characters printed after sending this code use the standard

display set. M
ore precisely, the m

ost significant bit is set on characters before
they are displayed, giving standard A

SCII characters. In m
ost cases, it m

akes
m

ore sense to use BA
SIC’s N

O
RM

A
L statem

ent.
15

A
lternate characters. Characters are sent to the screen w

ithout setting the m
ost

significant bit, so they are displayed using either m
ousetext or inverse characters.

Looking at Text Screen Codes in A
ppendix C, printing an A

SCII character
from

 the rightm
ost eight colum

ns w
ould display as the character eight colum

ns
to the left. For exam

ple, printing A
 w

ould display an inverse A
.

24
M

ousetext off. Turns off the m
ousetext m

ode enabled w
ith code 27. In m

ost
cases, it m

akes m
ore sense to use BA

SIC’s N
O

RM
A

L statem
ent.

25
M

oves the cursor to the top left screen position. The screen is not cleared.
27

M
ousetext on. A

fter using this code, printing a character in the range ‘@
’ ..’_’,

w
hich includes the uppercase alphabetic characters, displays the character as one

of the m
ousetext characters. See A

ppendix C for a description of the m
ousetext

character set.
Sending this character code to the console does the sam

e thing as BA
SIC’s

M
O

U
SETEX

T com
m

and.
28

M
oves the cursor one colum

n to the right. D
oes nothing if the cursor starts in

the rightm
ost colum

n.
29

Clear to the end of the line. The character beneath the cursor and all characters to
the right of the cursor are replaced w

ith spaces.
30

Position the cursor. The tw
o follow

ing characters are used as the horizontal and
vertical cursor position. A

fter subtracting 31 from
 each character value, the

cursor is m
oved to that location. For exam

ple,

PRINT CHR$(30); CHR$(31 + 4); CHR$(31 + 5);

m
oves the cursor to the fourth colum

n, fifth line on the screen.
31

M
ove the cursor up one line. D

oes nothing if the cursor starts in the topm
ost

line.

269

A
ppendix C

 – C
haracter Sets

The A
SC

II C
haracter Set

The A
SCII character set establishes num

eric equivalents for 95 printing characters. The tie
betw

een the A
SCII character set and com

puters is so pervasive that virtually all keyboards built for
use in the U

nited States allow
 input of all of the A

SCII characters—
and only the A

SCII characters.
(Som

e softw
are, like the A

pple IIG
S toolbox, adds extra characters by interpreting option keys,

but these aren’t actually on the keyboard.)
The A

SCII character set also defines 33 nonprinting characters, num
bered 0 to 31 and 127. A

ll
of these have a suggested m

eaning, and m
any are now

 nearly universal. Y
ou’ll see m

any of these
values used in the console control codes from

 A
ppendix B. This w

asn’t alw
ays true. To get an idea

of how
 long the A

SCII character set has been around, consider that character 127, rub, is used as a
delete character. The reason it’s character 127 is that this character is m

ade up of seven 1 bits.
W

hen a m
istake w

as m
ade punching code into a paper tape—

yes, a long yellow
 strip of paper used

to store program
s and data—

deleting a character m
eant backing up and punching all seven holes

out, or “rubbing out” the letter. A
nd for the first 10 years or so of the m

icrocom
puter revolution,

it w
as rare to find a keyboard w

ith the entire A
SCII character set available.

The com
plete A

SCII character set is show
n below

. To find the num
ber for a particular

character, add the values to the top and left of the given character. For exam
ple, the ordinal value

for the character A
 is 64 + 1, or 65.

0
1

6
3

2
4

8
6

4
8

0
9

6
1

1
2

0
nul

dle
0

@
P

`
p

1
soh

dc1
!

1
A

Q
a

q
2

stx
dc2

"
2

B
R

b
r

3
etx

dc3
#

3
C

S
c

s
4

eot
dc4

$
4

D
T

d
t

5
enq

nak
%

5
E

U
e

u
6

ack
syn

&
6

F
V

f
v

7
bel

etb
'

7
G

W
g

w
8

bs
can

(
8

H
X

h
x

9
ht

em
)

9
I

Y
i

y
1

0
lf

sub
*

:
J

Z
j

z
1

1
vt

esc
+

;
K

[
k

{
1

2
ff

fs
,

<
L

\
l

|
1

3
cr

gs
-

=
M

]
m

}
1

4
co

rs
.

>
N

^
n

~
1

5
si

us
/

?
O

_
o

rub

Appendices

270

Text Screen C
odes

The text screen can display 256 different character values. Thirty-tw
o of these are duplicates,

so the total num
ber of distinct characters it can display is 224.

O
ddly enough, the A

pple II has alw
ays displayed standard A

SCII characters by adding 128 to
the A

SCII character value. W
hen you use any A

pple II print com
m

and, this m
apping is done

autom
atically, but if you decide to poke characters directly to the screen buffer you w

ill need to
account for this oddity.

The screen im
age below

 show
s an actual screen dum

p of all of the characters the A
pple IIG

S
can display using the standard U

S RO
M

s. To find the character num
ber, add the row

 (counting
from

 0) to 16 tim
es the colum

n (again counting from
 0). For exam

ple, a standard w
hite on black

low
ercase a is 1 + 14 * 16, or 225.

The A
pple IIG

S Text Screen Character Set

T
oolbox C

haracter C
odes

Fonts in the A
pple IIG

S toolbox generally use the A
SCII character set. A

pple has also defined
several other characters, usually to support alphabets for languages other than English. The table
below

 show
s the characters defined by A

pple.
K

eep in m
ind that these are guidelines, not requirem

ents. A
 G

reek font, for exam
ple, w

ill
generally dum

p the A
SCII character to m

ake room
 for the G

reek characters. Som
e fonts im

plem
ent

radically different character sets, such as postal bar codes, hieroglyphics, or special sym
bols. Even

fonts that im
plem

ent the A
SCII character set don’t alw

ays add all of the characters show
n below

.
Still, if the character is available, its character num

ber alm
ost alw

ays m
atches the num

ber show
n.

Appendix C
: C

haracter Sets

271

00
10

20
30

40
50

60
70

80
90

A
0

B0
C

0
D

0
E0

F0
0

spc
0

@
P

`
p

Ä
ê

†
∞

¿
–

1

!
1

A
Q

a
q

Å
ë

°
±

¡
—

2

"
2

B
R

b
r

Ç
í

¢
≤

¬
“

3

#
3

C
S

c
s

É
ì

£
≥

√
”

4

$
4

D
T

d
t

Ñ
î

§
¥

ƒ
‘

5
%

5
E

U
e

u
Ö

ï
•

µ
≈

’
6

&
6

F
V

f
v

Ü
ñ

¶
∂

Δ
÷

7
'

7
G

W
g

w
á

ó
ß

∑
«

◊
8

(
8

H
X

h
x

à
ò

®
∏

»
ÿ

9
)

9
I

Y
i

y
â

ô
©

π
…

A
*

:
J

Z
j

z
ä

ö
™

∫
spc

B
+

;
K

[
k

{
ã

õ
´

ª
À

C
,

<
L

\
l

|
å

ú
¨

º
Ã

D
-

=
M

]
m

}
ç

ù
≠

Ω
Õ

E
.

>
N

^
n

~
é

û
Æ

æ
Œ

F
/

?
O

_
o

è
ü

Ø
ø

œ

•
The characters from

 the space ($20) to the tilde ($7E) are all standard printing A
SCII

characters.
•

W
hile they have standard definitions, the characters $11..$14, $A

D
, $B0..$B3, $B5..$BA

,
$BD

, $C2..$C6 and $D
6 tend to be rare in m

ost fonts.
•

Character $CA
 is the non-breaking space.

273

A
ppendix D

 – W
riting U

ser Tools for
G

Soft B
A

SIC

The R
ole O

f U
ser Tools

W
hile G

Soft BA
SIC is a pow

erful, flexible language, there are som
e things it doesn’t do

w
ell. Things like high-speed serial com

m
unications, accessing hardw

are, or im
plem

enting fast
graphics routines w

ork better in other languages, usually assem
bly language. U

ser tools give you
a w

ay to w
rite specific subroutines like these in a different language, then use them

 from
G

Soft B
A

SIC
.

There are tw
o other benefits of user tools. First, they can be used from

 languages other than
G

Soft BA
SIC. A

ny A
pple IIG

S language that supports user tools, such as O
RCA

/Pascal,
O

RCA
/C, O

RCA
/M

odula-2 and O
RCA

/M
, can use the sam

e user tool you w
rite for

G
Soft BA

SIC. Second, they give you a w
ay to add features to G

Soft BA
SIC through fast,

efficient assem
bly language libraries.

W
riting U

ser T
ools

A
pple IIG

S Toolbox R
eference V

olum
e 2

A
ppendix A

 of the Apple IIG
S Toolbox Reference, Volum

e 2 is the official docum
entation

about how
 to w

rite user tools. It tells you exactly how
 tools are organized, installed, and w

hat the
environm

ent is w
hen tool routines are called.

A
voiding T

ool N
um

ber C
onflicts

There are 256 available user tool num
bers. W

hile it is unlikely that there w
ill be 256 publicly

released user tools for the A
pple IIG

S, even approaching this num
ber m

eans there w
ill be

inevitable conflicts.
If you w

rite your tools carefully, though, this does not need to be a serious problem
.

The plain truth is that a tool doesn’t need to know
 its ow

n tool num
ber. Y

ou can change the
tool num

ber for a carefully w
ritten tool by renam

ing the file and changing the interface file to use
the new

 num
ber. This m

akes it relatively easy for anyone using your tool to renum
ber it if there is

a num
bering conflict w

ith som
e other existing tool.

Appendices

274 There are tw
o places w

here it m
ight seem

 that a tool needs to use its ow
n tool num

ber. The
first is if the tool needs to call itself. That’s not really necessary, though. The tool can be
organized internally as a series of subroutines, and calls from

 inside the tool can call the
subroutines rather than using the tool call m

echanism
. In addition to avoiding a dependence on a

specific tool num
ber, this w

ill also m
ake the call faster.

The second possible problem
 area is tool error num

bers. It is traditional to use the tool
num

ber as the m
ost significant byte of the error num

ber. In fact, that’s exactly w
hat the G

am
e

Paddle Library does—
the param

eter out of range error is the tool num
ber m

ultiplied by 256 and
added to 1. If you change the tool num

ber, though, you’ll find that the m
ost significant byte of the

error num
ber changes, too. That’s because the error num

ber is form
ed from

 the tool num
ber passed

to the G
am

e Paddle Library w
hen it is called, not from

 a fixed internal constant. Every tool call
can look to see w

hat the actual tool num
ber is, rather than depending on a fixed tool num

ber.
The Byte W

orks, Inc. is using user tools to im
plem

ent a set of standard libraries. These
libraries are num

bered sequentially from
 1. W

hile all our libraries have num
bers that can be

changed, it is still best to avoid conflicts w
hen possible, so w

e suggest that you use user tool
num

bers of 64 or higher for your ow
n libraries. W

e w
ill m

aintain a list of user tools developed for
G

Soft BA
SIC to advise you w

hich num
bers have been used.

T
he G

Soft B
A

SIC
 Interface

W
riting the tool is the biggest part of creating a user tool for G

Soft BA
SIC, but it’s not the

only part. Y
ou also need to create a tool interface file and com

pile the interface w
ith Com

pileTool.
This creates the .gst file that G

Soft BA
SIC loads so it know

s how
 to call your user tool.

See C
om

pileTool in Chapter 4 for details.

Installing the G
am

e Paddle Library

This section show
s you how

 to install and m
ake use of a user tool from

 G
Soft BA

SIC. The
description assum

es you are installing and using a user tool that already has a G
Soft BA

SIC
interface file. If you have a user tool that does not have a G

Soft BA
SIC interface file, see

C
om

pileTool in Chapter 4. Com
pileTool is the utility you use to create G

Soft BA
SIC interface

files.There are three critical pieces to any user tool: The tool itself, the interface file that tells
G

Soft BA
SIC w

hat’s in the tool, and the docum
entation that tells you how

 to use the tool calls.
The docum

entation for the G
am

e Paddle Library is in Chapter 18.
The next tw

o paragraphs tell you how
 to m

anually install the G
am

e Paddle Library. There is
also an installer option to install the tool. If you used that option w

hen you installed
G

Soft BA
SIC the files w

ill already be in place.
To install the tool itself, copy the file U

serTool001 from
 the folder

:G
Soft.Extras:System

:Tools on the extras disk to the Tools folder, found inside your System
folder. The disk containing this folder m

ust be m
ounted w

hen your program
 uses LO

A
D

LIBRA
RY

to load the tool.

Appendix D
: W

riting U
ser Tools for G

Soft BASIC

275

The interface file is in the :G
Soft:Sam

ples:G
am

eTool folder on the program
 disk. Copy

G
am

eTool.gst to any of these locations.

T
he

Folder
C

ontaining
G

Soft.Sys16

Copy the file to this folder if you are using the G
Soft BA

SIC shell. This is the m
ost

com
m

on place to put the tool interface.

13:G
SoftD

efs:

Copy the file to this folder if you are using the version of G
Soft BA

SIC that runs from
 the

O
RCA

 shell.

T
he Folder C

ontaining Y
our Program

Copy the interface file to the folder containing your program
 if you don’t w

ant the user tool to
be available for every program

 you create. If you copy the file to the local folder, though, don’t
copy it to the other locations. If you do, G

Soft BA
SIC w

ill load the file from
 each location. That

w
on’t actually cause your program

 to fail, but it takes extra tim
e each tim

e you start
G

Soft BA
SIC, and the files take up extra RA

M
.

Sam
ple Source

There are som
e subtle tricks to w

riting user tools, like the fact that there are actually tw
o

return addresses on the stack w
hen your tool is called, not one. It helps to have an exam

ple as you
sort these issues out!

The com
plete source code for the G

am
e Paddle Library and the Tim

e Library are in your
sam

ples folder. They are w
ritten in assem

bly language, and require O
RCA

/M
 to assem

ble.

277

A
ppendix E – C

onverting A
pplesoft BA

SIC
Program

s to G
Soft BA

SIC

The purpose of this appendix is to help you convert A
pplesoft BA

SIC program
s to

G
Soft BA

SIC. It is also useful if you need to convert a G
Soft BA

SIC program
 to

A
pplesoft BA

SIC, or if you w
ant to develop a program

 for both platform
s sim

ultaneously.

A
pplesoft B

A
SIC

 Peeks, Pokes and C
alls

This section lists PEEK
s, PO

K
Es and CA

LLs that are com
m

on in A
pplesoft BA

SIC
program

s. It tells w
hat the statem

ent is used for in A
pplesoft BA

SIC, and how
 to get the sam

e
effect in G

Soft BA
SIC.

Som
e PEEK

, PO
K

E and CA
LL addresses are show

n as negative num
bers. This is an

A
pplesoft BA

SIC convention for representing num
bers in the range 32768 to 65535. The larger

num
bers actually w

orked in A
pplesoft BA

SIC, so, for exam
ple, you m

ight occasionally see
PEEK

 (49152) to read the keyboard instead of PEEK
 (-16384). To convert from

 negative num
bers

to positive, add the value to 65536. To convert from
 positive values to negative, subtract 65536

from
 the value. H

exadecim
al notation is alw

ays used for the G
Soft BA

SIC equivalents, although
positive integers w

ill w
ork just as w

ell—
but negative values w

ill not w
ork in G

Soft BASIC
! The

old 8 bit A
pple][used a 16 bit address bus, w

hich is w
hy 65536 (2 raised to the pow

er 16) is used
to convert from

 negative to positive equivalent num
bers. The A

pple IIG
S uses 24 bit num

bers for
addresses, w

hich G
Soft BA

SIC stores as 32 bit values, so this conversion doesn’t w
ork.

PEEK
s and PO

K
Es to soft sw

itches still w
ork, but there is often a better w

ay to get the sam
e

effect in G
Soft BA

SIC. CA
LL statem

ents from
 A

pplesoft BA
SIC cannot be m

ade from
G

Soft B
A

SIC
.

C
all

U
se and Conversion

CALL -10621
Clears the internal stack of all control inform

ation.
There is no G

Soft BA
SIC equivalent.

