techBASIC App Builder 1.0

Reference Manual

A product of

Byte Works®, Inc.
http://www byteworks.us

Credits
Programming
Mike Westerfield

Art
Karen Bennett

Documentation
Mike Westerfield

«e Dyte Works nc.

\
>
1010 410

Copyright 2013
By The Byte Works, Inc.
All Rights Reserved

Apple, iPhone, iPad and iPod are registered trademarks of Apple Computer, Inc.
The Byte Works is a registered trademark of The Byte Works, Inc.
techBASIC and techBASIC App Builder are trademarks of The Byte Works, Inc.

techBASIC App Builder

What is techBASIC App Builder?

TI Sensor Tag

M. Fiekd in uT

©
°
®
©
©
©
©
°
°
©
©
°
°
©
©

Write Compile Sell
techBASIC™ is the technical programming app for iOS that makes it easy to collect information from internal and
external sensors, process the information with a powerful scientific computing language, and display the results
using stunning interactive graphics. Until now, these apps had to be executed from within a copy of techBASIC on
each i0S device.

techBASIC App Builder™ takes techBASIC programs written on iOS and converts them to fully functional
stand-alone apps. These apps look, work, and indeed are, just like any other app written for the App Store—they just
happen to be written in techBASIC instead of Objective C. Once created, these apps can be submitted to the App
Store just like any other app. They can be distributed free, or you may charge for the apps. They can also be
submitted using Apple's B2B program or distributed as ad hoc apps. Or, of course, you can simply compile your
own apps for your own use, installing them on your own iOS devices, without submitting them to the App Store at
all.

Prerequisites

This guide makes some assumptions about your skills and resources.

1. You should already have, and know how to use, techBASIC. While it is possible to create techBASIC
programs directly from techBASIC App Builder and test them from the iOS Simulator that comes with
Xcode®, it is generally easier to write and debug techBASIC programs directly from the iOS device
using its debugger and built-in help systems.

2. Your techBASIC app must run from the graphics screen, as must all iOS apps. While the PRINT
statement still works, it is tied to the Xcode console, not the iOS device. PRINT is great for debugging,
but cannot be used in a running app.

3. You must have a copy of Xcode. Apple's Xcode IDE is the only way Apple® allows programs to be
built and submitted to the App Store. Xcode can be downloaded from Apple's web site.

4. You must join Apple's developer program to get the certificates needed to install apps on any iOS
device, even your own. This is true even if you do not plan to submit apps to the App Store. See
Apple's web site for information on joining the developer program.

5. You need to know how to use Xcode and Apple's web site to submit apps to the app store or install
them on your iOS devices. The specific steps and requirements change frequently; see Apple's web site
for further information.

techBASIC App Builder

Differences between techBASIC on iOS and techBASIC
Apps

For the most part, techBASIC is the same, regardless of where the program is executed. The key difference
between techBASIC apps running from techBASIC and techBASIC apps running as stand alone apps is the absence
of the development environment. Stand-alone apps have a single display mechanism corresponding to the graphics
screen under techBASIC. The debugger, program list, and console are all missing. The graphics screen always
displays in full-screen mode.

For the most part, this is an obvious difference. The one question might be what happened to the console. Does
PRINT still print? As it happens, yes—but PRINT from an app sends the text to the Xcode console, not the app
itself. This is exactly the same as using printf from Objective C apps, and is tremendously useful for debugging.

With the exception of the size of the graphics screen and the use of the console, techBASIC programs will
behave exactly the same running from techBASIC or as stand-alone apps.

Building Your First techBASIC App

While there are a number of options, the basic steps for building and running a techBASIC app are really quite
simple.

1. Unpack the techBASIC App Builder libraries that came with your purchase of techBASIC App
Builder.
2. Make a copy of the folder techBASIC Univ. Rename it to something convenient.