CALL -3288
Clears the internal stack in O

N
ERR G

O
TO

 handlers.
There is no G

Soft BA
SIC equivalent.

CALL -3086
Clears the high resolution screen to black.
There is no G

Soft BA
SIC equivalent, but the A

pple IIG
S graphics screen

can be cleared w
ith H

G
R.

CALL -3082
Clears the high resolution screen to the color m

ost recently used in an
H

PLO
T statem

ent.

Appendices

278

There is no G
Soft BA

SIC equivalent, but the A
pple IIG

S graphics screen
can be rapidly painted any color w

ith Q
uickD

raw
 II’s

SETSO
LID

PEN
PA

T and PA
IN

TRECT com
m

ands.
CALL -1998

Clears the low
 resolution screen to black or fills the text screen w

ith
inverse @

 characters.
There is no G

Soft BA
SIC equivalent.

CALL -1994
Clears the upper half of the low

 resolution screen to black or fills the
upper half of the text screen w

ith inverse @
 characters.

There is no G
Soft BA

SIC equivalent.
CALL -958

Clears the text screen from
 the current character position to the bottom

right corner of the screen.
U

sePRINT CHR$(11);

in G
Soft B

A
SIC

.
CALL -936

Erases the text screen and places the cursor at the top left of the screen.
U

se H
O

M
E in G

Soft BA
SIC.

CALL -922
M

oves the cursor dow
n one line.

U
sePRINT CHR$(10);

in G
Soft B

A
SIC

.
CALL -912

Scrolls the screen up one line.
There is no G

Soft BA
SIC equivalent, but you can get the sam

e effect by
m

oving the cursor to line 24, issuing a carriage return using a PRIN
T

statem
ent, then repositioning the cursor if you need to preserve the

original location.
CALL -868

Clears the text screen from
 the cursor to the end of the line.

U
sePRINT CHR$(29);

in G
Soft B

A
SIC

.

PEEK
U

se and Conversion
PEEK (36)

Returns the current horizontal cursor position.

Appendix E: C
onverting Applesoft BASIC

 Program
s to G

Soft BASIC

279

U
se the PO

S function in G
Soft BA

SIC. K
eep in m

ind that
A

pplesoft BA
SIC num

bers the colum
ns 0 to 79, but G

Soft BA
SIC

num
bers them

 1 to 80.
PEEK (37)

Returns the current vertical cursor position.
U

se the CSRLIN
 function in G

Soft BA
SIC. K

eep in m
ind that

A
pplesoft BA

SIC num
bers the lines 0 to 23, but G

Soft BA
SIC num

bers
them

 1 to 24.
PEEK (216)

Returns a value greater than 127 if an O
N

ERR G
O

TO
 handler is active.

There is no G
Soft BA

SIC equivalent.
PEEK (219) * 256 + PEEK (218)

U
sed in O

N
ERR G

O
TO

 handlers, this expression returns the line num
ber

w
here the error occurred.

U
se ERL in G

Soft BA
SIC.

PEEK (222)
U

sed in O
N

ERR G
O

TO
 handlers, this PEEK

 returns the error num
ber.

U
se ERR in G

Soft BA
SIC.

PEEK (-16384)
Returns the last character typed from

 the keyboard.
U

sePEEK ($00C000)

in G
Soft BA

SIC. K
eep in m

ind that there are several w
ays to read the

keyboard under G
S/O

S. If the Event M
anager or the G

N
O

 shell are in use,
reading the keyboard this w

ay is not appropriate.
PEEK (-16336)

Clicks the speaker.
U

sePEEK ($00C030)

in G
Soft B

A
SIC

.
PEEK (-16352)

Clicks the cassette recorder output.
The cassette recorder output is only present on the A

pple][and
A

pple //e.
PEEK (-16320)

Triggers the gam
e paddle port utility strobe.

U
sePEEK ($00C040)

in G
Soft B

A
SIC

.
PEEK (-16287)

Reads gam
e paddle button 0. If the result is greater than 127, the button is

being pressed; if not, the button is not being pressed.
U

se

Appendices

280

PEEK ($00C061)

in G
Soft B

A
SIC

.
PEEK (-16286)

Reads gam
e paddle button 1. If the result is greater than 127, the button is

being pressed; if not, the button is not being pressed.
U

sePEEK ($00C062)

in G
Soft B

A
SIC

.
PEEK (-16285)

Reads gam
e paddle button 2. If the result is greater than 127, the button is

being pressed; if not, the button is not being pressed.
U

sePEEK ($00C063)

in G
Soft B

A
SIC

.

PO
K

E
U

se and Conversion
POKE 32 , L

Sets the left edge of the text screen.
There is no G

Soft BA
SIC equivalent.

POKE 33 , W
Sets the w

idth of the text screen.
There is no G

Soft BA
SIC equivalent.

POKE 34 , T
Sets the top edge of the text screen.
There is no G

Soft BA
SIC equivalent.

POKE 35 , B
Sets the bottom

 edge of the text screen.
There is no G

Soft BA
SIC equivalent.

POKE 36 , CH
Sets the horizontal cursor position.
U

se H
TA

B in G
Soft BA

SIC. K
eep in m

ind that A
pplesoft BA

SIC
num

bers the colum
ns 0 to 79, but G

Soft BA
SIC num

bers them
 1 to 80.

POKE 37 , CV
Sets the horizontal cursor position.
U

se V
TA

B in G
Soft BA

SIC. K
eep in m

ind that A
pplesoft BA

SIC
num

bers the lines 0 to 23, but G
Soft BA

SIC num
bers them

 1 to 24.
POKE 216 , 0

Turns any active O
N

ERR G
O

TO
 handler off.

U
seONERR GOTO 0

Appendix E: C
onverting Applesoft BASIC

 Program
s to G

Soft BASIC

281

in G
Soft B

A
SIC

.
POKE -16368 , 0

Clears the keyboard strobe.
U

sePOKE $00C010, 0

in G
Soft B

A
SIC

.
POKE -16304 , 0

Sw
itches the display from

 the text screen to one of the graphics m
odes.

See also PO
K

E -16297 and PO
K

E -16298.
D

epending on how
 you are translating the program

, you m
ay w

ant to
leave the PO

K
E as is, or you m

ay w
ant to use G

Soft BA
SIC’s H

G
R

statem
ent.

POKE -16303 , 0
Sw

itches the display from
 one of the graphics m

odes to the text screen.
D

epending on how
 you are translating the program

, you m
ay w

ant to
leave the PO

K
E as is, or you m

ay w
ant to use G

Soft BA
SIC’s TEX

T
com

m
and.

POKE -16302 , 0
Sw

itches the display to full screen graphics. See also PO
K

E -16301.
There is no G

Soft BA
SIC equivalent to m

ixed text and graphics.
D

epending on how
 the text and graphics screens are accessed, you m

ay be
able to om

it the PO
K

E altogether or use it as is.
POKE -16301 , 0

Sw
itches the display to m

ixed text and graphics. See also PO
K

E -16302.
There is no G

Soft BA
SIC equivalent to m

ixed text and graphics.
POKE -16300 , 0

Sw
itches the display from

 page 2 to page 1. See also PO
K

E -16299.
Y

ou do not usually use page 2 w
ith G

Soft BA
SIC, but w

ith adequate
preparation you can use this PO

K
E as is. See Low

 Resolution G
raphics

and Text Screen Access, later in this appendix, for details.
POKE -16299 , 0

Sw
itches the display from

 page 1 to page 2. See also PO
K

E -16300.
Y

ou do not usually use page 2 w
ith G

Soft BA
SIC, but w

ith adequate
preparation you can use this PO

K
E as is. See Low

 Resolution G
raphics

and Text Screen Access, later in this appendix, for details.
POKE -16298 , 0

D
isplays the A

pple][low
 resolution graphics screen, as opposed to the

high resolution graphics screen. See also PO
K

E -16304 and PO
K

E -
16297.
D

epending on how
 you are translating the program

, you m
ay w

ant to
leave the PO

K
E as is, or you m

ay w
ant to use G

Soft BA
SIC’s H

G
R

statem
ent.

POKE -16297 , 0
D

isplays the A
pple][high resolution graphics screen, as opposed to the

low
 resolution graphics screen. This is not the sam

e as the A
pple IIG

S
graphics screen norm

ally used by G
Soft BA

SIC and the A
pple IIG

S
toolbox. See also PO

K
E -16304 and PO

K
E -16298.

Appendices

282

D
epending on how

 you are translating the program
, you m

ay w
ant to

leave the PO
K

E as is, or you m
ay w

ant to use G
Soft BA

SIC’s H
G

R
statem

ent.
POKE -16296 , 0

Turns off gam
e paddle annunciator 0.

U
sePOKE $00C058 , 0

in G
Soft B

A
SIC

.
POKE -16295 , 0

Turns on gam
e paddle annunciator 0.

U
sePOKE $00C059 , 0

in G
Soft B

A
SIC

.
POKE -16294 , 0

Turns off gam
e paddle annunciator 1.

U
sePOKE $00C05A , 0

in G
Soft B

A
SIC

.
POKE -16293 , 0

Turns on gam
e paddle annunciator 1.

U
sePOKE $00C05B , 0

in G
Soft B

A
SIC

.
POKE -16292 , 0

Turns off gam
e paddle annunciator 2.

U
sePOKE $00C05C , 0

in G
Soft B

A
SIC

.
POKE -16291 , 0

Turns on gam
e paddle annunciator 2.

U
sePOKE $00C05D , 0

in G
Soft B

A
SIC

.
POKE -16290 , 0

Turns off gam
e paddle annunciator 3.

Appendix E: C
onverting Applesoft BASIC

 Program
s to G

Soft BASIC

283

U
sePOKE $00C05E , 0

in G
Soft B

A
SIC

.
POKE -16289 , 0

Turns on gam
e paddle annunciator 3.

U
sePOKE $00C05F , 0

in G
Soft B

A
SIC

.

Low
 R

esolution G
raphics and Text Screen A

ccess

PEEK
s and PO

K
Es in the range $0400 to $07FF are reading and w

riting the first of tw
o pages

used for 40 colum
n text or low

 resolution graphics. This m
em

ory area can be displayed as text,
low

 resolution graphics, or a m
ixture w

ith graphics on top and four lines of text at the bottom
.

The display m
ethod is set using soft sw

itches. See the various PO
K

E com
m

ands in the previous
section for details about the locations to poke for various effects.

W
hile G

Soft BA
SIC does not support low

 resolution graphics directly, PEEK
s and PO

K
Es to

the graphics page w
ork fine, and PEEK

s and PO
K

Es to the text screen w
ork fine, too.

A
pplesoft BA

SIC program
s w

ritten for the A
pple //e, A

pple //c or A
pple IIG

S m
ay also

m
anipulate m

em
ory in the range $010400 to $0107FF, generally using bank sw

itching, but
occasionally by poking assem

bly routines into RA
M

. This gives access to the other 40 colum
ns

of text used w
hen 80 colum

ns of text are displayed. Bank sw
itching w

ill still w
ork under

G
Soft BA

SIC. Poking assem
bly routines into RA

M
 is not safe under G

S/O
S, but converting the

program
 to use PO

K
Es is generally easy. U

nder A
pplesoft BA

SIC, you could not PO
K

E directly
into m

em
ory bank 1, w

hich is w
hy these tricks are used in A

pplesoft BA
SIC. From

G
Soft BA

SIC you can PO
K

E anyw
here in RA

M
.

PEEK
s and PO

K
Es in the range $0800 to $0BFF are accessing the second 40 colum

n text and
low

 resolution graphics page. A
ccessing $010800 to $010BFF, again through bank sw

itching or
poking assem

bly language into RA
M

, is m
anipulating the second 40 colum

ns of an 80 colum
n

display. A
ccessing this second page is generally not safe under G

S/O
S. If you m

ust use the second
display, you m

ust reserve this m
em

ory first using the M
em

ory M
anager Tool Set. Since this

range of m
em

ory is generally used for direct page m
em

ory by the first program
 G

S/O
S executes,

this w
ill be difficult—

in fact, you m
ay need to w

rite a G
S/O

S init that w
ill reserve the m

em
ory

perm
anently at boot tim

e.

Appendices

284

C
om

m
ands in G

Soft BA
SIC

 That A
re N

ot In
A

pplesoft B
A

SIC
These com

m
ands exist in G

Soft BA
SIC but not in A

pplesoft BA
SIC. In som

e cases there are
equivalent w

ays to accom
plish the sam

e thing, generally w
ith the PEEK

s, PO
K

Es and CA
LLs

show
n earlier in this appendix.

If you are converting a G
Soft BA

SIC program
 to A

pplesoft BA
SIC, you w

ill have to rem
ove

each of these com
m

ands from
 the program

.

!
ALLOCATE

BREAK
CASE

CDBL
CHDIR

CINT
CLOSE

CLNG
CSNG

CSRLIN
CURDIR$

DIR$
DISPOSE

DO
ERL

ERROR
ERR

EOF
FUNCTION

GSOS
KILL

LINE INPUT
LOADLIBRARY

LOC
LOF

LOOP
MKDIR

MOUSETEXT
NAME

NIL
OPEN

PUT
RMDIR

SEEK
SELECT

SETMEM
SIZEOF

SUB
TOOL

TOOLERROR
TYPE

UNLOADLIBRARY
LIBRARY

WHILE

C
om

m
ands in A

pplesoft BA
SIC

 That A
re N

ot In
G

Soft B
A

SIC
These com

m
ands exist in A

pplesoft BA
SIC but not in G

Soft BA
SIC.

&
COLOR=

DEL
DRAW

FLASH
GR

HGR2
HIMEM:

HLIN
IN#

LIST
LOAD

LOMEM:
NOTRACE

PDL
PLOT

PR#
RECALL

ROT=
SAVE

SCALE=
SCRN

SHLOAD
STORE

TRACE
USR

VLIN
XDRAW

In som
e cases, like FLA

SH
 and SH

LO
A

D
, the com

m
ands actually aren’t available in

A
pplesoft BA

SIC on an A
pple IIG

S, either—
the cassette port is m

issing, and the character RO
M

no longer supports flashing characters. STO
RE and RECA

LL w
ere also used w

ith cassette tape
drives, and have no G

Soft BA
SIC equivalent.

LO
A

D
 and SA

V
E w

orked w
ith either cassette tape drives or disks, depending on w

hether a file
nam

e w
as used. G

Soft BA
SIC supports LO

A
D

 and SA
V

E from
 the com

m
and line, but not from

inside an executing program
.

The &
 and U

SR com
m

ands w
ere used to extend A

pplesoft BA
SIC using assem

bly language.
O

ld &
 packages and U

SR subroutines cannot safely execute under G
S/O

S, so any
A

pplesoft BA
SIC program

 that uses them
 w

ould need to be converted. G
Soft BA

SIC does
support extensions via assem

bly language, but it uses LIBRA
RY

 to do so. Since the old

Appendix E: C
onverting Applesoft BASIC

 Program
s to G

Soft BASIC

285

com
m

ands m
ust be rew

ritten anyw
ay, it m

akes sense to take advantage of the nam
es and param

eter
passing available from

 user tools.
IN

and PR# are used in A
pplesoft BA

SIC to redirect input and output to hardw
are cards. The

disk com
m

ands are used to handle all input and output in G
Soft BA

SIC. G
S/O

S drivers can be
w

ritten for practically any device, and have already been w
ritten for m

ost of them
.

D
EL and LIST are available in G

Soft BA
SIC, but not from

 inside a program
. The

G
Soft BA

SIC shell has both com
m

ands, and they w
ork just like they do in A

pplesoft BA
SIC.

H
IM

EM
: and LO

M
EM

: deal w
ith m

em
ory allocation in a w

ay that is not safe under G
S/O

S.
G

Soft BA
SIC supports SETM

EM
 for the sam

e purpose.
CO

LO
R=, D

RA
W

, G
R, H

G
R2, H

LIN
, PLO

T, RO
T=, SCA

LE=, SCRN
, V

LIN
 and

X
D

RA
W

 are older graphics com
m

ands. G
Soft BA

SIC has access to Q
uickD

raw
 II, w

here you
w

ill find equivalents for m
ost of these com

m
ands, as w

ell as m
any new

 features.
TRA

CE and N
O

TRA
CE are used for debugging A

pplesoft BA
SIC program

s. G
Soft BA

SIC
uses BREA

K
 and source level debuggers (sold separately) for the sam

e task.
The PD

L com
m

and reads gam
e paddle controls and joysticks. There is no equivalent com

m
and

in G
Soft BA

SIC, but there is a gam
e port user tool that does the sam

e thing. See appendix D
 for

details.

C
om

m
ands That A

re D
ifferent in A

pplesoft BA
SIC

 and
G

Soft B
A

SIC
These com

m
ands exist in both im

plem
entations of BA

SIC, and w
ith the exception of CA

LL,
generally do the sam

e thing. Each com
m

and has som
e extended capabilities in G

Soft BA
SIC that

you w
ill have to take into account w

hen porting G
Soft BA

SIC program
s to A

pplesoft BA
SIC,

though. CA
LL is the only statem

ent that exists in both languages that w
ill cause problem

s w
hen

you port an A
pplesoft BA

SIC program
 to G

Soft BA
SIC.

CALL
The CA

LL statem
ent is used to call m

achine language subroutines in
A

pplesoft BA
SIC and SU

B subroutines in G
Soft BA

SIC.
DEF FN

G
Soft BA

SIC supports m
ultiple param

eters and m
ore return types.

DIM
G

Soft BA
SIC supports nam

ed types using A
S clauses.

FOR
G

Soft BA
SIC supports all num

ber types as FO
R loop variables;

A
pplesoft BA

SIC only allow
s SIN

G
LE num

bers.
GET

G
Soft BA

SIC supports file num
bers.

HCOLOR=
A

pplesoft BA
SIC uses the high resolution graphics screen, w

hich displays a
lim

ited 6 colors on a 280 by 192 pixel screen. G
Soft BA

SIC uses the
A

pple IIG
S graphics screen, w

hich supports 16 distinct colors (m
ore w

ith som
e

tricks) on a 320 by 200 pixel screen.
HGR

Starts Q
uickD

raw
 II in 320 by 200 pixel m

ode. See also H
CO

LO
R=.

HPLOT
D

raw
s a line on the Q

uickD
raw

 II display. See also H
CO

LO
R=.

Appendices

286

IF
G

Soft BA
SIC adds block IF-TH

EN
-ELSE statem

ents. A
ll A

pplesoft BA
SIC IF

statem
ents w

ill still w
ork.

INPUT
G

Soft BA
SIC supports file num

bers.
PEEK

G
Soft BA

SIC uses 24 bit addresses, w
hile A

pplesoft BA
SIC uses 16 bit

addresses. This causes conversion problem
s w

ith A
pplesoft BA

SIC addresses
that are negative num

bers. These m
ust be converted to positive num

bers by
adding 65536 before they can be used in G

Soft BA
SIC. See the PEEK

 and
PO

K
E conversion table, earlier in this appendix, for a com

plete discussion.
POKE

See PEEK
.

PRINT
G

Soft BA
SIC supports PRIN

T U
SIN

G
 and printing to files by file num

ber.
PUT

G
Soft BA

SIC supports file num
bers.

O
ther D

ifferences

A
vailable M

em
ory

A
pplesoft BA

SIC is lim
ited to m

em
ory from

 $000800 to the beginning of the operating
system

 in use. For ProD
O

S, that’s $009600, giving you 35.5K
 of RA

M
. This m

em
ory is used

both for the program
 and for variables. H

igh resolution graphics, using page 2 of the text or low
resolution graphics screens, &

 packages and m
achine language subroutines all took m

em
ory aw

ay.
G

Soft BA
SIC doesn’t have a fixed lim

it on m
em

ory. It’s a rare A
pple IIG

S that can’t set
aside 256K

 each for the program
 and variable buffers and have room

 left over for dynam
ic m

em
ory

allocated w
ith A

LLO
CA

TE, and it’s quite com
m

on for an A
pple IIG

S to have enough m
em

ory to
set aside 1024K

 or m
ore for each buffer. Com

pared to A
pplesoft BA

SIC, the m
em

ory available to
G

Soft BA
SIC program

s is staggering. If you use a great deal of m
em

ory, it’s unlikely you w
ill be

able to port your program
 to A

pplesoft BA
SIC w

ithout seriously crippling its capabilities.

D
isk Input and O

utput

A
pplesoft BA

SIC does not have disk input and output com
m

ands. D
isk input and output is

handled by special print statem
ents that start w

ith CH
R$(4). G

Soft BA
SIC uses built-in disk

com
m

ands that generally m
atch those found on M

icrosoft BA
SIC im

plem
entations on D

O
S and

W
indow

s m
achines. W

hile A
pplesoft BA

SIC and G
Soft BA

SIC each have specific com
m

ands
that are not available in the other im

plem
entation, you w

ill find that com
m

on file operations are
easy enough to accom

plish from
 either BA

SIC. O
n the other hand, the com

m
ands are im

plem
ented

in very different w
ays, so they w

ill have to be translated as a program
 is ported in either direction.

Appendix E: C
onverting Applesoft BASIC

 Program
s to G

Soft BASIC

287

Line N
um

bers

G
Soft BA

SIC does not require line num
bers. Y

ou can add them
 after the fact w

ith the
REN

U
M

BER com
m

and, w
hich is a good first step anytim

e you are porting a program
 from

G
Soft B

A
SIC

 to A
pplesoft B

A
SIC

.

N
um

bers

A
pplesoft BA

SIC really only handles one num
ber type, single precision real num

bers. W
hile

it can store num
bers in IN

TEG
ER form

at, these num
bers are alw

ays converted to SIN
G

LE values
for calculations. This m

akes it faster to use SIN
G

LE num
bers in A

pplesoft BA
SIC, w

hile it is
m

uch faster to use IN
TEG

ER values in G
Soft BA

SIC.
G

Soft BA
SIC also adds BY

TE, LO
N

G
 and D

O
U

BLE num
bers. These are not supported in

A
pplesoft BA

SIC, so you w
ill need to avoid them

 or convert them
 to port a G

Soft BA
SIC

program
 to A

pplesoft BA
SIC.

Finally, A
pplesoft BA

SIC uses a five byte SIN
G

LE num
ber that has over 9 decim

al digits of
precision, w

hile G
Soft BA

SIC uses a four byte SIN
G

LE w
ith over 7 decim

al digits of precision.
Som

e A
pplesoft BA

SIC program
s m

ake use of this extra precision. The easiest w
ay to deal w

ith
this in G

Soft BA
SIC is to convert the num

bers to D
O

U
BLE, w

hich gives you even m
ore

precision—
about 16 decim

al digits of precision.
This extra precision gives A

pplesoft BA
SIC one other edge. In som

e situations, roundoff
error show

s up earlier in G
Soft BA

SIC than it does in A
pplesoft BA

SIC. This is again caused by
the extra precision from

 A
pplesoft BA

SIC’s longer SIN
G

LE num
bers. O

nce again, in program
s

w
here this extra precision m

atters, you can sw
itch to D

O
U

BLE num
bers.

289

A
ppendix F – Im

plem
entation D

etails

M
em

ory U
se

G
Soft BA

SIC uses tw
o large m

em
ory buffers w

hich it subdivides for efficient internal use,
the program

 buffer and the variable buffer. Program
s can also allocate m

em
ory from

 outside this
range using the A

LLO
CA

TE statem
ent; see D

ynam
ic M

em
ory, later in this appendix.

Program
 Buffer

The program
 buffer is used to store the executing program

. The program
 is stored as a series

of tokenized lines, as described in O
rganization in M

em
ory, later in this appendix.

If you are using G
Soft BA

SIC from
 the G

Soft BA
SIC shell, the program

 buffer is set using
the SETM

EM
 com

m
and. Y

ou w
ill generally w

ant to m
ake the program

 buffer about 32K
 larger

than the program
 to give you plenty of room

 to add new
 lines to the program

. To get the
approxim

ate size of an existing program
, m

ultiply the num
ber of blocks show

n by the
CA

TA
LO

G
 com

m
and for the program

 file by 512.
If you are using G

Soft BA
SIC from

 the O
RCA

 shell, the program
 buffer is form

ed exactly to
size as the program

 loads. From
 the O

RCA
 shell, the program

 is stored as an A
SCII text file. This

file is loaded into RA
M

, then the program
 is converted to tokenized form

. A
fter this conversion,

the program
 buffer’s size is reduced to the exact size needed and the A

SCII text file representation
of the program

 is m
arked as purgeable. This releases the m

em
ory for use by your program

, but
leaves the file in m

em
ory for faster loading next tim

e if the m
em

ory isn’t needed by your program
.

The m
ost efficient of all is a program

 converted to run from
 the Finder using the

M
akeRuntim

e utility. These program
s are stored on disk in tokenized form

at. W
hen you run the

program
, G

Soft BA
SIC allocates exactly the right am

ount of space and loads the program
 into

R
A

M
.

V
ariable Buffer

The variable buffer is used for global variables, subroutine param
eters, local subroutine

variables and strings. A
s the program

 starts to run, G
Soft BA

SIC scans the file for SU
B and

FU
N

CTIO
N

 statem
ents, setting up a table in this buffer. Types, variables and D

EF FN
 nam

es
from

 the m
ain program

 are next. Finally, as each SU
B or FU

N
CTIO

N
 is called, a stack fram

e is
created. The stack fram

e holds inform
ation about the call, such as the return address and the value

of the param
eters, as w

ell as any local types, variables and D
EF FN

 declarations from
 the

procedure. This m
em

ory is released and later reused once the procedure finishes.

Appendices

290 String variables are actually a pointer to a string stored in a string pool at the end of the
variable buffer. A

s strings values are changed, em
pty m

em
ory can be created betw

een the current
string values. Eventually, there m

ay not be enough m
em

ory left to store a string value, create a
new

 subroutine, or create a new
 variable. W

hen this happens, the strings are com
pacted, collecting

all of the sm
all pieces of m

em
ory into a single large piece. This process is called garbage

collection. If garbage collection doesn’t create enough free m
em

ory for the operation that is
underw

ay, your program
 stops w

ith an out of m
em

ory error.
G

arbage collection occurs autom
atically w

hen needed. In som
e program

s garbage collection
can cause a delay at a critical tim

e, such as a visible update on the screen or during com
m

unication
w

ith a tim
e-sensitive external device. If this becom

es a problem
, use the FRE com

m
and to force

garbage collection at a m
ore convenient tim

e and m
ake sure the variable buffer is large enough that

garbage collection w
ill not be needed before you can force it again. Y

our program
 w

ill be sim
pler,

sm
aller and faster if you let garbage collection happen autom

atically, though, so in the vast
m

ajority of situations you should ignore garbage collection entirely and let it happen w
hen needed.

Tool interface files don’t take up space in this buffer. The space needed by tool interface files
is allocated from

 m
ain m

em
ory.

D
ynam

ic M
em

ory

The A
LLO

CA
TE statem

ent gets m
em

ory from
 outside the program

 buffer and variable buffer.
W

hen you ask for a piece of m
em

ory larger than 2048 bytes, A
LLO

CA
TE gets a chunk of

m
em

ory directly from
 A

pple’s M
em

ory M
anager Tool Set. For sm

aller chunks, G
Soft BA

SIC
allocates a 4096 byte chunk of m

em
ory and subdivides it.

U
sing A

LLO
CA

TE statem
ents, a relatively sm

all program
 w

ith a sm
all variable buffer can

get access to all of the m
em

ory in the A
pple IIG

S. For som
e kinds of program

s, this m
akes a

great deal m
ore sense than using fixed arrays in a large variable buffer.

O
ther M

em
ory Locations

A
pplesoft BA

SIC program
m

ers are used to ow
ning the m

achine, using PEEK
 and PO

K
E

com
m

ands to ham
m

er any m
em

ory they like. A
 m

em
ory m

ap show
s the places to stay aw

ay from
,

but any location not on the m
em

ory m
ap is fair gam

e. N
ot so w

ith G
Soft BA

SIC, w
hich runs

under G
S/O

S! The operating system
, G

Soft BA
SIC itself, other program

s, inits, desk accessories
and drivers all use m

em
ory. They claim

 m
em

ory using A
pple’s M

em
ory M

anager Tool Set, use
the m

em
ory they get this w

ay, and free the m
em

ory w
hen it is no longer needed. W

ith a few
exceptions, it sim

ply isn’t safe for a G
Soft BA

SIC program
 to use PEEK

 and PO
K

E com
m

ands.
In general, your program

s should use A
LLO

CA
TE to get m

em
ory and D

ISPO
SE w

hen the
program

 is finished w
ith the m

em
ory.

Appendix F: Im
plem

entation D
etails

291

T
okenized Files

G
Soft BA

SIC organizes tokenized files and files in m
em

ory as lines of tokenized sym
bols.

Tokens are one, tw
o or three byte num

bers used to represent a reserved w
ord or tool nam

e. U
sing a

num
ber, usually a one byte num

ber, m
akes program

s m
uch sm

aller; and allow
s the interpreter to

run m
uch faster, since it doesn’t have to read and look up a sequence of characters to decide w

hat
com

m
and to execute. For exam

ple, a PRIN
T statem

ent takes six bytes in an A
SCII file—

five for
the letters and one for a space that invariably follow

s them
—

but only one byte w
ith a value of 186

in a tokenized line.
This space saving is so dram

atic that tokenized program
s are usually shorter than the sam

e
program

 after it is com
piled to m

achine code w
ith a com

piler. O
f course the com

piled program
 is

faster, but in som
e cases space is m

ore im
portant than speed. This is one of the frustrating reasons

w
hy A

pplesoft BA
SIC program

s generally could not be com
piled. D

ue to the m
em

ory lim
its of

an eight bit A
pple][com

puter, even m
odest A

pplesoft BA
SIC program

s frequently used all of the
m

em
ory available to them

. Com
piling the program

 w
ould frequently m

ake it too large to fit in
m

em
ory!

The O
rganization of Tokenized Program

s

W
hether the program

 is in a file or loaded in RA
M

, each program
 consists of a sequence of

lines.Each line starts w
ith a tw

o byte offset to the start of the follow
ing line. The end of the

program
 is m

arked w
ith tw

o bytes of zero w
here this offset w

ould norm
ally appear. The offset is a

tw
o byte unsigned value stored least significant byte first. This m

eans that each line m
ust be

sm
aller than 65535 bytes in length.

The next tw
o bytes are the line num

ber. Line num
bers are optional in G

Soft BA
SIC; if a line

has no line num
ber, the line num

ber field is set to 0. A
gain, the num

ber is a tw
o byte unsigned

value stored least significant byte first. This im
plies that the largest allow

ed line num
ber is 65535.

N
ext com

es the tokenized line. Every token that is a reserved w
ord or the nam

e of a tool call
is converted to its equivalent token. Spaces and tabs are used to separate tokens from

 surrounding
characters, but once their job is done they are dropped from

 the line. Identifiers, num
bers,

operators, data in D
A

TA
 statem

ents, strings and com
m

ents are stored in their original A
SCII

character form
.

The end of the line is m
arked w

ith a zero byte.
In a disk file, the end of file m

ark for the file appears right after the tw
o zero bytes that m

ark
the end of the sequence of lines. Since the last line ends in a zero, too, this m

eans every program
ends w

ith three bytes of zero.
Program

s in RA
M

 are represented the sam
e w

ay, and also end w
ith three zero bytes. The

program
 buffer can extend further in m

em
ory; if it does, the contents of all bytes past the end

m
arker are undefined.

Appendices

292

Line N
um

ber Schem
es

There are actually tw
o incom

patible line num
ber schem

es in use. In program
s like those

im
ported from

 A
pplesoft BA

SIC or typed from
 the G

Soft BA
SIC shell w

hich use line num
bers

on every line, line num
bers m

ust be sequential and unique. In program
s that do not use line

num
bers on every line, line num

bers do not have to be sequential. They do have to be unique
w

ithin the m
ain program

 or w
ithin any specific procedure, but you can safely use, say, 999 as an

error exit in several different procedures. Even the lim
itation that line num

bers w
ithin a procedure

be unique is not enforced; if there are tw
o identical line num

bers in the sam
e procedure,

G
Soft BA

SIC w
ill find and use the first line num

ber.
In a few

 cases G
Soft BA

SIC needs som
e w

ay to tell these tw
o kinds of program

s apart. This
is im

portant w
hen the program

 is being edited, but not w
hen it is running. It does so by scanning

the program
 w

hen it is first loaded. If there is any non-blank line in the program
 w

here a line
num

ber is m
issing or zero, the program

 is treated as if it uses optional line num
bers. If every line

has a non-zero line num
ber, the program

 is treated as an old-style program
 w

ith a line num
ber on

every line.