(C] techBASIC App Builder

mw) (=) () (B0 (B (2] (@
el el
A4 e
- od ¥~ Open

Get Info

Compress “techBASIC Univ"

Burn “techBASIC Univ" to Disc...
Duplicate

Make Alias

Quick Look "techBASIC Univ"
Share >

Copy “techBASIC Univ”"

Clean Up Selection
Show View Options

Label:
X -

Services >

techBASIC App Builder

Open the folder and double-click techBASIC Univ.xcodeproj to start Xcode and open the new
project.

s MyApp
= D) Im| = 2 3 >
e Tab
¥ \ g 'y ¢ 1
) ¢ - ¢
L Yi =4 L Yi =4
icon_ipad.png icon_ipad@2x.png icon.png icon@2x.png
\i.!‘ -
techBASIC Univ techBASIC techBASICProgram.
Univ.xcodeproj bas

Replace the file techBASICProgram.bas with your own techBASIC program.

a. Move the techBASIC source from your iOS device to your Macintosh using the Share button.
From the iOS device, view the source you want to use, then tap the Share button to email the
source.

Programs
Acceleration
Accelerometer

! Initialize the display with acceleration set to 0 along all axis.
DIM ax(100, 2), ay(100, 2), az(100, 2)
70 100

AFull
Analysis

Arduino | Shows a
accelerati
1 seconds

Bar

Beat Frequency the display with

set to 0 along all

BLE

. 2), ay(100, 2),
Busy Box)
Catalog

Decay

Lz x[c]v]sn|uil)
. B

NGB RECRCORCOCVOC VOVVNCE © (Y

{ and updating the plot.

techBASIC App Builder

b. Send the source to yourself.

E source for

me@somewhere.com

1: techBASIC source for Accelerometer

1Shows a running plot of the acceleration for the last 10

Iseconds in 0.1 second intervals.

I

!lnitialize the display with acceleration set to 0 along all axis.

DIM ax(100, 2), ay(100, 2), az(100, 2)

FORt=1TO 100
ax(t, 1) =v10.0
ay(t, 1) =100 Subject: techBASIC source for Accelerom.
az(t, 1) =v10.0

NEXT 1 Shows a running plot of the

acceleration for the last 10

nitialize the piot and show it Teeconds In 0.1 second intervals.
DIM p as Plot, px as PlotPoint, py as PlotPoint, pz as PlotPoint (e seco

p = Graphics.newPlot

p.setTitle(*Acceleration in Gravities")
p.setXAxisLabel("Time in Seconds")
p.setYAxisLabel("Acceleration: X: Green, Y: Red, Z: Blue")
p.showGrid(1)

P.setGridColor(0.8, 0.8, 0.8)

1 Initialize the display with acceleration
set to 0 along all axis.

DIM ax(100, 2), ay(100, 2), az(100, 2)
FORt=1T0 100

px = p.newPlot(ax)
px.setColor(0, 1, 0)
px.setPointColor(0, 1, 0)

= p.newPlot(ay)
,0,0)

c. Copy the source from the email client.

techBASIC source for Accelerometer — Inbox

€« & > = | R

Mike Westerfield November 29, 2012 4:09 PM
To: Mike Westerfield
techBASIC source for Accelerometer

1 Shows a running plot of the acceleration for the last 10
I'seconds in 0.1 second intervals.
1

!initialize the display with acceleration set to 0 along all axis.
DIM ax(100, 2), ay(100, 2), az(100, 2)

FORt=1TO 100

ax(t,1)=t10.0

ay(t,1)=t10.0

az(t,1)=t10.0

NEXT

!lnitialize the plot and show it.

DIM p as Plot, px as PlotPoint, py as PlotPoint, pz as PlotPoint
p = Graphics.newPlot

p.setTitle("Acceleration in Gravities")

p.setXAxisLabel("Time in Seconds”)
p.setYAxisLabel("Acceleration: X: Green, Y: Red, Z: Blue")
p.showGrid(1)

p.setGridColor(0.8, 0.8, 0.8)

px = p.newPlot(ax)
px.setColor(0,1,0)
px.setPointColor(0, 1, 0)

py = p.newPlot(ay)
py.setColor(1, 0, 0)

techBASIC App Builder

d. Click on techBASICProgram.bas from Xcode.

[techBASIC Univ.xcodeproj — |t
Build Succeeded | 11/27/12 a

> m techBASIC Univ » iPhone 6.0 Simulator »
v
Run Stop Scheme Breakpoints
|| @ A = » B m | 4 > | [YtechBASIC Univ) [Y techBASICProgram.bas) No Selection

techBASIC Univ
1 target, iOS SDK 6.0

» || techBASIC Univ

» || Frameworks
» || Products

1 ! Display the graphics view.
2| system.showGraphics
3

4 ! Set up the plot, label it, and display the function
5| ! with false color.