B
A

SIC
 T

okens

The follow
ing table show

s the tokens used by G
Soft BA

SIC. These tokens are m
ixed w

ith
line lengths, line num

bers, and A
SCII characters as described in File O

rganization and
O

rganization in M
em

ory, later in this appendix.
The table show

s the hexadecim
al value for the token, the decim

al value, and the A
SCII

characters printed by G
Soft BA

SIC w
hen the token is listed.

Token $FF (255) is a special token used to extend the num
ber of available tokens from

 128 to
383. It is the first byte of a tw

o byte token; the next byte com
pletes the pair. The decim

al values
show

n assum
e that you read the com

plete tw
o-byte token from

 m
em

ory as an IN
TEG

ER.
TO

O
L ($9F), LIBRA

RY
 ($A

4) and G
SO

S ($90) start a three byte token sequence. For TO
O

L
and LIBRA

RY
, the byte im

m
ediately follow

ing this token is the tool num
ber, and the third byte is

the tool call num
ber. For G

SO
S, the second byte is the least significant byte of the tw

o-byte call
num

ber, and the last byte is the m
ost significant byte of the tw

o-byte call num
ber.

$80
128

END
$81

129
FOR

$82
130

NEXT
$83

131
DATA

$84
132

INPUT
$85

133
CLNG

$86
134

DIM
$87

135
READ

$88
136

CSNG
$89

137
TEXT

$8A
138

PUT
$8B

139
SEEK

$8C
140

CALL

$8D
141

CDBL
$8E

142
CINT

$8F
143

CLOSE
$90

144
GSOS

$91
145

HGR
$92

146
HCOLOR=

$93
147

HPLOT
$94

148
CHDIR

$95
149

DIR$
$96

150
HTAB

$97
151

HOME
$98

152
MKDIR

$99
153

NAME

Appendix F: Im
plem

entation D
etails

293

$9A
154

OPEN
$9B

155
BREAK

$9C
156

LINE
$9D

157
NORMAL

$9E
158

INVERSE
$9F

159
TOOL

$A0
160

RMDIR
$A1

161
POP

$A2
162

VTAB
$A3

163
SETMEM

$A4
164

LIBRARY
$A5

165
ONERR

$A6
166

RESUME
$A7

167
unused

$A8
168

unused
$A9

169
SPEED=

$AA
170

LET
$AB

171
GOTO

$AC
172

CURDIR$
$AD

173
IF

$AE
174

RESTORE
$AF

175
EOF

$B0
176

GOSUB
$B1

177
RETURN

$B2
178

REM
$B3

179
STOP

$B4
180

ON
$B5

181
WAIT

$B6
182

KILL
$B7

183
LOF

$B8
184

DEF
$B9

185
POKE

$BA
186

PRINT
$BB

187
CONT

$BC
188

LOC
$BD

189
CLEAR

$BE
190

GET
$BF

191
unused

$C0
192

TAB
$C1

193
TO

$C2
194

FN
$C3

195
SPC

$C4
196

THEN
$C5

197
TYPE

$C6
198

NOT
$C7

199
STEP

$C8
200

unused
$C9

201
TOOLERROR

$CA
202

LOADLIBRARY
$CB

203
UNLOADLIBRARY

$CC
204

SIZEOF
$CD

205
AND

$CE
206

OR
$CF

207
unused

$D0
208

unused
$D1

209
unused

$D2
210

SGN
$D3

211
INT

$D4
212

ABS
$D5

213
SUB

$D6
214

FRE
$D7

215
FUNCTION

$D8
216

POINTER
$D9

217
POS

$DA
218

SQR
$DB

219
RND

$DC
220

LOG
$DD

221
EXP

$DE
222

COS
$DF

223
SIN

$E0
224

TAN
$E1

225
ATN

$E2
226

PEEK
$E3

227
LEN

$E4
228

STR$
$E5

229
VAL

$E6
230

ASC
$E7

231
CHR$

$E8
232

LEFT$
$E9

233
RIGHT$

$EA
234

MID$
$EB

235
ERL

$EC
236

ERROR
$ED

237
ERR

$EE
238

CSRLIN
$EF

239
MOUSETEXT

$F0
240

WHILE
$F1

241
WEND

$F2
242

DO
$F3

243
LOOP

$F4
244

UNTIL
$F5

245
ELSE

$F6
246

SELECT
$F7

247
CASE

$F8
248

USING
$F9

249
AS

$FA
250

AT
$FB

251
NIL

$FC
252

ALLOCATE
$FD

253
DISPOSE

Appendices

294

$FE
254

unused
$FF

255
first of multi-byte

$FF01
511

BYTE
$FF02

767
LONG

$FF03
1023

SINGLE
$FF04

1279
DOUBLE

$FF05
1535

STRING

$FF06
1791

INTEGER
$FF07

2047
OUTPUT

$FF08
2303

BINARY
$FF09

2559
APPEND

$FF0A
2815

RANDOM
$FF0B

3071
TCP

Exam
ple of a Tokenized Program

H
ere’s a short program

, show
n both in its text form

 and as a file dum
p that show

s how
 it is

represented in m
em

ory or on disk. The dum
p show

s the offset w
ithin the file along the left side,

follow
ed by sixteen bytes per line in groups of four. The A

SCII equivalents are show
n to the

right, w
here you can see that the num

bers, operators and identifiers are represented as A
SCII

characters.

 10 FOR I = 1 TO 10
 20 PRINT I
 30 NEXT

$000000 0C000A00 81493D31 C1313000 07001400 ' I=1 10 '
$000010 BA490006 001E0082 000000 ' I '

295

A
ppendix G

 – Q
uick R

eference to the Shell

B
Y
EExits G

Soft B
A

SIC
.

C
A
T

[

p
a
t
h
n
a
m
e

]

C
A
T
A
L
O
G

[

p
a
t
h
n
a
m
e

]

Catalogs a directory.
If no path nam

e is given, the current directory is cataloged. If given, the path nam
e can be a

full or partial path nam
e, the nam

e of a volum
e, or the nam

e of a device.
The abbreviation CA

T can be used instead of the full nam
e of CA

TA
LO

G
.

C
O
P
Y

f
r
o
m

t
o

Copies a file from
 one location to another.

C
R
E
A
T
E

p
a
t
h
n
a
m
e

Creates a new
 directory.

D
E
B
U
G

[

l
i
n
e
n
u
m
b
e
r

|

f
i
l
e
n
a
m
e

]

Runs a program
, w

ith the sam
e options as the RU

N
 com

m
and. The difference is that D

EBU
G

enters an O
RCA

 com
patible debugger (like O

RCA
/D

ebugger or Splat!), breaking on the first line
executed.

D
o not use this com

m
and unless an O

R
C

A
 com

patible debugger is installed! O
R

C
A

com
patible debuggers w

ork by intercepting the 65816 CO
P instruction. There is no w

ay for
G

Soft BA
SIC to tell if a debugger is installed or not, so it w

ill issue the CO
P instruction w

hether
or not a debugger is actually present. If there is no debugger installed, this causes the com

puter to
crash. W

hile this does no actual harm
, the only w

ay to recover is to reboot.

D
E
L

s
t
a
r
t

[

'
,
'

e
n
d

]

D
eletes a single line or a range of lines.

The D
EL com

m
and cannot be used w

ith program
s that do not use line num

bers on every line.

Appendices

296

D
E
L
E
T
E

f
i
l
e
n
a
m
e

D
eletes the nam

ed file.
The file can be a directory. A

fter checking to be sure the user really w
ants to delete the

directory and its contents, all files in the directory and the directory itself are deleted.

E
D
I
T

[

f
i
l
e
n
a
m
e

]

Enters an O
RCA

 com
patible editor, displaying the program

 in m
em

ory. If a file nam
e is

given, the file is loaded and edited exactly as if the com
m

ands

LOAD filename
EDIT

w
ere used.

L
I
S
T

[

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

[

l
i
n
e
-
n
u
m
b
e
r

]

]

]

Lists the entire program
, a single line, or a range of lines.

L
O
A
D

f
i
l
e
n
a
m
e

Loads a program
 from

 disk.
The program

 m
ay be a G

Soft BA
SIC tokenized file, a TX

T file, or a BA
SIC SRC file. If the

file is a TX
T or SRC file, it is handled as if the N

EW
 com

m
and w

as used, then each of the lines
in the file w

as typed in turn.

L
O
C
K

f
i
l
e
n
a
m
e

Locks a file. Locked files cannot be renam
ed, deleted, or w

ritten to.

M
O
V
E

f
r
o
m

t
o

M
oves a file from

 one location to another.

N
E
WThe program

 is deleted from
 the w

orkspace.

P
R

[

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

[

l
i
n
e
-
n
u
m
b
e
r

]

]

]

W
orks like LIST, but sends the listing to a printer that is supported by the .PRIN

TER driver.

Appendix G
: Q

uick R
eference to the Shell

297

P
R
E
F
I
X

[

p
a
t
h
n
a
m
e

]

Changes the default prefix (G
S/O

S prefix num
ber 8) to the given path nam

e.
If no prefix is given, the current value for the prefix is show

n.
A

 path nam
e consisting of tw

o periods m
oves up one directory level.

R
E
N
A
M
E

o
l
d

n
e
w

Renam
es a file.

R
E
N
U
M
B
E
R

f
i
r
s
t

'
,
'

s
t
e
p

[

'
,
'

s
t
a
r
t

[

'
,
'

e
n
d

]

]

Renum
bers a program

.

f
i
r
s
t

First line num
ber to use.

s
t
e
p

Increm
ent betw

een new
 line num

bers.
s
t
a
r
t

First line to renum
ber.

e
n
d

Last line to renum
ber.

R
U
N

[

l
i
n
e
-
n
u
m
b
e
r

|

f
i
l
e
n
a
m
e

]

Runs a program
.

If a num
ber is supplied as a param

eter, program
 execution starts at that line.

If a file nam
e is supplied as a param

eter, the file is loaded and executed. The file m
ay be a

G
Soft BA

SIC tokenized file, a TX
T file, or a BA

SIC SRC file. If the file is a TX
T or SRC file,

it is handled as if the N
EW

 com
m

and w
as used, then each of the lines in the file w

as typed in turn.

S
A
V
E

f
i
l
e
n
a
m
e

Saves a program
 to disk.

The file is saved as a G
Soft BA

SIC tokenized file.

S
S
A
V
E

f
i
l
e
n
a
m
e

Saves a program
 to disk.

The file is saved as an O
RCA

 BA
SIC source file.

T
S
A
V
E

f
i
l
e
n
a
m
e

Saves a program
 to disk.

The file is saved as a text file.

Appendices

298

U
N
L
O
C
K

f
i
l
e
n
a
m
e

U
nlocks a file locked w

ith the LO
CK

 com
m

and. Locked files cannot be renam
ed, deleted, or

w
ritten to.

299

A
ppendix H

 – Q
uick R

eference to
G

Soft B
A

SIC

Statem
ents

!

a
n
y
-
a
s
c
i
i
-
c
h
a
r
a
c
t
e
r
s

The ! statem
ent starts a com

m
ent. A

ll characters from
 the ! character to the end of the line are

ignored.
See also REM

.

A
L
L
O
C
A
T
E

'
(
'

l
-
v
a
l
u
e

[

'
,
'

e
x
p
r
e
s
s
i
o
n

]

'
)
'

A
llocates m

em
ory from

 the com
puter’s m

em
ory. l

-
v
a
l
u
e
 is set to a pointer to the

allocated m
em

ory. e
x
p
r
e
s
s
i
o
n is the num

ber of bytes of m
em

ory to reserve. If e
x
p
r
e
s
s
i
o
n

is not used, enough m
em

ory is reserved for one value of the type l-value.
See also D

ISPO
SE, SIZEO

F.

B
R
E
A
K

Enters an O
RCA

 com
patible high level language source-level debugger, breaking on the

current line.
D

o not use this com
m

and unless an O
R

C
A

 com
patible debugger is installed! O

R
C

A
com

patible debuggers w
ork by intercepting the 65816 CO

P instruction. There is no w
ay for

G
Soft BA

SIC to tell if a debugger is installed or not, so it w
ill issue the CO

P instruction w
hether

or not a debugger is actually present. If there is no debugger installed, this causes the com
puter to

crash. W
hile this does no actual harm

, the only w
ay to recover is to reboot.

C
A
L
L

i
d
e
n
t
i
f
i
e
r

[

p
a
r
a
m
e
t
e
r
-
l
i
s
t

]

Calls a subroutine defined by a SU
B statem

ent or a tool defined in a tool interface file. See
SU

B for details.

C
A
S
ESee SELECT.

Appendices

300

C
L
E
A
R

Erases all types, variables and strings. V
ariables are rem

oved w
hether they w

ere created w
ith

the D
IM

 statem
ent or by being used w

ithout encountering a D
IM

 statem
ent.

C
H
D
I
R

p
a
t
h
n
a
m
e

Changes the default prefix to p
a
t
h
n
a
m
e.

C
L
O
S
E

[

'
#
'

e
x
p
r
e
s
s
i
o
n

]

Closes a file.
If a file num

ber is used, CLO
SE closes the specific file specified by the expression. If no file

num
ber is used, CLO

SE closes all files that have been opened by O
PEN

.
See also O

PEN
.

C
O
N
TContinues execution after a STO

P or EN
D

 com
m

and.

D
A
T
A

a
n
y
-
a
s
c
i
i
-
c
h
a
r
a
c
t
e
r
s

Creates D
A

TA
 for REA

D
 statem

ents. M
ore than one piece of data can be created w

ith a single
D

A
TA

 statem
ent by separating the data w

ith com
m

as.
See also REA

D
, RESTO

RE.

D
E
F

F
N

i
d
e
n
t
i
f
i
e
r

'
(
'

i
d
e
n
t
i
f
i
e
r

[

'
,
'

i
d
e
n
t
i
f
i
e
r

]
*

'
)
'

'
=
'

e
x
p
r
e
s
s
i
o
n

Creates a local function.
Param

eters and the value returned by the function can be any num
eric or string type. Types are

assigned using trailing type characters, as in A
$ for a string.

W
hen the function is called using a FN

 term
 in an expression, each param

eter in the call is
evaluated and assigned to the corresponding param

eter variable. The expression is then evaluated.
The expression m

ust result in a value that is type com
patible w

ith the function nam
e. The

expression can use constants, param
eter variables, other variables that do not have the sam

e nam
e

as a param
eter, and other functions.

Functions created w
ith D

EF FN
 are local to the m

ain program
 or procedure in w

hich they are
created.

Appendix H
: Q

uick R
eference to G

Soft BASIC

301

D
I
M

i
d
e
n
t
i
f
i
e
r

[

s
u
b
s
c
r
i
p
t

]

[

A
S

t
y
p
e

]

[

'
,
'

i
d
e
n
t
i
f
i
e
r

[

s
u
b
s
c
r
i
p
t

]

[

A
S

t
y
p
e

]

]
*

Creates a variable. The variable can be an array or a single value. For arrays, a subscript is
given. The result of each expression is converted to an integer and used as the m

axim
um

 subscript
value for the array. The m

inim
um

 subscript value is alw
ays 0.

If no type is given, the last character of the nam
e determ

ines the variable type. Types assigned
w

ith the A
S clause m

ay be used w
ith arrays or single values.

D
I
S
P
O
S
E

'
(
'

l
-
v
a
l
u
e

'
)
'

D
isposes of m

em
ory previously allocated w

ith A
LLO

CA
TE.

It is an error to dispose of m
em

ory using a pointer that w
as not assigned by A

LLO
CA

TE or
to dispose of the sam

e m
em

ory tw
ice. BA

SIC cannot catch this error. A
n error of this type m

ay
eventually lead to corrupted m

em
ory or a crash.

See also A
LLO

CA
TE.

D
O

[

W
H
I
L
E

e
x
p
r
e
s
s
i
o
n

|

U
N
T
I
L

e
x
p
r
e
s
s
i
o
n

]

L
O
O
P

[

W
H
I
L
E

e
x
p
r
e
s
s
i
o
n

|

U
N
T
I
L

e
x
p
r
e
s
s
i
o
n

]

The D
O

 and LO
O

P com
m

ands form
 a loop, executing all statem

ents betw
een them

 until
certain conditions are m

et. Conditions can be used on either or both the D
O

 and LO
O

P clause, or
on neither one.

Execution begins at the D
O

 statem
ent. If the statem

ent is a D
O

 W
H

ILE statem
ent, the

expression is evaluated, and if it is true (any non-zero num
eric value is treated as true) the

statem
ents betw

een D
O

 and LO
O

P are executed. If the condition is false (zero is treated as false)
execution continues w

ith the first statem
ent after the LO

O
P statem

ent.
If the D

O
 statem

ent is a D
O

 U
N

TIL statem
ent, the expression is evaluated, but this tim

e the
statem

ents betw
een D

O
 and LO

O
P are evaluated if the expression is false. If the expression is true,

execution skips to the first statem
ent after the LO

O
P statem

ent.
If the LO

O
P statem

ent is eventually executed, and there is no condition, execution jum
ps back

to the D
O

 statem
ent.

If the LO
O

P statem
ent is a LO

O
P W

H
ILE, the expression is evaluated. If it is true, execution

jum
ps back to the D

O
 statem

ent. If it is false, execution continues w
ith the statem

ent after the
LO

O
P statem

ent.
If the LO

O
P statem

ent is a LO
O

P U
N

TIL, the expression is evaluated. If it is false, execution
jum

ps back to the D
O

 statem
ent. If it is true, execution continues w

ith the statem
ent after the

LO
O

P statem
ent.

E
L
S
ESee I

F.

Appendices

302

E
N
DStops execution of a program

.
See also IF, SELECT CA

SE, FU
N

CTIO
N

, SU
B, TY

PE.

E
R
R
O
R

e
x
p
r
e
s
s
i
o
n

Behaves exactly as if a run-tim
e error occurred. The expression designates the error num

ber,
w

hich can be read using the ERR function.
For a list of error m

essages by num
ber, see the full docum

entation for the ERRO
R com

m
and.

See also ERR, ERL.

F
O
R

i
d
e
n
t
i
f
i
e
r

'
=
'

e
x
p
r
e
s
s
i
o
n

T
O

e
x
p
r
e
s
s
i
o
n

[

S
T
E
P

e
x
p
r
e
s
s
i
o
n

]
N
E
X
T

[

i
d
e
n
t
i
f
i
e
r

]

[

'
,
'

i
d
e
n
t
i
f
i
e
r

]
*

The FO
R-N

EX
T loop executes a series of statem

ents a specific num
ber of tim

es.
The expressions are evaluated. The first expression is assigned to the control variable, w

hich
is the identifier im

m
ediately after FO

R. It m
ust be a single num

eric value; arrays, record fields and
pointers are not allow

ed. The rem
aining expressions are evaluated once and the results stored. The

statem
ents betw

een the FO
R and N

EX
T statem

ents are then executed.
W

hen the N
EX

T statem
ent is encountered, the value after STEP (or 1 if STEP is not used) is

added to the loop control variable. If the step value is positive, and the control value is less than or
equal to the value of the expression after TO

, execution loops to the statem
ent after the FO

R
statem

ent; otherw
ise, execution continues w

ith the statem
ent after N

EX
T. If the step value is

negative and the control value is greater than or equal to the expression after TO
, execution loops

to the statem
ent after the FO

R statem
ent; otherw

ise, execution continues w
ith the statem

ent after
N

EX
T.
The N

EX
T statem

ent can be used to end m
ore than one FO

R statem
ent. In this case, a com

m
a

is used. G
enerally the loop control variables are listed, but this is not required.

F
U
N
C
T
I
O
N

i
d
e
n
t
i
f
i
e
r

[

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n
-
l
i
s
t

]

[

A
S

t
y
p
e

]

[

s
t
a
t
e
m
e
n
t

]
*

E
N
D

F
U
N
C
T
I
O
N

D
efines a function.

The identifier is the nam
e of the function, used w

hen it is called. This is follow
ed by the

param
eter list, if any, and the type returned by the function. The statem

ents that appear betw
een

the FU
N

CTIO
N

 statem
ent and the EN

D
 FU

N
CTIO

N
 statem

ent are executed as if they w
ere a

program
, then the last value set for the function is returned to the caller.

Appendix H
: Q

uick R
eference to G

Soft BASIC

303

The param
eter list consists of one or m

ore param
eter declarations separated by com

m
as. Each

param
eter declaration is a variable, optionally follow

ed by A
S and a type. If no type is given

explicitly, the type is derived from
 the nam

e of the variable. For exam
ple, I%

 w
ould be an integer.

A
rrays, records, pointers, strings and all num

eric types are allow
ed as param

eters. Pointers,
strings and num

eric types are allow
ed as return values. W

hile records and arrays cannot be returned
directly, you can return pointers to either type—

but insure that the value is dynam
ically allocated,

and not a local variable!
Inside the function, all param

eters w
ork as if they w

ere variables preset to the value passed
w

hen the function is called. If the function is called w
ith the nam

e of a variable w
hose type exactly

m
atches the param

eter, and the value is changed inside the function, the value of the original
variable is also changed. If the types do not m

atch exactly, or if the function is called w
ith an

expression, or if the variable passed is surrounded by parentheses, the original value is not
changed.

V
ariables declared inside the function survive until the function returns, but no longer. If the

function is called again, an entirely new
 set of variables is allocated. V

ariables from
 outside the

function cannot be accessed from
 inside, except for param

eters, as noted above. Types defined in
the m

ain program
 are, how

ever, available in the function as w
ell as the program

.
The value returned by the function is set by assigning a value to the function nam

e. This can
be done m

ore than one tim
e; the last value set is the one returned. If no value is set, 0 is returned

for num
eric functions, a null string for strings, and a null pointer for pointers.

G
E
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

[

e
x
p
r
e
s
s
i
o
n

]

'
,
'

]

l
-
v
a
l
u
e

Reads a single value from
 the keyboard or a disk file.

If no file is specified, the variable m
ust be a string. A

 single character is read from
 the

keyboard, converted to a string, and saved in the variable. If no characters have been typed, G
ET

w
aits for a key before returning.

If a file is given, G
ET reads binary inform

ation from
 the file. W

hile strings are still treated as
single characters, any other data type can be read, including integers, real num

bers, records or
pointers.

See also PU
T, IN

PU
T.

G
O
S
U
B

l
i
n
e
-
n
u
m
b
e
r

Control jum
ps to the first line w

hose num
ber m

atches l
i
n
e
-
n
u
m
b
e
r. l

i
n
e
-
n
u
m
b
e
r

m
ust be an integer constant. W

hen a RETU
RN

 statem
ent is encountered, control jum

ps to the
statem

ent after G
O

SU
B.

Subroutines can be nested up to 24 levels deep.
If G

O
SU

B is used in a procedure, the destination line m
ust be in the sam

e procedure.

Appendices

304

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

Control jum
ps to the first line w

hose num
ber m

atches l
i
n
e
-
n
u
m
b
e
r. l

i
n
e
-
n
u
m
b
e
r

m
ust be an integer constant.

If G
O

TO
 is used in a procedure, the destination line m

ust be in the sam
e procedure.

H
C
O
L
O
R
=

e
x
p
r
e
s
s
i
o
n

Sets the pen color to one of the 16 colors used on the 320 m
ode graphics screen. U

nless they
have been deliberate changed w

ith Q
uickD

raw
 II calls, the colors are:

N
um

ber
A

pplesoft Color
G

Soft BA
SIC Color

0
black

black
1

green
green

2
violet

purple
3

w
hite

w
hite

4
black

dark gray
5

orange
orange

6
blue

blue
7

w
hite

red
8

beige
9

yellow
10

brow
n

11
light blue

12
lilac

13
Periw

inkle blue
14

light gray
15

dark green

H
G
RStarts Q

uickD
raw

 in 320 graphics m
ode (if it has not already been started), sw

itches the
display to the graphics screen, clears the screen to black, and sets the pen color to w

hite.
See H

PLO
T, H

CO
LO

R=, and TEX
T.

H
O
M
EClears the text screen and places the cursor at the top left of the screen.

See also H
TA

B, V
TA

B.

Appendix H
: Q

uick R
eference to G

Soft BASIC

305

H
P
L
O
T

[

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

]

[

T
O

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

]
*

If the initial location is given, the pen is m
oved to that location and a single point is draw

n. If
one or m

ore TO
 clauses follow

, lines are draw
n from

 the previous point to the location after TO
.

See H
G

R and H
CO

LO
R=.

H
T
A
B

e
x
p
r
e
s
s
i
o
n

Sets the horizontal cursor position on the text screen. This changes the location of the
flashing input cursor and the location w

here the next characters w
ill be w

ritten on the text screen.
Colum

ns are num
bered from

 1 at the left of the screen to 80 at the right. N
um

bers outside this
range are legal, and are converted to the closest existing screen colum

n.
The vertical position is not changed.
See also CSRLIN

, H
O

M
E, PO

S, V
TA

B.

I
F

e
x
p
r
e
s
s
i
o
n

T
H
E
N

s
t
a
t
e
m
e
n
t

The expression is evaluated. If the result is not zero, the statem
ent follow

ing TH
EN

 is
executed. If the result of the expression is zero, the statem

ent is not executed.

I
F

e
x
p
r
e
s
s
i
o
n

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

The expression is evaluated. If the result is not zero, the G
O

TO
 is executed, causing

processing to skip to the specified line. If the result of the expression is zero, processing continues
w

ith the statem
ent follow

ing the if statem
ent.

l
i
n
e
-
n
u
m
b
e
r m

ust be an integer constant.

I
F

e
x
p
r
e
s
s
i
o
n

T
H
E
N

[

E
L
S
E

I
F

e
x
p
r
e
s
s
i
o
n

]
*

[

E
L
S
E

]

E
N
D

I
F

The expression follow
ing I

F is evaluated. If the result is not zero, lines betw
een this

statem
ent and the first E

L
S
E are executed, and all others are skipped. If the result is zero,

expressions in subsequent E
L
S
E

I
F statem

ents are evaluated, in turn, until one of them
 results in

a non-zero value. W
hen a non-zero expression result is found, the statem

ents from
 that expression

to the follow
ing E

L
S
E or E

L
S
E

I
F are executed, and all others are skipped.

If no expressions evaluate to non-zero, and there is an E
L
S
E clause, the statem

ents betw
een

E
L
S
E and E

N
D

I
F are executed. If there is no E

L
S
E clause, no statem

ents are executed.

Appendices

306

I
N
P
U
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

]

[

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
;
'

]

l
-
v
a
l
u
e

[

'
,
'

l
-
v
a
l
u
e

]
*

Reads a com
m

a delim
ited value from

 the keyboard or a disk file.
If s

t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n appears, it is used as a prom

pt string. It is w
ritten to standard

output w
ithout a carriage return, then the input is read. If no prom

pt string is given and input is
from

 the keyboard, a ? character is w
ritten as a default prom

pt string.
O

ne or m
ore values can be read w

ith a single IN
PU

T statem
ent by separating the variables

w
ith com

m
as. These values can be any num

ber type or a string.
M

ultiple input values are separated by carriage returns or com
m

as. A
ny spaces appearing

betw
een input values are ignored.
See also LIN

E IN
PU

T.

I
N
V
E
R
S
E

Subsequent characters are printed using the inverse character set.
See also M

O
U

SETEX
T, N

O
RM

A
L.

K
I
L
L

f
i
l
e
n
a
m
e

D
eletes the file or directory f

i
l
e
n
a
m
e.

[

L
E
T

]

l
-
v
a
l
u
e

'
=
'

e
x
p
r
e
s
s
i
o
n

The expression is evaluated, and the result stored in the location indicated by l
-
v
a
l
u
e.

L
I
N
E

I
N
P
U
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

]

[

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
;
'

]

l
-
v
a
l
u
e

[

'
,
'

l
-
v
a
l
u
e

]
*

W
orks alm

ost exactly like IN
PU

T. The exception is how
 the tw

o handle com
m

as. LIN
E

IN
PU

T ignores them
, reading all characters up to the end of a line.

See also IN
PU

T.

L
O
A
D
L
I
B
R
A
R
Y

e
x
p
r
e
s
s
i
o
n

Loads a user tool from
 disk.

e
x
p
r
e
s
s
i
o
n is the tool num

ber to load. G
Soft BA

SIC looks for a file w
ith the nam

e
U

serToolX
X

X
, w

here X
X

X
 is the tool num

ber. It looks first in the local directory, w
hich defaults

to the location of the G
Soft BA

SIC interpreter. The local directory can be changed before using
LO

A
D

LIBRA
RY

 using the CH
D

IR com
m

and. If the tool is not found in the local directory,
G

Soft BA
SIC looks in the System

 directory at the path *:System
:Tools:U

serToolX
X

X
.

See also U
N

LO
A

D
LIBRA

RY
.

Appendix H
: Q

uick R
eference to G

Soft BASIC

307

L
O
O
PSee D

O
.

M
K
D
I
R

p
a
t
h
n
a
m
e

Creates a new
 directory w

ith the nam
e p

a
t
h
n
a
m
e.

M
O
U
S
E
T
E
X
T

Subsequent characters are printed using the m
ouse text character set.

See also IN
V

ERSE, N
O

RM
A

L.

N
A
M
E

f
i
l
e
n
a
m
e

A
S

f
i
l
e
n
a
m
e

Renam
es the file, directory or disk. The first file nam

e is the original file nam
e, and the

second is the new
 file nam

e.

N
E
X
TSee F

O
R.

N
O
R
M
A
L

Subsequent characters are printed using the norm
al character set.

See also IN
V

ERSE, M
O

U
SETEX

T.

O
N

e
x
p
r
e
s
s
i
o
n

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

l
i
n
e
-
n
u
m
b
e
r

]
*

The expression is evaluated and truncated to an integer. N
um

bering from
 one, the

corresponding line num
ber is selected from

 the list of line num
bers, and execution jum

ps to that
line.If there is no corresponding line num

ber, execution continues w
ith the statem

ent after the O
N

-
G

O
TO

 statem
ent.

O
N

e
x
p
r
e
s
s
i
o
n

G
O
S
U
B

l
i
n
e
-
n
u
m
b
e
r

[

'
,
'

l
i
n
e
-
n
u
m
b
e
r

]
*

The expression is evaluated and truncated to an integer. N
um

bering from
 one, the

corresponding line num
ber is selected from

 the list of line num
bers, and execution jum

ps to that
line. Execution returns to the line after the O

N
-G

O
SU

B statem
ent w

hen a RETU
RN

 statem
ent is

executed in the subroutine.
If there is no corresponding line num

ber, execution continues w
ith the statem

ent after the O
N

-
G

O
SU

B statem
ent.

Appendices

308

O
N
E
R
R

G
O
T
O

l
i
n
e
-
n
u
m
b
e
r

This statem
ent has no im

m
ediate effect. If, later in the program

, an error is encountered,
execution jum

ps to the line l
i
n
e
-
n
u
m
b
e
r. From

 there, you can use ERR and ERL to identify
the type and location of the error.

The destination line m
ust appear in the m

ain program
, not in a subroutine or function.

See also ERR, ERL, RESU
M

E.

O
P
E
N

f
i
l
e
n
a
m
e

F
O
R

i
o
-
k
i
n
d

A
S

'
#
'

e
x
p
r
e
s
s
i
o
n

[

L
E
N

e
x
p
r
e
s
s
i
o
n

]

O
pens the file f

i
l
e
n
a
m
e.

The file m
ay be opened in any of the follow

ing w
ays by substituting the token show

n for the
i
o
-
k
i
n
d field.

I/O
 kind

use
O
U
T
P
U
T

The file is opened for output. If the file already exists, any old contents are
lost.