6 DIM p AS Plot

7. p = graphics.newPlot

2 p.setTitle("f(x, y) = 1@%sin(r)/r; r =
9/ p.setGridColor(0.85, 0.85, ©.85)

10, p.setsurfacestyle(3)

11 p.setAxisStyle(5)

sqrt(x*x + y*y)")

12| ! Add the function.
14| DIM func AS PlotFunction
15| func = p.newFunction(FUNCTION f)

17/ ! Adjust the function so the portion under the X-Y
18| ! plane is visible, and push it slightly off the Z
19 ! axis so the beginning of the descending curve

20/ ! can be seen.

21| p.setTranslation3D(-4, -3, -2)

22| p.setScale3D(1, 1, .8)

22 END

25| FUNCTION f(x, y)
26, d = SQR(x=x + y*y)
27| IF d = @ THEN

28 f=10

29 ELSE

30 f = 10*SIN(d)/d
31 END if

32| END FUNCTION

Select all of the existing source in this file and delete it.

Paste in your own source.

[techBASIC Univ.xcodeproj — | | techBASICPrc
> [| | techBASIC Univ) iPhone 6.0 Simulator » Build Succeeded | 11/27/12 at 11:54 AM
Run Stop Scheme Breakpoints
|| & A = » B | 4 > | YtechBASIC Univ) [} techBASICProgram.bas) No Selection

techBASIC Univ
¥ 531 target, i0S SDK 6.0

» || techBASIC Univ

» || Frameworks

! Shows a running plot of the acceleration for the last 10
! seconds in 0.1 second intervals.
1

i Initialize the display with acceleration set to @ along all axis.
DIM ax(1e@, 2), ay(1ee, 2), az(1ee, 2)
FOR t = 1 TO 180

- ax(t, 1) = t/10.0
> (gl Products ay(t, 1) = t/10.0
9| az(t, 1) = t/10.0

10 NEXT

! Initialize the plot and show it.

DIM p as Plot, px as PlotPoint, py as PlotPoint, pz as PlotPoint
p = Graphics.newPlot

p.setTitle("Acceleration in Gravities")

p.setXAxisLabel("Time in Seconds")
p.setYAxisLabel("Acceleration: X: Green, Y: Red, Z: Blue")
p.showGrid(1)

p.setGridColor(0.8, 0.8, 0.8)

px = p.newPlot(ax)
px.setColor(@, 1,)
px.setPointColor(@, 1, @)

py = p.newPlot(ay)
py.setColor(1, @, 0)
py.setPointColor(1, @, @)

pz = p.newPlot(az)
pz.setColor(e, 0, 1)
pz.setPointColor(@, 0, 1)

! Set the plot range and domain. This must be done
! after adding the first PlotPoint, since that also
! sets the range and domain.

p.setView(o, -2, 10, 2, @)

system.showGraphics

! Loop continuously, collecting accelerometer data
! and updating the plot.

sensors.setAccelRate(0.1)

te = -1

indav — 1

Copy any other files your program needs into the Files folder.

a. This can include images, data files, or anything else your techBASIC program needs.

techBASIC App Builder

b. Use iTunes to copy files to and from your iOS device. See the techBASIC Quick Start Guide
(available on the Byte Works web site) if you are not familiar with copying data files with iTunes.

c. Drag the files into the Files folder in Xcode's project window.
d. Select the option Copy items into destination group's folder (if needed)

0006

techBASIC Univ.xcodeproj — | | techBASICProgram.bas

techBASIC Univ
v B Yirger, i05 50K 6.0

-~ ViewController_iPhone.xib
#| ViewController_iPad.xib

|h) GraphicsViewController.n
v [Supporting Files
» [|Images
|~ libtechBASICUniv.a
7] techBASIC Univ-Info.plist
| = InfoPlist.strings
main.mm
! techBASIC Univ-Prefix.pch
|« Default.png
|« Default@2x.png
|w Default-568h@2x.png
‘techBASICProgram.bas.
» [|Frameworks
» (| Products

e. Click Finish.