I
N
P
U
T

The file is opened for input. The file m
ust already exist, but the file type

does not m
atter. Input starts from

 the beginning of the file.
A
P
P
E
N
D

The file is opened for output. If the file already exists, the old contents are
not lost. N

ew
 inform

ation is w
ritten after all of the old inform

ation.
R
A
N
D
O
M

The file is opened for random
 access. The LEN

 field is required; each record
w

ritten to or read from
 the file w

ill use that num
ber of bytes.

B
I
N
A
R
Y

The file is opened for input and output.

The value follow
ing # is used in subsequent file com

m
ands to identify the opened file. This

value can range from
 1 to 32767. N

o tw
o open files m

ay use the sam
e file num

ber, but once the
file is closed, the num

ber is available for use by another O
PEN

 statem
ent.

If used, the L
E
N expression gives the internal buffer size used to cache input and output. This

field is required for random
 access files, and m

atches the length of one random
 access record. For all

other file types, larger values use m
ore RA

M
 but generally result in faster disk input and output,

w
hile low

er values save RA
M

 but result in slow
er input and output.

See also CLO
SE, G

ET, EO
F, LO

C, LO
F, PRIN

T, PRIN
T U

SIN
G

, PU
T, SEEK

.

P
O
K
E

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

The value of the second expression is converted to an integer. The least significant 8 bits are
stored in the m

em
ory location specified by the first expression.

See also PEEK
, W

A
IT.

Appendix H
: Q

uick R
eference to G

Soft BASIC

309

P
O
PRem

oves one G
O

SU
B return address from

 the stack. In effect, this turns the m
ost recent

G
O

SU
B into a G

O
TO

.

P
R
I
N
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

]

[

e
x
p
r
e
s
s
i
o
n

|

S
P
C

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

|

T
A
B

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

|

'
;
'

|

'
,
'

]
*

The various expressions are evaluated and printed in standard form
. See PRIN

T on page 163
for a com

plete description of the form
ats used to print various kinds of inform

ation.
O

utput is norm
ally printed to the text screen. U

sing # follow
ed by a num

ber sends the output
to a file, instead.

SPC is a special function that prints spaces. The expression is evaluated and the specified
num

ber of spaces are printed.
TA

B is a special function that prints spaces until the tab colum
n is reached. For exam

ple, if
the expression evaluates to 10, spaces are inserted until colum

n 10 is reached, forcing the next
character printed to show

 up in colum
n 10. Colum

ns num
ber from

 1.
The sem

icolon character is used to separate m
ultiple expressions w

ithout printing characters
betw

een them
. If used at the end of the line, a new

 line is not started before the next PRIN
T

statem
ent begins to print.

The com
m

a character is used to separate expressions and provide easy colum
n alignm

ent.
Spaces are inserted until a space is printed in a colum

n divisible by 16.

P
R
I
N
T

[

'
#
'

e
x
p
r
e
s
s
i
o
n

]

U
S
I
N
G

f
o
r
m
a
t
-
s
t
r
i
n
g

'
;
'

e
x
p
r
e
s
s
i
o
n

[

(

'
,
'

|

'
;
'

)

e
x
p
r
e
s
s
i
o
n

]
*

(

'
,
'

|

'
;
'

)

The form
at string is printed. W

henever a character that starts a form
at m

odel is encountered in
the form

at string, one expression from
 the list that follow

s the form
at string is evaluated. The

result is rounded, truncated, or converted to fit in the space provided by the form
at m

odel and
printed.

See the PRIN
T U

SIN
G

 on page 169 for a com
plete description of form

at m
odels.

O
utput is norm

ally printed to the text screen. U
sing # follow

ed by a num
ber sends the output

to a file, instead.

P
U
T

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

[

e
x
p
r
e
s
s
i
o
n

]

'
,
'

l
-
v
a
l
u
e

W
rites values to files. It is usually used for binary or random

 access files, although technically
it can be used w

ith any file type.
The first expression is the file num

ber, assigned w
hen the file is opened w

ith O
PEN

.

Appendices

310 The next expression is the location in the file to w
rite the value. For random

 access files, this
is the record num

ber; for all other files, this is a byte num
ber. In both cases, the first value in the

file is num
bered 1.

l
-
v
a
l
u
e is the value to w

rite to the file.

R
E
A
D

l
-
v
a
l
u
e

[

'
,
'

l
-
v
a
l
u
e

]
*

Reads one or m
ore values from

 a D
A

TA
 statem

ent. The REA
D

 and D
A

TA
 statem

ents m
ust

appear in the sam
e subroutine or m

ust both be in the m
ain program

.
See also D

A
TA

, RESTO
RE.

R
E
M

a
n
y
-
a
s
c
i
i
-
c
h
a
r
a
c
t
e
r
s

The REM
 statem

ent starts a com
m

ent. A
ll characters follow

ing the com
m

and up to the end of
the line are ignored

See also !.

R
E
S
T
O
R
E

Restores the D
A

TA
 counter, so the next REA

D
 statem

ent reads from
 the first D

A
TA

statem
ent in the current subroutine.

See also D
A

TA
, REA

D
.

R
E
S
U
M
E

RESU
M

E is used in O
N

ERR-G
O

TO
 handlers to return to the line w

here the error occurred. It
returns to the start of the offending line.

R
E
T
U
R
N

Returns from
 the m

ost recent G
O

SU
B, transferring control to the statem

ent follow
ing the

G
O

SU
B statem

ent.

R
M
D
I
R

f
i
l
e
n
a
m
e

D
eletes the file or directory f

i
l
e
n
a
m
e.

S
E
E
K

'
#
'

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

Sets the file so the next read or w
rite occurs at the position indicated by the second expression.

For random
 access files, the file is divided into chunks based on the length specified w

hen the
file is opened. For all other file types, the file is divided into bytes. In each case, the first chunk is
num

bered 1, w
ith the rem

aining chunks num
bered sequentially.

Appendix H
: Q

uick R
eference to G

Soft BASIC

311

S
E
L
E
C
T

C
A
S
E

e
x
p
r
e
s
s
i
o
n

[

C
A
S
E

c
a
s
e
-
r
a
n
g
e

[

'
,
'

c
a
s
e
-
r
a
n
g
e

]
*

]
*

[

C
A
S
E

E
L
S
E

]

E
N
D

S
E
L
E
C
T

The expression in the SELECT CA
SE statem

ent is evaluated. Expressions in the subsequent
CA

SE statem
ents are exam

ined; w
hen an expression is found that m

atches the original, all
statem

ents betw
een the m

atching CA
SE statem

ent and the follow
ing CA

SE or EN
D

 SELECT are
executed.

M
ultiple expressions can be used on a single CA

SE statem
ent, m

aking it easy to use the
sam

e code for several different values. Y
ou can also specify a range of values by separating the

low
est allow

ed value and highest allow
ed value w

ith TO
. U

nlike m
any languages, expressions are

not lim
ited to scalar quantities; real num

bers and strings are allow
ed as CA

SE values.
If no m

atching expression is found, and a CA
SE ELSE statem

ent is used, statem
ents betw

een
the CA

SE ELSE and EN
D

 SELECT are executed. If no m
atching expression is found and no

CA
SE ELSE is used, execution continues w

ith the statem
ent follow

ing EN
D

 SELECT.

S
E
T
M
E
M

'
(
'

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Sets the size of a m
em

ory buffer. The first expression is the m
em

ory buffer to set; this is 0
for the variable buffer and 1 for the program

 buffer. The second expression is the new
 size for the

buffer in bytes.

S
T
O
PStops execution of the program

. If line num
bers are used, the line num

ber is printed.
Y

ou can stop a program
 at a problem

 point and exam
ine or even change variables, then

resum
e execution w

ith the com
m

and CO
N

T.

S
P
E
E
D

e
x
p
r
e
s
s
i
o
n

Sets the output speed for characters w
ritten to the screen.

A
 speed of 255 w

rites characters as rapidly as possible; this is the default. A
 value of 0

introduces a long delay after each character is w
ritten. Interm

ediate values cause progressively
longer or shorter delays.

S
U
B

i
d
e
n
t
i
f
i
e
r

[

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n
-
l
i
s
t

]

[

s
t
a
t
e
m
e
n
t

]
*

E
N
D

S
U
B

D
efines a subroutine.

The first identifier is the nam
e of the subroutine, used w

hen it is called. This is follow
ed by

the param
eter list, if any. The statem

ents that appear betw
een the SU

B statem
ent and the EN

D
SU

B statem
ent are executed as if they w

ere a program
.

Appendices

312 The param
eter list consists of one or m

ore param
eter declarations separated by com

m
as. Each

param
eter declaration is a variable, optionally follow

ed by A
S and a type. If no type is given

explicitly, the type is derived from
 the nam

e of the variable. For exam
ple, I%

 w
ould be an integer.

A
rrays, records, pointers, strings and all num

eric types are allow
ed as param

eters.
Inside the subroutine, all param

eters w
ork as if they w

ere variables preset to the value passed
w

hen the subroutine is called. If the subroutine is called w
ith the nam

e of a variable w
hose type

exactly m
atches the param

eter, and the value is changed inside the function, the value of the
original variable is also changed. If the types do not m

atch exactly, or if the subroutine is called
w

ith an expression, or if the variable passed is surrounded by parentheses, the original value is not
changed.

V
ariables declared inside the subroutine survive until the subroutine returns, but no longer. If

the subroutine is called again, an entirely new
 set of variables is allocated. V

ariables from
 outside

the subroutine cannot be accessed from
 inside, except for param

eters, as noted above. Types defined
in the m

ain program
 are, how

ever, available in the subroutine as w
ell as the program

.
Subroutines are called w

ith the CA
LL statem

ent.

T
E
X
TIf the graphics screen is visible, the display is shifted back to the text screen. If the text screen

is visible, nothing is changed.

T
Y
P
E

i
d
e
n
t
i
f
i
e
r

[

(

f
i
e
l
d
-
n
a
m
e

[

A
S

t
y
p
e

]

)

|

(

C
A
S
E

[

e
x
p
r
e
s
s
i
o
n

]

)

]
+

E
N
D

T
Y
P
E

Creates a new
 type w

ith the nam
e i

d
e
n
t
i
f
i
e
r. This type is a record, containing one or

m
ore fields. Each field has a distinct type, and the fields m

ay have differing types.
Each field appears on a separate line. f

i
e
l
d
-
n
a
m
e is the nam

e of the field, w
hile t

y
p
e is

the type for the field. If the type is not specified, the type is taken from
 the type character

appearing at the end of the identifier, just as the type is derived for a variable. For exam
ple, I%

 is
an integer field, w

hile R is a single-precision real num
ber field.

T
Y
P
E

i
d
e
n
t
i
f
i
e
r

A
S

t
y
p
e

Creates a new
 type w

ith the nam
e i

d
e
n
t
i
f
i
e
r.

U
N
L
O
A
D
L
I
B
R
A
R
Y

e
x
p
r
e
s
s
i
o
n

U
nloads the specified user tool, freeing the RA

M
 used by the tool.

See also LO
A

D
LIBRA

RY
.

Appendix H
: Q

uick R
eference to G

Soft BASIC

313

V
T
A
B

e
x
p
r
e
s
s
i
o
n

Sets the vertical cursor position on the text screen. This changes the location of the flashing
input cursor and the location w

here the next characters w
ill be w

ritten on the text screen.
Lines are num

bered from
 1 at the top of the screen to 24 at the bottom

. N
um

bers outside this
range are legal, and are converted to the closest existing screen line.

The horizontal position is not changed.
See also CSRLIN

, H
O

M
E, H

TA
B, PO

S.

W
A
I
T

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

A
 logical and is perform

ed betw
een the byte at the m

em
ory address specified by the first

expression and the value specified by the second expression. If the result is not zero, execution
continues w

ith the next statem
ent. If the result is zero, the process repeats.

See also PEEK
, PO

K
E.

W
H
I
L
E

e
x
p
r
e
s
s
i
o
n

W
E
N
DThe expression is evaluated. If it is not zero, the statem

ents betw
een W

H
ILE and W

EN
D

 are
executed, and the process repeats. If the expression evaluates to zero, execution continues w

ith the
statem

ent after W
EN

D
.

Functions

A
B
S

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the absolute value of e
x
p
r
e
s
s
i
o
n.

A
S
C

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the A
SCII num

eric value for the first character in s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n. A

SC
returns 0 if there are no characters in s

t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n.

A
T
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the arc-tangent of e
x
p
r
e
s
s
i
o
n.

C
D
B
L

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts e
x
p
r
e
s
s
i
o
n to a double precision floating-point value.

Appendices

314

C
H
R
$

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns a string consisting of a single character w
hose A

SCII value is e
x
p
r
e
s
s
i
o
n.

C
I
N
T

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts e
x
p
r
e
s
s
i
o
n to an integer value.

C
L
N
G

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts e
x
p
r
e
s
s
i
o
n to a long integer value.

C
O
S

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the cosine of e
x
p
r
e
s
s
i
o
n.

C
S
N
G

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts e
x
p
r
e
s
s
i
o
n to a single precision floating-point value.

C
S
R
L
I
N

Returns the line num
ber w

here the next character w
ill be printed. Lines are num

bered from
 1

to 24.See also H
TA

B, PO
S, V

TA
B.

C
U
R
D
I
R
$

Returns the nam
e of the current directory.

D
I
R
$

[

'
(
'

f
i
l
e
-
n
a
m
e

'
)
'

]

Returns file nam
es from

 a directory.
The first call should specify a param

eter. This can be the nam
e of a specific file or the w

ildcard
character “*”. Full or partial path nam

es m
ay be used. D

IR$ w
ill return the nam

e of the file if
there is a file by the given nam

e, or the nam
e of the first file in the directory if the w

ildcard
character is used.

If the w
ildcard character is used, subsequent calls m

ay be m
ade w

ithout a param
eter. These

calls return the nam
es of the rem

aining files in the directory. W
hen all files have been returned,

D
IR$ returns an em

pty string.

Appendix H
: Q

uick R
eference to G

Soft BASIC

315

E
O
F

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns 0 if there is unread inform
ation in a file, and -1 if there is not.

See also G
ET, LO

C, LO
F, O

PEN
, SEEK

.

E
R
LU

sed in an O
N

ERR-G
O

TO
 handler, ERL returns the line num

ber of the line w
here the error

occurred. If the line w
here the error occurred does not have a num

ber, ERL returns 0.

E
R
RU

sed in an O
N

ERR-G
O

TO
 handler, ERR returns an error num

ber indicating the type of the
error.See A

ppendix A
 for a list of the error num

bers and their m
eanings.

E
X
P

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the exponent of e
x
p
r
e
s
s
i
o
n.

F
R
E

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Forces garbage collection on the string space, then returns the num
ber of bytes rem

aining for
variables, subroutine stacks, and strings.

The expression value should be 0, but is actually ignored.

I
N
T

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the integer part of a num
ber.

U
nlike CIN

T, IN
T does not convert the result to an integer. Instead, the type of the result

m
atches the type of the argum

ent. For integer and long argum
ents, the expression result is returned

unchanged. For single and double precision real num
bers, the value returned is the largest integer

that is less than or equal to the value of the expression.

L
E
F
T
$

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns e
x
p
r
e
s
s
i
o
n characters from

 the beginning of a string. If the length of the string is
less than e

x
p
r
e
s
s
i
o
n, the entire string is returned.

L
E
N

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the num
ber of characters in s

t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n.

Appendices

316

L
O
C

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the num
ber of records or bytes that have been read from

 or w
ritten to a file so far. A

t
the beginning of a file, LO

C returns 0.

L
O
F

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the num
ber of records or bytes in a file.

L
O
G

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the natural logarithm
 of e

x
p
r
e
s
s
i
o
n.

M
I
D
$

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns characters from
 any position in a string. The first expression is the index of the first

character to return, num
bering from

 1. The second expression is the num
ber of characters to return.

If there are not enough characters, all available characters are returned. If the character index is
larger than the length of the string, a string w

ith no characters is returned.

N
I
LReturns a pointer value that is type com

patible w
ith all pointers, and that indicates a pointer

w
hich is not pointing to any m

em
ory location.