Bulld Succeeded | 11/27/12 at 11:54 AM

Choose options for adding these files

Destination (M Copy items into destination group's folder (if needed)

Folders (s)Create groups for any added folders
() Create folder references for any added folders

IF |

cOErE(T,)= i

T, 2)%5rIght/
colors(i, 2) = t:olor!lao(l: a)cbrl;ht 55

f. Click the file AppDelegate .m from the file list in the Xcode project window to edit the file.

5 techBASIC Univ.xcodeproj — [m AppDelegate.m

() (| [techBASIC Univ) iPhone 6.0 Si | (=) Build Succeeded | 11/27/12 at 11:54 AM
LIM, =1
Run Stop Scheme
||zt © A& » B8 ui | 4 > | [y techBASIC Univ) (techBASIC Univ) [m] AppDelegate.m) No Selection
techBASIC Univ b H
¥ 3 1 targer, i05 50K 6.0 P
v (] techBASIC Univ 62| = Move all files used by the BASIC program to the sandbox.
[h] AppDelegate.h alf =
7 RppDelegatem 6| = Add or remove file names from the appFiles array, above. The files themselves should be placed in the Supporting Files/
TS = 65| = Files group in the Xcode project. The code in this method may be commented out if the program does not need supporting
pView. o = files.
m| AppView.m afl */
8
@Wevcommllu_!?hom_xlb @l - (void) getFiles {
4 ViewController_iPad.xib 70| // NSArray xfileNames = [[[NSArray alloc] initWithObjects: @'Gears.png”, nil] autorelease];
v [|BASIC nl o/
] AppStoreGraphicsview.h 72| // NSArray paths = NSSearchPathForDirectoriesInDonains(NSDocumentDirectory, NSUserDomainMask, YES);
o 7| /7 NSString *path = [paths objectAtIndex: 0];
|h| Graphicsview.h w77
[h| GraphicsViewController.h 750 // for (int i =0; i < [fileNames count]; ++i) {
v (] Supporting Files | 77 NSString *fullName = [fileNames objectAtIndex: il;
> o nfl 17 NSString #name = [fullName stringByDeletingPathExtension];
mages n.l /7 NSString *extension = [fullName pathExtension];
| libtechBASICUniv.a »l 1/
[} techBASIC Univ-Info.plist sl 77 NSString *destPath = [path stringByAppendingPathComponent: fullNamel;
[InfoPlist.strings aifl 77 NSString *srcPath = [[NSBundle mainBundle] pathForResource: name ofType: extension];
orist: afl /7 if (1[INSFileManager defaultManager] fileExistsAtPath: destPath])
m] main.mm afl /7 [[NSFileManager defaultManager] removeltemAtPath: destPath error: nill;
[h] techBASIC Univ-Prefix.pch afl // [INSFileManager defaultManager] copyItemAtPath: srcPath toPath: destPath error: nill;
& Default.png :Z ;’
|«] Default@2x.png @
|« Default-568h@2x.png sl /=
e 8| = Get the main view controller where the BASIC app runs.
90 *
I techBAsICProgram.bas 91 = Returns: The view controller that contains the BASIC app.
» ("] Frameworks all =/

techBASIC App Builder

g. Find the method getFiles. All of the code in this method is commented out. Restore this code.

: techBASIC Univ.xcodeproj — |m| AppDelegate.m
Build Succeeded | 11/27/12 at 11:54 AM

> m techBASIC Univ) iPhone 6.0 Simulator »

Run S Scheme
|mZ @ &4 = » B
techBASIC Univ
1 target, iOS SDK 6.0
v (| techBASIC Univ
EI AppDelegate.h

D
< > | Y techBASIC Univ) (]techBASIC Univ) [l AppDelegate.m) [-getFiles
¥

/%
* Move all files used by the BASIC program to the sandbox.

= Add or remove file names from the appFiles array, above. The files themselves should be placed in the Supporting Files/
= Files group in the Xcode project. The code in this method may be commented out if the program does not need supporting

h) AppV = files.
|m) AppView.m */
ViewController_iPhone.xib .
e !e ontro "‘! one_ X - (void) getFiles {
|+ ViewController_iPad.xib NSArray *fileNames = [[[NSArray alloc] initWithObjects: @'Gears.png", nill autorelease];
v []BASIC
] AppStoreGraphicsView.h NSArray *paths, = NSSearchPathForDirectoriesInDomains (NSDocumentDirectory, NSUserDomainMask, YES);
o NSString *pi [paths. objectAtIndex: 0];
|h] GraphicsView.h =

|h] GraphicsViewController.h
v (] Supporting Files
» []Images
_ libtechBASICUniv.a
[} techBASIC Univ-Info.plist
7 InfoPlist.strings

for (int i = @; i < [fileNames count]; ++i) {
NSString =fullName = [fileNames objectAtIndex: il;
NSString name = [fullName stringByDeletingPathExtension);
NSString =extension = [fullName pathExtension];

NSString =destPath = [path stringByAppendingPathComponent: fullName);
NSString =srcPath = [[NSBundle mainBundle] pathForResource: name ofType: extension];
if (1[INSFileManager defaultManager] fileExistsAtPath: destPath])

m] main.mm [[NSFileManager defaultManager] removeItemAtPath: destPath error: nill;
|h| techBASIC Univ-Prefix.pch [INSFileManager defaultManager] copyItemAtPath: srcPath toPath: destPath error: nill;
«| Default.png

| Default@2x.png }
| Default-568h@2x.png

* Get the main view controller where the BASIC app runs.

I techBASICProgram.bas
» (1 Frameworks %

* Returns: The view controller that contains the BASIC app.
=/

h. The first line of the method sets up an array with a list of the files needed by your program.
Change Gears.png to the first file needed by your program, then add any additional files,
separated by commas, like this. The file names are case sensitive on the iOS device, so be sure the
letter case matches exactly.

NSArray *fileNames = [[[NSArray alloc] initWithObjects:
@"Gears.png", @"file2.txt", @"file3.bin", nil] autorelease];

In the screen shot, we added a file named Stars.bas, so that's the name that appears in the
source code.

: techBASIC Univ.xcodeproj — |m| AppDelegate.m
Build Succeeded | 11/27/12 at 11:54 AM

> techBASIC Univ) iPhone 6.0 Simulator -
Run Sto Scheme D
||z © A » B8 | 4 > | BHtechBASIC Univ) []techBASIC Univ) [AppDelegate.m) [-getFiles
techBASIC Univ i
vB 1 target, i0S SDK 6.0 f‘i ,
v [techBASIC Univ 62| = Move all files used by the BASIC program to the sandbox.
[k AppDelegate.h all *
64| = Add or remove file names from the appFiles array, above. The files themselves should be placed in the Supporting Files/
65| = Files group in the Xcode project. The code in this method may be commented out if the program does not need supporting
h] AppView.h | = files.
m) AppView.m 67| */
ViewController_iPhone.xib e .
™A w, " - | - (void) getFiles {
[#] ViewController_iPad.xib 70 NSArray sfileNames = [[[NSArray alloc] initWithObject il] autoreleasel;
v []BaASIC n
[h) AppStoreGraphicsView.h 7 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocUMEntDirectory, NSUserDomainMask, YES);
i 7 NSString *path = [paths objectAtIndex: 0];
|h] GraphicsView.h A
|h] GraphicsViewController.n 75 for (int i =0; i < [fileNames count]; ++i) {
v (] Supporting Files 7 NSString =fullName = [fileNames objectAtIndex: il;
> (g images 7 NSString *name = [fullName stringByDeletingPathExtension];
- 7 NSString =extension = [fullName pathExtension];
 libtechBASICUniv.a =
[C] techBASIC Univ-Info.plist 8 NSString =destPath = [path stringByAppendingPathComponent: fullNamel;
Y InfoPlist.strings g NSString =srcPath = [[NSBundle mainBundle] pathForResource: name ofType: extension];
= - 2 if (![[NSFileManager defaultManager] fileExistsAtPath: destPath])
m] main.mm a [[NSFileManager defaultManager] removeltemAtPath: destPath error: nill;
|h] techBASIC Univ-Prefix.pch & [[NSFileManager defaultManager] copyItemAtPath: srcPath toPath: destPath error: nill;
| Default.png 8 }
= ssfl }
5 =
sl /x
8| = Get the main view controller where the BASIC app runs.
90 *
91| = Returns: The view controller that contains the BASIC app.
» (I Frameworks oll w
6. Select the i0S device or simulator from the Xcode project window.
7. Click Run to run your program.