A
ll pointers are initially set to N

IL.
The ordinal value for N

IL is 0.

P
E
E
K

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the value of the byte located at the address e
x
p
r
e
s
s
i
o
n.

See also PO
K

E, W
A

IT.

P
O
S

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the colum
n w

here the next character w
ill be printed. Colum

ns are num
bered starting

from
 1.
See also CSRLIN

, H
TA

B, V
TA

B.

R
I
G
H
T
$

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
,
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns e
x
p
r
e
s
s
i
o
n characters from

 the end of a string. If the length of the string is less
than e

x
p
r
e
s
s
i
o
n, the entire string is returned.

Appendix H
: Q

uick R
eference to G

Soft BASIC

317

R
N
D

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns a random
 single precision num

ber that is greater than or equal to 0.0 and less than
1.0.If e

x
p
r
e
s
s
i
o
n is a negative num

ber, RN
D

 resets the random
 num

ber generator seed using
the argum

ent as a seed value.
If e

x
p
r
e
s
s
i
o
n is zero, RN

D
 returns the sam

e value it returned on the previous call.
If e

x
p
r
e
s
s
i
o
n is a positive num

ber, a pseudo-random
 num

ber is returned.

S
G
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns -1 if e
x
p
r
e
s
s
i
o
n is negative, 0 if e

x
p
r
e
s
s
i
o
n is zero, and 1 if e

x
p
r
e
s
s
i
o
n

is positive.

S
I
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the sine of e
x
p
r
e
s
s
i
o
n.

S
I
Z
E
O
F

'
(
'

(

t
y
p
e

|

i
d
e
n
t
i
f
i
e
r

)

'
)
'

Returns the size required to store one value of a given type, or the size used by the variable
i
d
e
n
t
i
f
i
e
r. The size is given in bytes.

S
Q
R

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the square root of e
x
p
r
e
s
s
i
o
n.

S
T
R
$

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Converts a num
eric value to a string using the sam

e form
atting rules as the PRIN

T statem
ent.

See also V
A

L.

T
A
N

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

Returns the tangent of e
x
p
r
e
s
s
i
o
n.

T
O
O
L
E
R
R
O
R

Returns the error code from
 the m

ost recent tool, user tool or G
S/O

S call. A
 value of zero

indicates there w
as no error.

Appendices

318

V
A
L

'
(
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

'
)
'

Converts a string that represents a num
ber into a value using the sam

e rules as REA
D

 and
IN

PU
T.

See also STR$.

V
E
R
S
I
O
N

Returns the G
Soft BA

SIC version num
ber encoded as a long integer. The form

at is
V

V
M

M
BBTRR, w

here

V
V

M
ajor release num

ber.
M

M
M

inor release num
ber.

BB
Bug fix release num

ber.
T

Release type; 0 for com
m

ercial, 1 for developm
ent, 2 for alpha and 3 for beta.

R
R

Release num
ber for the current type.

BN
F U

sed in This A
ppendix

a
d
d
-
e
x
p
r
e
s
s
i
o
n

:
:
=

m
u
l
-
e
x
p
r
e
s
s
i
o
n

[

a
d
d
o
p

m
u
l
-
e
x
p
r
e
s
s
i
o
n

]
*

a
d
d
o
p

:
:
=

'
+
'

|

'
-
'

a
n
d
-
e
x
p
r
e
s
s
i
o
n

:
:
=

r
e
l
a
t
i
o
n
a
l
-
e
x
p
r
e
s
s
i
o
n

[

A
N
D

r
e
l
a
t
i
o
n
a
l
-
e
x
p
r
e
s
s
i
o
n

]
*

a
r
r
a
y
-
s
u
b
s
c
r
i
p
t

:
:
=

'
(
'

e
x
p
r
e
s
s
i
o
n

[

'
,
'

e
x
p
r
e
s
s
i
o
n

]
*

'
)
'

c
a
s
e
-
r
a
n
g
e

:
:
=

e
x
p
r
e
s
s
i
o
n

[

T
O

e
x
p
r
e
s
s
i
o
n

]

d
i
g
i
t

:
:
=

'
0
'
.
.
'
9
'

e
x
p
-
e
x
p
r
e
s
s
i
o
n

:
:
=

t
e
r
m

[

'
^
'

t
e
r
m

]
*

e
x
p
o
n
e
n
t
-
c
h
a
r

:
:
=

'
e
'

|

'
E
'

|

'
d
'

|

'
D
'

e
x
p
r
e
s
s
i
o
n

:
:
=

a
n
d
-
e
x
p
r
e
s
s
i
o
n

[

O
R

a
n
d
-
e
x
p
r
e
s
s
i
o
n

]
*

f
i
e
l
d
-
n
a
m
e

:
:
=

i
d
e
n
t
i
f
i
e
r

f
i
l
e
n
a
m
e

:
:
=

s
t
r
i
n
g
-
c
o
n
s
t
a
n
t

f
o
r
m
a
t
-
s
t
r
i
n
g

:
:
=

s
t
r
i
n
g
-
c
o
n
s
t
a
n
t

f
u
n
c
t
i
o
n
-
n
a
m
e

:
:
=

i
d
e
n
t
i
f
i
e
r

h
e
x
a
d
e
c
i
m
a
l
-
c
o
n
s
t
a
n
t

:
:
=

'
$
'

[

'
0
'
.
.
'
9
'

|

'
a
'
.
.
'
f
'

|

'
A
'
.
.
'
F
'

]
+

Appendix H
: Q

uick R
eference to G

Soft BASIC

319

i
d
e
n
t
i
f
i
e
r

:
:
=

l
e
t
t
e
r

[

l
e
t
t
e
r

|

d
i
g
i
t

]

t
y
p
e
-
c
h
a
r
a
c
t
e
r

i
n
t
e
g
e
r
-
c
o
n
s
t
a
n
t

:
:
=

[

'
0
'
.
.
'
9
'

]
+

i
o
-
k
i
n
d

:
:
=

O
U
T
P
U
T

|

I
N
P
U
T

|

A
P
P
E
N
D

|

R
A
N
D
O
M

|

B
I
N
A
R
Y

l
-
v
a
l
u
e

:
:
=

i
d
e
n
t
i
f
i
e
r

[

a
r
r
a
y
-
s
u
b
s
c
r
i
p
t

|

'
^
'

[

l
-
v
a
l
u
e

]

|

'
.
'

l
-
v
a
l
u
e

|

'
^
'

'
.
'

l
-
v
a
l
u
e

]

l
e
t
t
e
r

:
:
=

'
A
'
.
.
'
Z
'

|

'
a
'
.
.
'
z
'

l
i
n
e
-
n
u
m
b
e
r

:
:
=

i
n
t
e
g
e
r
-
c
o
n
s
t
a
n
t

m
u
l
-
e
x
p
r
e
s
s
i
o
n

:
:
=

e
x
p
-
e
x
p
r
e
s
s
i
o
n

[

m
u
l
o
p

e
x
p
-
e
x
p
r
e
s
s
i
o
n

]
*

m
u
l
o
p

:
:
=

'
*
'

|

'
/
'

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n

:
:
=

i
d
e
n
t
i
f
i
e
r

[

A
S

t
y
p
e

]

[

'
(
'

'
)
'

]

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n
-
l
i
s
t

:
:
=

[

'
(
'

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n

[

'
,
'

p
a
r
a
m
e
t
e
r
-
d
e
f
i
n
i
t
i
o
n

]
*

'
)
'

]

p
a
r
a
m
e
t
e
r

:
:
=

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

|

e
x
p
r
e
s
s
i
o
n

p
a
r
a
m
e
t
e
r
-
l
i
s
t

:
:
=

[

'
(
'

p
a
r
a
m
e
t
e
r

[

'
,
'

p
a
r
a
m
e
t
e
r

]
*

'
)
'

]

p
a
t
h
n
a
m
e

:
:
=

s
t
r
i
n
g
-
c
o
n
s
t
a
n
t

p
o
i
n
t
e
r
-
n
a
m
e

:
:
=

i
d
e
n
t
i
f
i
e
r

r
e
a
d
-
c
o
n
s
t
a
n
t

:
:
=

[

i
n
t
e
g
e
r
-
c
o
n
s
t
a
n
t

]

[

'
.
'

[

i
n
t
e
g
e
r
-

c
o
n
s
t
a
n
t

]

]

[

e
x
p
o
n
e
n
t
-
c
h
a
r

[

a
d
d
o
p

]

i
n
t
e
g
e
r
-

c
o
n
s
t
a
n
t

]

r
e
c
o
r
d
-
n
a
m
e

:
:
=

i
d
e
n
t
i
f
i
e
r

r
e
l
a
t
i
o
n
a
l
-
e
x
p
r
e
s
s
i
o
n

:
:
=

a
d
d
-
e
x
p
r
e
s
s
i
o
n

[

r
e
l
o
p

a
d
d
-

e
x
p
r
e
s
s
i
o
n

]
*

r
e
l
o
p

:
:
=

'
=
'

|

'
<
'

|

'
>
'

|

'
<
=
'

|

'
=
<
'

|

'
>
=
'

|

'
=
>
'

|

'
<
>
'

|

'
>
<
'

s
u
b
s
c
r
i
p
t

:
:
=

'
(
'

e
x
p
r
e
s
s
i
o
n

[

'
,
'

e
x
p
r
e
s
s
i
o
n

]
*

'
)
'

s
t
a
t
e
m
e
n
t

:
:
=

{
a
n
y

s
t
a
t
e
m
e
n
t

f
r
o
m

t
h
o
s
e

l
i
s
t
e
n

i
n

t
h
i
s

a
p
p
e
n
d
i
x
}

s
t
r
i
n
g
-
c
o
n
s
t
a
n
t

:
:
=

'
"
'

{
a
n
y

c
h
a
r
a
c
t
e
r
s

e
x
c
e
p
t

"
}

'
"
'

s
t
r
i
n
g
-
e
x
p
r
e
s
s
i
o
n

:
:
=

e
x
p
r
e
s
s
i
o
n

Appendices

320

t
e
r
m

:
:
=

a
d
d
o
p

t
e
r
m

|

'
@
'

l
-
v
a
l
u
e

|

N
O
T

t
e
r
m

|

r
e
a
l
-
c
o
n
s
t
a
n
t

|

i
n
t
e
g
e
r
-
c
o
n
s
t
a
n
t

|

h
e
x
a
d
e
c
i
m
a
l
-
c
o
n
s
t
a
n
t

|

s
t
r
i
n
g
-
c
o
n
s
t
a
n
t

|

i
d
e
n
t
i
f
i
e
r

a
r
r
a
y
-
s
u
b
s
c
r
i
p
t

|

r
e
c
o
r
d
-
n
a
m
e

'
.
'

l
-
v
a
l
u
e

|

p
o
i
n
t
e
r
-
n
a
m
e

'
^
'

|

p
o
i
n
t
e
r
-
n
a
m
e

'
^
'

'
.
'

l
-
v
a
l
u
e

|

t
y
p
e
-
n
a
m
e

'
(
'

e
x
p
r
e
s
s
i
o
n

'
)
'

|

f
u
n
c
t
i
o
n
-
n
a
m
e

p
a
r
a
m
e
t
e
r
-
l
i
s
t

|

F
N

f
u
n
c
t
i
o
n
-
n
a
m
e

p
a
r
a
m
e
t
e
r
-
l
i
s
t

t
y
p
e

:
:
=

[

P
O
I
N
T
E
R

T
O

]

t
y
p
e
-
n
a
m
e

t
y
p
e
-
c
h
a
r
a
c
t
e
r

:
:
=

'
~
'

|

'
%
'

|

'
&
'

|

'
!
'

|

'
#
'

|

'
$
'

t
y
p
e
-
n
a
m
e

:
:
=

B
Y
T
E

|

I
N
T
E
G
E
R

|

L
O
N
G

|

S
I
N
G
L
E

|

D
O
U
B
L
E

|

S
T
R
I
N
G

|

i
d
e
n
t
i
f
i
e
r

Index

321

special characters

^ 114, 122, 129, 173
~ 29, 79, 85, 99
! 29, 79, 81, 83, 85, 99, 173, 284
79, 81, 86, 99, 169, 178, 179, 191
$ 29, 30, 79, 81, 87, 99, 172
%

 29, 79, 85, 99
&

 29, 79, 85, 99, 173
(81, 114
) 81, 114
* 81, 114, 120, 172, 204
+ 81, 96, 112, 114, 118, 126, 171, 173
, 81
- 81, 114, 119, 125
. 114, 130
/ 81, 114, 121
< 81, 114, 124
<= 114, 124
<> 114, 124
= 81, 114, 124
> 81, 114, 124
>= 114, 124
? 29, 179
? statem

ent 164
@

 81, 87, 114, 128, 131

num
bers

320 m
ode graphics 207

65816 47, 85, 159, 295, 299

AA
BS function 133

absolute value 133
active program

 41, 42
addition 118
address operator 87, 128, 131
A

LLO
CA

TE statem
ent 93, 107, 211, 213,

214, 258, 290
A

N
D

 114, 123
A

pple Pascal 188
A

pplesoft B
A

SIC
 6, 8, 41, 42, 45, 49, 52,

207, 277-287

arc tangent 133
arrays 92-93, 94, 95, 99, 100-101, 103

as param
eters 225, 228

subscripts 126
A

S 100, 101, 108, 200, 205, 223, 230
A

SC
 function 140

A
SCII character set 41, 82, 87, 124, 140, 141,
176, 269

A
SCII files 9, 41, 45, 191

assem
bly language 4, 27, 85, 244, 273

assignm
ent com

patibility 95
assignm

ent statem
ent 131

A
TN

 function 133

Bbacking up the disks 5
binary conversions 114-115
binary files 45, 192, 195, 198, 200
binary operators 113
BREA