techBASIC App Builder

a techBASIC Univ.xcodeproj — @ AppDelegate.m

Build Succeeded | 11/27/12 at 11:54 AM

techBASIC Univ
vl target, i0S SDK 6.0

v

v

v

techBASIC Univ
[h| AppDelegate.h

|h| AppView.h
m] AppView.m
+| ViewController_iPhone.xib
. ViewController_iPad.xib
__1BASIC
[h] AppStoreGraphicsView.h
|h] GraphicsView.n
|h] GraphicsViewController.h
| Supporting Files
» [|Images
] libtechBASICUniv.a
[techBASIC Univ-Info.plist
7 InfoPlist.strings.
m] main.mm
[h| techBASIC Univ-Prefix.pch
« Default.png
«| Default@2x.png
| Default-568h@2x.png
| Stars.txt

B techBASICProgram.bas

(2

Frameworks

w | 4 > | [techBASIC Univ) | |techBASIC Univ) [AppDelegate.m) [I] -getFiles
LInms

sfl /%
= Move all files used by the BASIC program to the sandbox.

= Add or remove file names from the appFiles array, above. The files themselves should be placed in the Supporting Files/
= Files group in the Xcode project. The code in this method may be commented out if the program does not need supporting
= files.

=/

- (void) getFiles {
NSArray *fileNames = [[[NSArray alloc] initWithObjects: @"Stars.txt", nil] autorelease];

NSArray *paths = NSSearchPathForDirectoriesInDomains (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *path = [paths objectAtIndex: 8];

for (int i = @; i < [fileNames count]; ++i) {
NSString =fullName = [fileNames objectAtIndex: il;
NSString =name = [fullName stringByDeletingPathExtension];
NSString =extension = [fullName pathExtension];

NSString =destPath = [path stringByAppendingPathComponent: fullName];
81 NSString *srcPath = [[NSBundle mainBundle] pathForResource: name ofType: extension];
8 if (![INSFileManager defaultManager] fileExistsAtPath: destPath])
[[NSFileManager defaultManager] removeltemAtPath: destPath error: nill;
[[NSFileManager defaultManager] copyItemAtPath: srcPath toPath: destPath error: nill;

Get the main view controller where the BASIC app runs.

Returns: The view controller that contains the BASIC app.

*/

Your program will compile and run. If you selected a simulator, the iOS Simulator will open automatically. If
you selected an iOS device, the app will install on the device and then run.

Customizing Your App

There are a number of customizations you can perform on your project, and several you definitively should do
for any project you plan to distribute beyond your own iOS device. The following sections go over a list of the basic

customizations to

consider.

There are a number of other customizations you can do from Xcode that are not directly related to techBASIC.
These are covered in Apple's documentation of Xcode.

Build for the iPhone or iPad

The default project is configured to run on both the iPhone and iPad. Change the Targeted Device Family
setting if the techBASIC app is only designed to run on one or the other.

1. Select the techBASIC Univ project from the TARGETS list in the Xcode project window.
2. Select the Summary tab.

3. Select the appropriate device from the Devices pop-up.

[techBASIC Univ.xcodeproj
Build Succeeded | 11/27/12 at 11:54 AM

1e 6.0 Simulator] E]

cheme K

techBASIC App Builder

[0 < > | [techBasic univ

PROJECT | Summary | Info Build Settings Build Phases Build Rules |
b techBASIC Univ i0S Application Targel s—
TARGETS \ B
Bundle Ig€ntifier | us.byteworks.techBASNGUniv
B y i N
Versiol jGhone Build | 1.0
iPad
Deployment et |5.0 [v] |
3
v iPhone / iPod Deployment Info
Main Storyboard | [+
Main Interface | [v] L
3
Supported Interface Orientations
Portrait Upside Landscape Landscape
Down Left Right

Use Your Own Bundle Identifier

You created a bundle identifier when you signing up to distribute apps on the App Store. Be sure and change to

your own bundle identifier.

1. Select the techBASIC Univ project from the TARGETS list in the Xcode project window.

Select the Summary tab.
3. Enter your own bundle identifier under iOS Application Target.

[techBASIC Univ.xcodeproj

1e 6.0 Simulator] @ ‘ Build Succeeded | 11/27/12 at 11:54 AM ‘
| m | 4 » | [rechsasic univ
PROJECT | Summary | Info Build Settings Build Phases Build Rules 1

& techBASIC Univ iOS Application Target

TARGETS Bundle Identifier ' us.byteworks.techBASIC-Univ)
Version | 1.0 - —puTETO
Devices | Universal s
Deployment Target ' 5.0 [v) L
y
¥ iPhone / iPod Deployment Info
Main Storyboard | I3
Main Interface | I3

Supported Interface Orientations

0DoBEE

Portrait Upside Landscape Landscape
Down Left Right

=T

techBASIC App Builder

Select the Supported Device Orientations

There are two places to select the device orientations your app supports, one for the iPhone and one of the iPad.
Click the appropriate settings.

In general, the iPad should support all orientations, while the iPhone should not support Upside Down.

techBASIC's System.setAllowedOrientations call can still be used to set the allowed device
orientations while a program is running. This will override the setting in this panel. You should always make sure
the device orientations selected here match the initial orientations specified in the System.
setAllowedOrientations call. Changing the allowed orientations later will work exactly as it does in
techBASIC.

1. Select the techBASIC Univ project from the TARGETS list in the Xcode project window.
Select the Summary tab.
3. Change the device orientation as needed.

™ techBASIC Univ.xcodeproj

SOl I \EI Build Succeeded | 11/27/12 at 11:54 AM
cheme Break
mw | 4 > | [techBASIC Univ I
PROJECT | Summary | Info Build Settings Build Phases Build Rules J
I techBASIC Univ : :
- Main Storyboard v

TARGETS r —
. Main Interface v

Supported Integfice Orientations

| Wiy -

Portrait Upside Landscape Landscape
Down Left Right

Status Bar

-

Style | Default

Visibility (| Hide during application launch

Tinting | Disabled

Tint Color NI

Use Your Own Icons and Launch Images

Create your own app icons and launch images and drag them to the appropriate spots in the target's deployment
info section.

1. Select the techBASIC Univ project from the TARGETS list in the Xcode project window.
2. Select the Summary tab.

10

techBASIC App Builder

3. Drag new icons and launch images to the appropriate spots in the Xcode project window.

M techBASIC Univ.xcodeproj

1el6:0iSimulator. | ‘i‘ Build Succeeded | 11/27/12 at 11:54 AM
cheme Breakpoints
u | 4 > | [techBASIC Univ |
PROJECT Summary Info Build Settings Build Phases Build Rules |

5 [techBASIC Univ

TARGETS Applicons

techBASIC Univ

_| Prerendered

Launch Images

Retina (3.5-inch) Retina (4-inch)

Change the Product Name

The i0S program will be called techBASIC Univ unless you change the product name. The simplest way is to
change just the name of the app itself.

1. Select the techBASIC Univ project from the TARGETS list in the Xcode project window.
Select the Build Settings tab.
3. Under Packaging, change the product name from techBASIC Univ to the name of your app.
k Editor
» | [techBASIC Univ |
T Summary Info | Build Settings Build Phases Build Rules ¥ Identity
hBASIC Univ Basic @D | € TP Levels Q- Project Na
Setting 7 techBASIC Univ
TS warning LInkKer riags Locat
Write Link Map File No s
¥ Packaging Full P,
Compress PNG Files Yes +
Convert Copied Files No ¥
Executable Extension g
¥ Project D

Executable Prefix

Expand Build Settings in Info.plist File Yes + Project Forn

Force Package Info Generation Yes ¥ Organizat
Framework Version A Class Pre
Info.plist File techBASIC Univ/techBASIC Univ-Info.plist

P Info.plist Other Preprocessor Flags NalextSett
Info.plist Output Encoding binary + Indent Us|
Info.plist Preprocessor Definitions Wid'
Info.plist Preprocessor Prefix File
Preprocess Info.plist File No v
Preserve HFS Data No v
Private Headers Folder Path techBASIC Univ.app/PrivateHeaders
Property List Output Encoding binary 5
Public Headers Folder Path techBASIC Univ.app/Headers
Strings file Output Encoding binary v

11

techBASIC App Builder

The alternative is to change the name of the entire project. This renames the .xcodeproj file and several
displayed variables in Xcode itself.