K
 statem

ent 159
built in functions 127, 133-144, 158
BY

E shell com
m

and 44
BY

TE 29, 79, 85, 87, 91, 99, 101, 115, 117,
164

CC
A

LL statem
ent 230, 231, 277, 278, 285

CA
SE 105, 106

case sensitivity 71, 79
C

A
SE statem

ent 153
CA

T shell com
m

and 44
CA

TA
LO

G
 shell com

m
and 44

CD
BL function 134

CH
D

IR statem
ent 203

C
H

R
$ function 141

CIN
T function 135

C
LEA

R statem
ent 216

CLN
G

 87
CLN

G
 function 135

C
LO

SE statem
ent 200

com
m

and line editor 39
Com

m
and-. 159

com
m

ents 80, 83

Index

322

com
parison operators 113, 123

Com
pileTool 27-34, 274
arrays 30, 33
base types 29
BN

F 32-33
com

m
ents 29, 32, 33

constants 29, 33
file types 28
flags 28
functions 31, 34
G

SO
S 31, 34

hexadecim
al constants 30

identifiers 29, 34
nam

ed types 30
O

RCA
 Shell 32

param
eters 30-31, 34

record param
eters 31

records 30
reference param

eters 31, 34
string param

eters 31
TO

O
L 30, 34

tool num
bers 30

type characters 29, 30, 34
U

N
IV

 29, 34
U

SERTO
O

L 31, 34
value param

eters 31, 34
console control codes 267
console device 16
constants 79, 125

floating-point 82
hexadecim

al 81
integer 81
long integer 81
string 80
strings 82

CO
N

T statem
ent 160

conversions
binary 114-115
unary 115-118

CO
PY

 shell com
m

and 46
copying disks 5
copyright 26
C

O
S function 136

cosine 136
CREA

TE shell com
m

and 47

C
SN

G
 function 137

CSRLIN
 function 182

CTRL-C 159
CTRL-S 159
CU

RD
IR$ function 204

Ddata form
ats 85

D
A

TA
 statem

ent 184
D

ateString function 236
D

EBU
G

 shell com
m

and 47
debugger 47, 159
D

EF FN
 statem

ent 54, 127, 221, 285
default prefix

see directories
D

EL shell com
m

and 47
D

ELETE shell com
m

and 47
device nam

es 188
devices 188

.PRIN
TER 8, 21

D
IM

 statem
ent 79, 98, 99, 100, 216, 285

D
IR$ function 204

directories 204
changing 50, 203
copying 47
creating 205
default 50, 189, 203, 204
deleting 205
files in 44, 204
see also files

directory nam
es 187, 188

disk
floppy 6
hard 7

disk com
m

ands 286
disk nam

es 187
D

ISPO
SE statem

ent 211, 213, 290
division 121
D

O
 statem

ent 145
D

O
S 188

D
O

U
BLE 29, 79, 82, 86, 91, 99, 101, 111,

114, 115, 116, 117, 118, 119, 120, 134

Index

323

EED
IT shell com

m
and 48

editing the com
m

and line 39
editorabout com

m
and 65

arrow
 keys 61

auto-indent m
ode 59, 70, 77

beep the speaker com
m

and 65
beginning of line com

m
and 65

bottom
 of screen com

m
and 60, 65

buttons 63
check boxes 63
close com

m
and 65

control underscore key 59
copy com

m
and 65

create m
acros com

m
and 61

cursor dow
n com

m
and 60, 65

cursor left com
m

and 60, 66
cursor position 78
cursor right com

m
and 60, 66

cursor up com
m

and 60, 66
custom

izing 77
cut com

m
and 66

define m
acros com

m
and 66

delete character com
m

and 66, 76
delete character left com

m
and 66, 76

delete com
m

and 66
delete line com

m
and 67, 76

delete to end of line com
m

and 67, 76
delete w

ord com
m

and 67, 76
deleting characters in m

acros 61
dialogs 62
edit line controls 63
edit line item

s 62
end m

acro definition com
m

and 61
end of line com

m
and 67

ESCA
PE key 60

escape m
ode 59

executing m
acros 61

exit m
acro creation com

m
and 61

help com
m

and 67
hidden characters 60
insert blank lines com

m
and 59

insert line com
m

and 67

insert m
ode 58

insert space com
m

and 67
line length 58
list controls 64
m

acro keystrokes 61
m

acros 60
m

odes 77
m

ouse 64
m

oving through a file 71
m

ultiple files 68, 75
m

ultiple files. 74
new

 com
m

and 68
open A

pple key 59
open com

m
and 68

over strike m
ode 58, 78

paste com
m

and 65, 69
quit com

m
and 69

rem
ove blanks com

m
and 69

repeat counts 59, 70
resource fork 78
RETU

RN
 key 60, 70

save as com
m

and 70
save com

m
and 71

screen m
ove com

m
ands 60

scroll dow
n one line com

m
and 71

scroll dow
n one page com

m
and 71

scroll up one line 71
scroll up one page com

m
and 71

search and replace dow
n com

m
and 73

search and replace up com
m

and 74
search dow

n com
m

and 71
search up com

m
and 73

select file com
m

and 74
select m

ode 77
by character 59, 60, 69
by line 59

set/clear auto-indent m
ode com

m
and 76

set/clear escape m
ode com

m
and 76

set/clear insert m
ode com

m
and 76

set/clear select m
ode com

m
and 76

set/clear tab stops com
m

and 74
setting defaults 77
shift left com

m
and 74

shift right com
m

and 75
start of line com

m
and 60

Index

324 sw
itch files com

m
and 75

tab com
m

and 60, 75
tab left com

m
and 60, 75

tab m
ode 78

tabs 60, 63, 78
top of screen com

m
and 60, 76

undo com
m

and 66
undo delete buffer 66, 76
undo delete com

m
and 76

version 65
w

ord left com
m

and 60, 77
w

ord right com
m

and 60, 77
EN

D
 statem

ent 160
EO

F function 202
equal 124
ER

L function 158
ER

R
 function 158

ER
R

O
R

 statem
ent 86, 156, 157, 158

EX
P function 137

exponent 82, 85, 91, 137, 143, 165, 173
exponentiation 114, 122
expression 111-130

conversions in 114
logical 111
m

athem
atical 111

operator precedence 113
pointer 112
string 112

Ffalse 112
field 93, 103, 104, 130
file nam

es 45, 51, 187, 204
file num

bers 191
File Type N

otes 45
file types

BA
S 42, 45, 49

BIN
 45, 192, 195, 198, 201

D
IR 45

D
V

U
 28, 45

S16 45
SRC 28, 41, 45, 49, 55, 69
TO

K
 41, 55

TX
T 28, 41, 45, 49, 55, 69, 201

filesaccess privileges 45, 46, 49, 55
auxiliary type 41, 45
copying 46
dates 45
deleting 47, 205
letter case 51, 204
m

oving 49
nam

es 45, 51, 187
renam

ing 51, 205
see also directories
size 45, 202
type 41, 45

Findercreating program
s for 8, 9, 16

running G
Soft BA

SIC from
 8, 39

floating-point 33, 85, 96, 100, 112, 118, 119,
129, 132, 134, 137, 165, 170, 192

constants 82
see also D

O
U

BLE
see also SIN

G
LE

floppy disk 6
FN

see D
EF FN

folderssee directories
fonts 270
FO

R
 statem

ent 147, 285
FO

RTRA
N

 91
FR

E function 141, 290
full path nam

es 188
FU

N
CTIO

N
 statem

ent 89, 127, 185, 230, 289
param

eters 223
recursion 229
variable scope 228

functions
built in 127, 133-144, 158
see also D

EF FN
see also FU

N
CTIO

N
 statem

ent
see also tools

Ggarbage collection 87, 141, 290
G

ET statem
ent 202, 285

Index

325

G
O

SU
B statem

ent 219, 221
G

O
TO

 statem
ent 155

graphics 207-210
graphics environm

ent 17
greater than 124
greater than or equal 124
G

S/O
S 4, 18, 21, 22, 28, 31, 40, 187, 188,

190, 239, 244, 245, 283
errors 244

G
Soft B

A
SIC

Finder version 11, 39, 241
run tim

e 39
shell version 39-55, 241

G
SO

S token 245
G

TBootInit statem
ent 233

G
TClearA

nnunciator statem
ent 234

G
TG

etPaddle function 234
G

TG
etSw

itch function 234
G

TSetA
nnunciator statem

ent 234
G

TShutD
ow

n statem
ent 234

G
TStartup statem

ent 233
G

TStatus function 234
G

TV
ersion function 234

Hhard disk 7
H

CO
LO

R= statem
ent 207, 285

hexadecim
al 30, 81

H
FS 187

H
G

R statem
ent 17, 208, 240

hidden characters 60
H

O
M

E statem
ent 183

H
PLO

T statem
ent 209

H
TA

B statem
ent 183

Iidentifiers 57, 79, 85, 87, 98, 99, 291, 294
case sensitivity 79
length 79

IF statem
ent 151, 286

im
m

ediate execution 43
inf 86

infinity 86, 118, 119, 120, 121, 122, 123,
133, 140

Innovative System
s 85

IN
PU

T statem
ent 178, 187, 286

see also LIN
E IN

PU
T

installer 21
installing G

Soft BA
SIC 6-8

IN
T function 137

IN
TEG

ER 29, 79, 81, 85, 91, 99, 100, 101,
111, 114, 116, 117, 118, 119, 120, 121,
122, 135, 164

integers 85
constants 81
storage 85

IN
V

ERSE statem
ent 177

Kkeyboard 88, 129, 161, 163, 178, 187, 202,
215, 269, 279, 281

K
ILL statem

ent 205

Ll-values 130-131
language num

bers 77
language stam

p 41
LEFT$ function 141
LEN

 function 142
less than 124
less than or equal 124
LET statem

ent 131
libraries

errors 244
loading 245
see also Com

pileTool
see also user tools
unloading 245

LIBRA
RY

 token 246
licensing 26
line editor 39
LIN

E IN
PU

T statem
ent 181, 187

line num
bers 43, 89, 158, 287, 292

REN
U

M
BER shell com

m
and 51

lines 79

Index

326

linked lists 94, 107, 260
LIST shell com

m
and 48

LO
A

D
 shell com

m
and 49

LO
A

D
LIBRA

RY
 statem

ent 245
LO

C
 function 202

LO
CK

 shell com
m

and 49
LO

F function 202
LO

G
 function 138

logarithm
 138

logical A
N

D
 123

logical expression 111
logical N

O
T 126

logical O
R 123

logical value 112
LO

N
G

 29, 79, 81, 85, 91, 99, 101, 111, 114,
116, 117, 118, 119, 120, 121, 122, 135, 164

long integers
constants 81
storage 85

LO
O

P statem
ent 145

low
 resolution graphics 207, 283

MM
akeR

untim
e utility 24, 214, 289

m
antissa 117, 165

m
athem

atical expression 111
m

atrix 91
m

em
ory 88, 161, 286
A

LLO
CA

TE statem
ent 211

array storage 92
D

ISPO
SE statem

ent 213
m

ap 290
N

IL function 213
PEEK

 function 215
PO

K
E statem

ent 215
records 93, 103
requirem

ents 5, 19
see also pointers
SETM

EM
 statem

ent 213
use 289
variant records 105

m
enu bar 18

M
icrosoft 91

M
icrosoft BA

SIC 286

M
ID

$ function 142
M

K
D

IR statem
ent 205

m
ouse 64

M
O

U
SETEX

T statem
ent 177

M
O

V
E shell com

m
and 49

m
ultiplication 120

NN
A

M
E statem

ent 205
nam

ed types 94
N

aN
 86, 118, 119, 120, 121, 122, 123, 133,

140
natural logarithm

 138
N

EW
 shell com

m
and 50

N
EX

T statem
ent 147

N
IL function 213

N
O

RM
A

L statem
ent 178

N
O

T 114, 126
not equal 124
N

U
LL 87

null character 82

OO
N

-G
O

SU
B statem

ent 220, 221
O

N
-G

O
TO

 statem
ent 156

O
N

ERR G
O

TO
 statem

ent 157, 277
O

PEN
 statem

ent 200
operator precedence 113
O

R 114, 123
O

RCAinstalling G
Soft BA

SIC 7
O

RCA
 shell 9, 34, 239, 244, 289

errors 244
O

RCA
/D

ebugger 47, 159
O

RCA
/M

 4
output 16
overflow

 118, 119, 120, 121, 122

Pp-strings 243
param

eters 223, 230, 231
arrays as 225, 228

Index

327

built-in functions 127
D

EF FN
 128, 221

pass by reference 31, 96, 227, 229, 242
pass by value 31, 96, 227, 242
records as 224, 228
tool calls 241, 242
type com

patibility 95, 96
types for 229
unary conversions 115

parentheses 31, 96, 114, 125, 126, 223, 225,
227, 230, 242

partial path nam
es 188, 189

path nam
es

see directories
pausing a program

 159
PEEK

 function 215, 277, 278-280, 286
PO

IN
TER 102

pointer expression 112
pointers 87, 91, 92, 93-94, 98, 112, 211, 224

com
paring 124

dereferencing 129
m

ath 119, 120, 136
PO

K
E statem

ent 215, 270, 277, 280-283, 286
PO

P statem
ent 221

PO
S statem

ent 183
pow

ersee exponent
PR shell com

m
and 50

prefixsee directory
PREFIX

 shell com
m

and 50
pretty printing 57
PR

IN
T statem

ent 163, 187, 286
PRIN

T U
SIN

G
 statem

ent 169, 187
printers

.PRIN
TER driver 8, 21-24, 188, 190

characters per line 23
configuration 22
control characters 23, 190
extra blank lines 23
form

atting 167
initialization 23
lines overw

ritten 23
lines per page 22
slot 22

PRIZM
 159

ProD
O

S 187
program

 buffer 42, 213, 289, 291
program

 files
see file types

PU
T statem

ent 203, 286

QQ
uickD

raw
 II 17, 207, 208

RRA
M

 9, 87, 161
random

 access files 199, 200, 202, 203
random

 num
bers 138-139

REA
D

 statem
ent 185

records 30, 91, 92, 93, 94, 97, 103-108, 130,
131, 132, 166, 224, 230

variant 103, 105-107
recursion 219, 222, 226, 229
registration card 5
REM

 statem
ent 83

REN
A

M
E shell com

m
and 51

REN
U

M
BER shell com

m
and 51

reserved sym
bols 80

reserved w
ords 80

resources 9
R

ESTO
RE statem

ent 185
R

ESU
M

E statem
ent 158

return characters 23, 41, 60
RETU

RN
 statem

ent 221
Rez 9
RIG

H
T$ function 143

R
M

D
IR statem

ent 205
R

N
D

 function 138
RU

N
 shell com

m
and 54

Ssam
ples
A

rray Param
eters 226

A
rtillery 14

A
TN

2 134
Binary File I/O

 1 197

Index

328 Binary File I/O
 2 198

Finance 12
H

exadecim
al File D

um
p 193

K
eyboard 129

M
ove U

p O
ne D

irectory 204
Print D

irectory 205
Print Text File 151
Q

uickD
raw

 II 240
Random

 A
ccess File I/O

 200
Sieve 52
TO

U
PPER 141

SA
N

E 85
SA

V
E shell com

m
and 41, 55, 69

saving program
s 13, 55

SEEK
 statem

ent 203
SELEC

T statem
ent 153

SETM
EM

 statem
ent 213

SG
N

 function 139
shape tables 207
shell 8G

Soft B
A

SIC
 6, 7, 8, 16, 39-55, 267,

295
O

RCA
 7, 9, 16, 28, 32, 34, 239, 244, 289

shell prefix 61, 67, 77
SIN

 function 139
sine 139
SIN

G
LE 29, 79, 82, 85, 91, 99, 101, 111,

114, 115, 116, 117, 118, 119, 120, 137, 287
site license 5
SIZEO

F function 214
source files

see file types
SPEED

 statem
ent 175

Splat! 47, 159
SQ

R
 function 140

square root 140
SSA

V
E shell com

m
and 41, 55, 69

standard output 16
STO

P statem
ent 161

stopping a program
 159, 161

STR
$ function 143

STR
IN

G
 29, 79, 82, 87, 91, 99, 101

strings 97, 124, 140-144
concatenation 118
constants 80, 82

converting num
bers to 143

converting to num
bers 143

expressions 112
SU

B statem
ent 89, 185, 231, 289

subtraction 119
SY

SEM
A

C file 61
SY

SH
ELP file 67

SysTabs file 77
systemrequirem

ents 5
System

 6.0 4
SY

STEM
P file 65, 69

Ttabs 7, 60, 63, 71, 72, 78, 167, 183, 190, 280,
286, 291

Talking Tools 28, 239
TA

N
 function 140

tangent 140
term

 113, 125-130
text files 41, 45, 191, 200

see also file types
text program

m
ing 11, 267

text screen 11, 16, 167, 175, 182, 267, 270,
283

TEX
T statem

ent 210
Tim

e statem
ent 237

Tim
eString function 236

tokens 57, 79, 83, 291-294
TO

O
L token 246

toolbox 1, 4, 9, 17, 19, 239-243
errors 244
fonts 270
interface files 27-34, 240-243
learning 2, 3, 18, 239
reference m

anuals 4
see also Com

pileTool
see also Q

uickD
raw

 II
string param

eters 87
TO

O
LERRO

R function 244
true 112
TSA

V
E shell com

m
and 41, 55, 58, 69

TTBootInit statem
ent 235

TTShutD
ow

n statem
ent 236

Index

329

TTStartup statem
ent 235

TTStatus function 236
TTV

ersion function 236
type casting 87, 128-129
type characters 98
type com

patibility 95-98
TY

PE statem
ent 91, 94, 102, 103, 108

types 85, 91-110

Uunary addition 126
unary conversions 115-118
unary negation 126
unary subtraction 125
U

N
IVsee Com

pileTool
U

N
LO

A
D

LIBRA
RY

 statem
ent 245

U
N

LO
CK

 shell com
m

and 55
user tools 244, 246

errors 244
interface files 27
loading 245
see also Com

pileTool
see also libraries
unloading 245
w

riting 273-275

VV
A

L function 143
variable scope 228
variant records 103, 105-107, 211
versioneditor 65
V

ERSIO
N

 function 216
version num

ber 216
V

TA
B statem

ent 184

WW
A

IT statem
ent 161

W
EN

D
 statem

ent 150
W

H
ILE statem

ent 150
w

hite space 72, 83

w
indow

s 18
w

ork prefix 65, 69
w

orkspace 42, 216

YY
2K

 bug 236