Select the techBASIC Univ project from the PROJECT list in the Xcode project window.
Make sure the Inspector pane is visible by clicking the right button on the View options.
Click the folded page icon in the Inspector pane.

Change the Project Name field. You will be led through a number of options. Unless you are very sure
about what you are doing, select the default option at each step. The project will be renamed.

AW N =

[techBASIC Univ.xcodeproj "
Build Succeeded 11/27/12 at 11:54 AM EI E ‘ |‘
Editor View Organizer

Summary Info Build Settings Build Phases Build Rules
) | GETETED Levels Q-
#\ techBASIC Univ
NKer Flags
Map File No &y techBASIC Univ.xcodeproj
Full Path /Users/Mike/Desktop/

PNG Files Yes 4 techBASIC for the App

. il 7S Store/My App/techBASIC
»pied Files No v Univ.xcodeproj
Extension _

¥ Project Document

Prefix
ild Settings in Info.plist File Yes 3 Project Format | Xcode 3.2-compatible
age Info Generation Yes v Organization Byte Works
: Version A

“ile
ither Preprocessor Flags

techBASIC Univ/techBASIC Univ-Info.plist

Class Prefix

¥ Text Settings

utput Encoding binary v Indent Using | Spaces |
reprocessor Definitions Widths 4% a2
reprocessor Prefix File Tab B Indent :
Info.plist File No + o Wrap lines

FS Data No v

\ders Folder Path
ame

techBASIC Univ.app/PrivateHeaders
techBASIC Univ

Compile for iOS Only

You may have noticed that the apps created so far run on both iOS devices and the iOS Simulator on the
Macintosh. This is a fantastic capability when you are debugging and testing an app, but it comes with a downside.
Since Apple implemented the iOS Simulator as a simulator, not an emulator, apps compiled for the simulator are
actually compiled for the Intel chips used in the Macintosh, not for the Arm chips used in iOS devices. That's a good
thing—it means the simulator runs very fast, often faster than the real iOS device. It also means the techBASIC
library is twice as large as it needs to be.

The size of the library isn't that big a deal when testing, or even if you are building apps for your own use. It
becomes fairly wasteful, though, when you distribute apps through the App Store. For apps distributed through the
App Store, start with a copy of the techBASIC armv7 folder instead of the techBASIC Univ folder. This uses a
library that won't work on the simulator, but is half the size of the library that supports both devices.

A Tour of the Files

You don't really need to know what the various files in the project folder are to create and use apps from
techBASIC, but we know you're curious, so here's a tour of the files. For the most part, you should leave these files
untouched, but a few can be removed for certain kinds of techBASIC programs.

Files not listed here are created by Xcode. They should not be modified unless you are very familiar with the
inner workings of Xcode projects.

12

techBASIC App Builder

AppDelegate

The AppDelegate.h and AppDelegate.m files are created by Xcode, and represent the top level of
control for the app. They are required. Other than adding your list of files (covered earlier), don't modify them
unless you know Objective C well.

AppView

The AppView.h and AppView.m files are used by the two ViewController nib files. They link the iOS app to
the techBASIC graphics display.

ViewController iPhone.xib

This is the GUI layout for the iPhone and iPod. It can be deleted for iPad-only apps.

ViewController iPad.xib

This is the GUI layout for the iPad. It can be deleted for iPhone-only apps.

BASIC

The three .h files in the BASIC file group expose the parts of the techBASIC library needed to link the iOS app
to the techBASIC core. All three are needed, and should not be modified.

iconxxx.png

There are four icon files in the Supporting Files/Images group. These are the techBASIC icons that appear by
default when the app is viewed from the home screen on the iOS device. All four can be deleted after adding your
own icons for the app.

Cp.png

This image is used by the techBASIC color picker control. It is not needed in apps that do not use color picker
controls.

pan-zoomxxx.png

There are four files used to present the user with the option of panning, zooming and rotating either the plot or
the axis when manipulating 3D plots. They are not needed in apps that do not display 3D plots.

libtechBASICUniv.a

This is the library containing the techBASIC compiler and runtime libraries. It must be present.

13

techBASIC App Builder

techBASICProgram.bas

This is the techBASIC program itself, which you replaced with your own program.

14

